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basement membrane and myoepithelial cells diminish, can-
cer cells can invade neighboring tissues. The mortality in 
most breast cancer cases is attributed to metastasis to critical 
organs such as the brain, liver, lungs, and bones, leading 
to compromised organ function and eventual demise [7]. 
Breast cancer is characterized by heterogeneity, compris-
ing various subtypes with distinct morphological and clini-
cal characteristics. Among these, ductal carcinoma arising 
from breast epithelial cells is the predominant subtype [8, 
9]. Clinically, breast cancer cells are classified into four sub-
types according to their expression levels of estrogen recep-
tor (ER), progesterone receptor (PR), and human epidermal 
growth factor receptor-2 (HER2), commonly known as 
Luminal A, Luminal B, HER2-positive, and triple-negative 
breast cancer (TNBC) [10]. Among these subtypes, Lumi-
nal A breast cancer patients constitute the largest number 
with the most favorable prognosis, whereas TNBC patients 
exhibit the worst prognosis [11].

Carbohydrates provide nutrients and calories for the 
body. When carbohydrates are digested, they are converted 
to glucose. Previous studies have found altered glucose 
metabolism and abnormal glycosylation in breast can-
cer cells [12, 13]. On the one hand, the modified glucose 
metabolism in these cells primarily occurs via the glyco-
lytic pathway, which provides cells with sufficient energy 
and promotes their proliferative capacity, thus contribut-
ing to the development of breast cancer. On the other hand, 
abnormal glucose metabolism or aerobic glycolysis may 

Introduction

In 2020, the global incidence of cancer reached 19.3 mil-
lion new cases, resulting in nearly 10 million deaths. Among 
these cases, breast cancer is the most prevalent type of malig-
nant tumor [1, 2] and remains a prominent cause of mortal-
ity among women worldwide, posing significant threats to 
their well-being [3]. Physiologically, normal breast ducts 
consist of basal membrane, luminal epithelial cells, and 
myoepithelial cells. However, the onset of breast cancer is 
marked by myoepithelial cell shrinkage, stromal cell prolif-
eration, and basement membrane degradation [4–6]. As the 
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Breast cancer is a leading cause of mortality and the most prevalent form of malignant tumor among women worldwide. 
Breast cancer cells exhibit an elevated glycolysis and altered glucose metabolism. Moreover, these cells display abnormal 
glycosylation patterns, influencing invasion, proliferation, metastasis, and drug resistance. Consequently, targeting glycoly-
sis and mitigating abnormal glycosylation represent key therapeutic strategies for breast cancer. This review underscores 
the importance of protein glycosylation and glucose metabolism alterations in breast cancer. The current research efforts 
in developing effective interventions targeting glycolysis and glycosylation are further discussed.
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also alter the glycosylation profile of cancer cells, which in 
turn affects tumor growth, invasion, and metastasis [14, 15]. 
This review elucidates the impact of glucose metabolism 
and glycosylation in breast cancer cells and discuss poten-
tial therapeutic interventions targeting these alterations.

Glucose metabolism in breast cancer cells - 
Warburg effect

Glucose serves as a vital nutrient essential for cell growth. 
In normal breast cells, glucose metabolism predominantly 
involves the tricarboxylic acid (TCA) cycle in mitochon-
dria, the glycolysis pathway, and the pentose phosphate 
pathway (PPP) in the cytoplasm. A critical step in glucose 
metabolism is the phosphorylation of glucose to glucose-
6-phosphate by hexokinase (HK). The resulting glucose-
6-phosphate not only participates in glycolysis but also 
intersects with the PPP, glycogen synthesis, and hexosamine 
biosynthesis pathway (HBP) [16]. In addition, glycolytic 
intermediates may participate in other metabolic pathways, 
such as the serine pathway, to provide the energy and sub-
stances necessary for cell proliferation [17].

Cancer development and progression represent intri-
cate processes [18]. The alteration of the genome in a cell 
disrupts the normal processes of apoptosis and aging [19]. 
Cells proliferate indefinitely and autonomously change var-
ious metabolic pathways to satisfy their own and biosyn-
thetic demands for large amounts of nutrients and energy 
[20]. The onset, progression, and metastasis of breast cancer 
are linked to metabolic reprogramming in tumor cells [21]. 
The energy metabolism of normal breast cells is mainly 
generated by oxidative phosphorylation, with only a small 
percentage coming from glycolysis [22].

Breast cancer cells exhibit heightened glucose uptake. 
Glucose metabolism is mainly dependent on glycolysis 

and produces lactate (Fig.  1). This phenomenon is com-
monly referred to as the “Warburg effect” [23]. Worth not-
ing, although glycolysis is an extremely important process 
in tumor cell metabolism, the metabolic reprogramming 
induced by increased glycolysis is uncommon in all can-
cers types, including various subtypes of breast cancer. For 
instance, analysis of gene expression signatures revealed 
significant variations in glycolysis scores among different 
cancer types. Some cancers exhibit elevated glycolysis lev-
els, such as kidney renal clear cell carcinoma, head and neck 
squamous cell carcinoma, lung squamous cell carcinoma, 
and colon adenocarcinoma, while others, such as the thyroid 
carcinoma, prostate adenocarcinoma, stomach adenocarci-
noma, and thymoma, demonstrate lower glycolysis levels 
[24].

Glycolysis

Glycolysis is an oxygen-independent metabolic pathway 
converting glucose to pyruvate, which occurs in the cyto-
plasm of most organisms [22, 25]. After being transported 
into the cytoplasm by glucose transporters, glucose is sub-
sequently converted into fructose-1,6-bisphosphate by HK, 
glucose-6-phosphate isomerase, and phosphofructokinase. 
Aldolase then breaks down the 6-carbon skeleton of fruc-
tose-1,6-diphosphate to yield dihydroxyacetone phosphate 
and glyceraldehyde-3-phosphate. In addition, these two 
molecules can be transformed by triphosphate isomerase. 
After a series of reactions catalyzed by glyceraldehyde-
3-propionate dehydrogenase, phosphoglycerate kinase, 
phosphoglycerate mutase, enolase, and pyruvate kinase, the 
glyceraldehyde-3-phosphate is metabolized into pyruvate 
and produces ATP.

In normal breast cells with adequate oxygen and func-
tional mitochondria, pyruvate generated from glycoly-
sis undergoes oxidation to form acetyl-CoA catalyzed by 

Fig. 1  Comparing glucose 
metabolism between normal 
breast cells and breast cancer 
cells. Created with BioRender.
com. GLUT: Glucose transporter; 
TCA: tricarboxylic acid; MCT4: 
monocarboxylate transporter 4
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pyruvate dehydrogenase. Acetyl-coenzymes then enter the 
tricarboxylic acid (TCA) cycle, participating in oxidative 
phosphorylation (OXPHOS) to yield carbon dioxide and 
ATP. Conversely, OXPHOS is impeded under hypoxic con-
ditions, leading to the conversion of pyruvate to lactate by 
lactate dehydrogenase (LDH). In addition, when mitochon-
dria are defective, OXPHOS is reduced, and lactate produc-
tion is increased.

For breast cancer cells, pyruvate generated from glycoly-
sis is often converted to lactate even in the presence of oxy-
gen, instead of entering the TCA cycle, which is referred 
to as “aerobic glycolysis” [26–28]. The lactate produced is 
extruded from the cell by the monocarboxylate transporter 
(MCT) to maintain intracellular pH stability [29].

Other glucose metabolic pathways

Pentose phosphate pathway (PPP)

The PPP is a metabolic route that occurs in conjunction with 
glycolysis [30], providing pentose phosphate for nucleic 
acid synthesis and NADPH for fatty acid synthesis and 
cell survival. Therefore, it plays a key role in cell growth 
[31]. It comprises two branches, an oxidative branch and a 
non-oxidative branch. The oxidative branch involves three 
irreversible reactions of glucose-6-phosphate, leading to the 
production of NADPH and ribulose 5-phosphate. Enzymes 
in this branch include 6-phosphogluconate dehydrogenase 
and glucose 6-phosphate dehydrogenase. The non-oxidizing 
branch produces pentose phosphate after a series of reac-
tions, which is used in the synthesis of ribonucleotides. 
Additionally, this branch yields glycolytic intermediates 
like fructose 6-phosphate and glyceraldehyde 3-phosphate, 
crucial for amino acid synthesis. Enzymes in the non-oxida-
tive branch include ribulose-5-phosphate epimerase, ribose 
5-phosphate isomerase, transketolase, and transaldolase 
[32].

Hexosamine biosynthesis pathway (HBP)

HBP converts glucose into uridine diphosphate N-acetylglu-
cosamine (UDP-GlcNAc) through a six-step procedure. The 
final product UDP-GlcNAc can participate in protein modi-
fication [33]. Initially, glucose-6-phosphate from glycolysis 
is converted to fructose-6-phosphate by glucose-6-phos-
phate isomerase (GPI). Then, via fructose-6-phosphate 
amidotransferase (GFAT), glucosamine-6-phosphate 
N-acetyltransferase 1 (GNA1), phosphoglucomutase 3 
(PGM3) and UDP-N-acetylhexosamine pyrophosphorylase 
(UAP), fructose-6-phosphate is converted to UDP-GlcNAc. 
UDP-GlcNAc is important substrate for not only N-glycan 
synthesis but also the formation of other monosaccharides 

and eventually glycans. At the same time, UDP-GlcNAc 
plays a crucial role in promoting glycosylation as a key 
regulatory metabolite.

Research progress of glycolysis inhibitors in the 
treatment of breast cancer

Compared to normal breast cells, the energy metabolism of 
breast cancer cells increases. However, cells produce less 
ATP per glucose molecule, and cancer cells need to take up 
more glucose to meet their basic metabolic needs. Glycoly-
sis serves as the main pathway of sugar metabolism in tumor 
cells, and the use of this process to develop anticancer drugs 
has been recognized as a viable approach [27]. Therefore, 
targeting glucose uptake characteristics of tumor cells to 
impede glucose utilization and consequently disrupt energy 
supply represents a therapeutic strategy for breast cancer. At 
present, research has identified several anti-glycolysis drugs 
for breast cancer treatment, targeting glucose transporters 
(Table 1) or enzymes involved in glycolysis (Table 2).

Inhibitors targeting glucose transporters (SGLTs and GLUTs)

The transportation of glucose into cancer cells requires 
glucose transporters. Two major glucose transporters have 
been identified including glucose transporters (GLUTs) and 
sodium-glucose cotransporters (SGLTs) [34]. Among them, 
GLUTs transport glucose along the concentration gradient, 
while SGLTs use the electrochemical gradient of Na+ to 
actively transport glucose. It is noteworthy that the magni-
tude of extracellular glucose concentration is independent 
of glucose transport by SGLTs [35].

SGLT1 and SGLT2 are expressed in breast cancer cells 
compared to normal breast cells. For SGLT1, in vitro exper-
iments have shown that down-regulating of SGLT1 levels 
inhibits cell growth in breast cancer cell lines of TNBC [36] 
or HER2-positive [37]. It has been reported that KGA-2727 
[38] and mizagliflozin [39] are two specific SGLT1 inhibi-
tors. Tsunokake et al. evaluated the impact of mizagliflozin 
and KGA-2727 on breast cancer MCF-7 and MDA-MB-468 
cells, respectively, and found an inhibition of cell prolif-
eration by these two inhibitors. In addition, mizagliflozin 
also exhibited inhibitory effects on MCF-7 cell prolifera-
tion under low glucose conditions [35]. For SGLT2, cana-
gliflozin [40], dapagliflozin [40] and ipragliflozin [41] have 
been reported to serve as specific inhibitors of SGLT2, 
which have been applied to clinical treatment of type 2 dia-
betes. All these SGLT2 inhibitors can effectively suppress 
the growth of MCF-7 breast cancer cells.

The GLUT family consists of 14 members, includ-
ing GLUT1-GLUT12, GLUT14 and the H+/myo-inositol 
transporter [42]. Some of these members, such as GLUT1, 
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Table 1  Glucose transporters (GLUTs and SGLTs) inhibitors
Method Inhibitor Mode of action Breast can-

cer type
State of 
development

Refer-
ence

Inhibi-
tors of 
SGLTs

SGLT1 
inhibitors

KGA-2727 Inhibited the proliferation of MCF-7 and MDA-MB-468 
cells

Luminal A 
TNBC

Preclinical  [38]

Mizagliflozin Reduced the phosphorylation of VEGF R2 and inhibits 
glucose uptake

Luminal A 
TNBC

Phase II  [39]

SGLT2 
inhibitors

Canagliflozin Decreased glucose uptake, activated AMPK signaling, 
inhibited mTOR pathway

Luminal A marketed  [35]

Dapagliflozin Affected AMPK/mTOR signaling pathway, blocked cell 
cycle in G1/G0 phase and induced MCF-7 cell apoptosis

Luminal A marketed  [40]

Ipragliflozin The proliferation of MCF-7 cells was reduced by mem-
brane hyperpolarization and mitochondrial membrane 
instability

Luminal A marketed  [41]

Inhibi-
tors of 
GLUTs

Competi-
tive indirect 
inhibition

2-deoxy-
D-Glucose 
(2-DG)

Competing with glucose for transport of GLUT1 and 
GLUT4

Luminal A 
TNBC

Phase II  [45]

Inhibition 
of GLUTs 
expression

Silibinin Inhibition of GLUT1 expression Luminal A Phase III  [49]
Quercetin GLUT1 inhibitor, Inhibition of glycolysis through autoph-

agy induction mediated by the Akt-mTOR pathway
Luminal A 
HER2 posi-
tive TNBC

Phase III  [51, 
52]

BAY-876 Decrease glucose uptake in triple negative breast cancer 
cell lines

TNBC Preclinical  [53]

Phloretin GLUT2 inhibitor, inhibits cell growth in MDA-MB-231 
cells and arrests the cell cycle in a p53 mutation-dependent 
manner

TNBC Preclinical  [55]

Kaempferol Down-regulated GLUT1 mRNA expression Luminal A Phase I  [56]
Indinavir Inhibit GLUT4 uptake of glucose TNBC marketed  [57]
Sorafenib Inhibit mTORC1 pathway and reduce the expression level 

of GLUT1 protein
Luminal A 
HER2 posi-
tive TNBC

Phase I  [58]

STF-31 GLUT1 inhibitor TNBC Preclinical  [59]
Binds 
directly to 
glucose 
transporters

WZB117 Blocking glucose transport by binding to GLUT1 glucose 
binding sites

Luminal A Preclinical  [62]

Table 2  Glycolytic enzyme inhibitors and MCTs inhibitors
Inhibitors 
of HK

2-DG Interfere with glucose phosphorylation Luminal 
A TNBC

Phase II [63]

Lonidamine 
(LN)

Inhibit HK, induce endoplasmic reticulum stress response, downregulate apop-
tosis inhibition protein, promote caspase-8 activation, reduce ATP levels

Luminal 
TNBC

Phase II [64]

3-Bromopyru-
vate (3-BrPA)

A HK inhibitor that inhibits glycolysis leading to ATP depletion and leads to 
apoptosis of MDA-MB-231 breast cancer cell line

TNBC Phase I [66]

Genistein-27 
(Gen-27)

Decreased the expression of HK2 TNBC Preclinical [67]

Inhibi-
tors of 
GAPDH

3-BrPA Selective inhibition of GAPDH leads to significant energy depletion and redox 
imbalance

TNBC Phase I [66]

Inhibitors 
of LDH

Gossypol LDH-A inhibitor, induction of MCF-7 cell autophagy and promotion of 
apoptosis

Luminal 
A

Phase III [72]

Oxamate LDH-A inhibitor TNBC Preclinical [73]
Inhibitors 
of MCTs

AZD3965 MCT1 inhibitor Luminal 
A

Phase I [76]
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inhibitor, which can effectively block the transportation 
of glucose and reduce the level of intracellular ATP, thus 
achieving anti-proliferation effect [60]. However, WZB117 
alone was not effective in inducing apoptosis. De et al. 
adopted the combined treatment method, and the prepared 
polymer (WZB117-OCMC-MET) could double target 
GLUT1 and mammalian target of rapamycin pathway to 
change the metabolism of breast cancer cells and improve 
the therapeutic effect [61].

Drugs targeting the glycolysis process

When glucose enters cancer cells, glycolysis and other path-
ways occur. The initial enzyme involved in the glycolysis 
process is HK, which catalyzes the rate-limiting phosphor-
ylation of glucose to produce glucose 6-phosphate, which 
activates and carries out subsequent glycolysis or PPP. 
2-DG is not only a GLUT inhibitor, but also a representa-
tive HK inhibitor. It interferes with glucose phosphorylation 
by competing with glucose-6-phosphate after entering the 
cell via GLUTs. In addition, 2-DG phosphorylated by HK, 
the product 2-deoxyglucose-6-phosphate, cannot be further 
metabolized by cells and gradually accumulates in cells, 
reducing the production of ATP [63]. Lonidamine (LN), an 
indole derivative and HK inhibitor, shows promise in breast 
cancer treatment. Studies have shown that LN can inhibit 
HK, induce endoplasmic reticulum stress response, down-
regulate apoptosis inhibitory proteins, and reduce ATP levels 
[64]. LN was found in early clinical trials to have significant 
toxicities on the hepatic and pancreatic [65]. This prevents 
it from being formally used in the clinic. Therefore, in order 
to reduce the damage of LN to the liver, the research focus 
has been on the modification and local targeted delivery 
of LN. 3-Bromopyruvate (3-BrPA) can selectively inhibit 
HK and DAPDH, thereby inhibiting the glycolysis process, 
leading to ATP consumption and ultimately apoptosis [66]. 
Genistein-27 (GEN-27), an HK inhibitor, has been found 
to down-regulate HK2 expression in MDA-MB-231 breast 
cancer cells, inhibit glycolysis and promote apoptosis [67].

LDH includes two subtypes, LDH-A and LDH-B. 
LDH-A catalyzes the conversion of pyruvate to lactate dur-
ing glycolysis. Cancer cells undergo glycolysis to produce 
excess lactate, which is associated with the upregulation of 
hypoxia-inducible factor-1α and c-Myc. This up-regulation 
subsequently increases LDH-A and MCT expression [68, 
69]. Gossypol, an inhibitor of LDH-A, is a complex poly-
phenolic compound that occurs naturally in various parts of 
cotton plants, particularly in the seeds [70, 71]. There is evi-
dence that gossypol can induce autophagy of MCF-7 cells 
and promote apoptosis [72].

The task of transporting lactate molecules outside the 
cell during glycolysis is performed by MCTs. Studies have 

GLUT2 and GLUT4, are overexpressed in breast cancer 
cells. Therefore, GLUTs are promising target for breast 
cancer treatment. By developing GLUT inhibitors to block 
the GLUT-mediated transportation of glucose into cells, the 
growth of cancer cells is inhibited or apoptosis is activated, 
so as to achieve therapeutic effect.

It is important to note that GLUT inhibitors function in 
diverse ways. For example, 2-deoxy-D-glucose (2-DG) is 
a glucose analog and indirect inhibitor that interferes with 
GLUTs by competing with glucose. 2-DG serves as a gly-
colysis inhibitor in glucose metabolism [43]. It inhibits 
glucose uptake by cells through competitive binding with 
GLUTs, thereby reducing glucose transport efficiency [44]. 
Although 2-DG exerts anti-proliferative activity in breast 
cancer cells (MCF-7, MDA-MB-231), the inhibitory effect 
of 2-DG alone was not significant. Studies have shown that 
the use of 2-DG in combination therapy can enhance the 
chemical sensitivity of breast cancer cells [45]. Andrad-
vieira et al. inhibited the mechanistic target of rapamycin 
(mTOR) pathway and glycolytic metabolism after combined 
administration of AZD8055 and 2-DG, thereby reducing the 
growth of breast cancer cells [46]. The addition of 2-DG 
makes tumor cells more sensitive to the inhibition of mTOR 
signaling pathway. In addition, although 2-DG is overall 
safe, previous study has shown that high doses of 2-DG can 
reduce blood pressure and respiratory rate in animals [47].

There are inhibitors and drugs that inhibit GLUTs expres-
sion. Silibinin is a GLUT inhibitor and a natural flavonoid 
with diverse biological activities [48]. Studies have shown 
that Silibinin inhibits GLUT1 expression through up-regu-
lation of Bak, P53 and p21 and down-regulation of Bcl-xl, 
affects the proliferation of Luminal A (MCF7) breast cancer 
cells, induces apoptosis, and halts the cell cycle in the G0/ 
G1 phase [49]. However, due to the poor bioavailability of 
Silibinin, high doses are required to exert significant inhibi-
tory effects, halting it in the phase I clinical trial stage [50]. 
Quercetin is another natural polyphenolic compound with 
GLUT inhibiting effect. Studies have found that Quercetin 
can reduce the level of GLUT in MCF-7 and MDA-MB-231 
cells and reduce glucose uptake [51]. Compared with other 
glucose transport proteins, BAY-876, an inhibitor with 
high selectivity for GLUT1, is currently in the preclinical 
research stage [53]. Wu et al. found that there was a RB1 
protein in TNBC cell line, and the expression level of the 
protein was related to GLUT1. The experiment showed that 
BAY-876 could block the expression level of RB1 protein 
[54]. In addition, Phloretin [55], Kaempferol [56], Indinavir 
[57], Sorafenib [58], and STF-31 [59] have also been found 
to inhibit GLUTs.

In addition to the inhibitors described above, there are 
some drugs that bind directly to GLUTs, thereby blocking 
GLUTs from functioning. WZB117 is a specific GLUT1 
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refers to the enzymatic process of attaching glycans to pro-
teins, lipids or other sugars to produce glycoproteins, gly-
colipids, and proteoglycans. Glycosylation occurs in the 
endoplasmic reticulum and Golgi apparatus. When abnor-
mal glycosylation occurs in the body, it induces a variety of 
pathological changes. In particular, aberrant glycosylation 
occurs in association with pathological changes occurring 
in epithelial-mesenchymal transition in tumor diseases 
[86]. Glycosylation is among the most prevalent forms of 
post-translational modifications of proteins [84]. According 
to the nature of glycosidic bond formation, protein glyco-
sylation can be classified into O-glycosylation, N-glyco-
sylation and GPI [87]. Among them, O-glycosylation and 
N-glycosylation are the two main types. O-glycosylation 
is also called mucin glycosylation [88]. O-glycosylation in 
which the attachment of glycans to the side chains of serine 
and threonine, and N-glycosylation refers to the attachment 
of polysaccharides to the side chain of asparagine [89]. The 
presence of glycosyltransferases and glycosidases plays a 
regulatory role in the glycosylation process.

Proteins undergo glycosylation to form glycoproteins. 
Therefore, glycosylation plays an important role in modify-
ing protein and regulating protein function. On one hand, 
glycosylation does not affect the spatial structure of the 
protein. Studies have shown that protein glycosylation has 
little effect on the secondary structure of proteins [90, 91]. 
For example, Kajihara et al. used a semi-synthetic approach 
to obtain erythropoietin (EPO). The CD spectral analysis 
showed that glycoylation has no significant impact on the 
secondary structure of EPO [92]. In addition, experimen-
tal results showed that glycosylation does not cause major 
conformation changes of Fractalkine at room temperature 
[93]. On the other hand, glycosylation promotes the correct 
folding of protein, makes it more stable, and also impact 
its thermal stability and aggregation. Raines et al. recently 
evaluated the effect of N-glycosylation on ribonuclease 1 
(RNase 1) and found that N-glycosylation of RNase 1 at any 
location can enhance the thermal stability of the protein and 
inhibit its hydrolysis [94].

Role of glycosylation in breast cancer

Glycosylation affects not only the proliferation but also the 
metastasis and survival of cancer cells. Firstly, abnormal 
glycosylation regulates glucose metabolism in breast can-
cer cells and accelerates the growth of tumor cells. Unlike 
normal cells, whose proliferation is regulated by precise sig-
nals, cancer cells can multiply indefinitely. The reason is that 
signal regulation in cancer cells is disrupted, which allows 
cancer cells to autonomously change metabolic pathways 
to obtain the energy needed for their own proliferation. For 
example, The final product of HBP pathway UDP-GlcNAc 

found that human breast cancer generally has high MCT1 
expression [74, 75]. AZD3965 is a promising selective 
inhibitor of MCT1 and is currently in clinical trials. Pre-
viously, it has been shown that AZD3965 has a strong 
anti-cancer effect in breast cancer models [74]. Moreover, 
Benyahia et al. used representative Luminal A breast cancer 
cells (T-47D and MCF-7) and non-malignant cells (MCF-
10 A and human BJ fibroblasts) and several behavioral tests 
in mice to determine the anti-cancer effects and safety of 
AZD3965 [76]. Phenotypic characterization of mice focus-
ing on metabolism, muscle and brain physiology found par-
tial and transient memory retention defect as the only side 
effect of AZD3965. At present, AZD3965 is still in the clini-
cal trial stage and certain side effects have been reported. 
However, it is believed that the clinical safety of AZD3965 
in inhibiting MCT1 can be established through continuous 
trials.

Although some of these drugs are still in the clinical trial 
stage, and some have been terminated due to adverse reac-
tions. Nonetheless, these drugs serve as valuable references 
for the future discovery and development of effective and 
selective anti-breast cancer agents.

Abnormal glycosylation in breast cancer

Glycans and glycosylation

Glycans are important constituent of cells, mainly composed 
of monosaccharides, oligosaccharides or polysaccharides, 
and are key components of glycoproteins, glycosaminogly-
cans, proteoglycans and glycolipids on cell surfaces [77]. 
The synthesis of glycans in cells is promoted by hundreds 
of enzymes, including glycosyltransferase, glycosidase, and 
enzymes involved in sugar modification, metabolism, and 
transportation [78]. These enzymes attach specific sugar 
residues to new glycans, so the synthesis of glycans is not 
templated, which gives them a specific structure [79]. Dur-
ing protein synthesis, the presence of glycans ensures the 
stability of endoplasmic reticulum folding and participates 
in the distribution of newly synthesized proteins [80]. Char-
acteristics of different cancers can be associated with aber-
rant glycan structure, including tumor cell growth, survival, 
migration, immune evasion, and drug resistance [81–83]. In 
addition, as tumors develop and progress, certain glycans 
covering the surface of cells will also change. So, we can 
monitor tumor progression based on changes in glycans.

Alterations in glycosylation represent a well-established 
hallmark of cancer [84]. Glycosylation not only influences 
cell migration, proliferation, adhesion and apoptosis but 
also plays an important role in cell matrix interactions, pro-
tease activities, and immune recognition [85]. Glycosylation 
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Thirdly, glycosylation plays a role in the metastasis of 
breast cancer cells. More and more evidence has revealed 
the important role of abnormal glycosylation in malig-
nant transformation and metastasis of tumors. Abnormal 
N-glycosylation can alter the three-dimensional structure of 
MUC1 and promote cancer cell migration [109]. However, 
there are also some glycoproteins that possess inhibitory 
effects on breast cancer metastasis. SGK196 is a transmem-
brane protein that is commonly expressed in skeletal mus-
cle, brain, heart and kidney tissues. Studies have shown that 
SGK196 is mainly modified by N-glycosylation in breast 
cancer cells, and is a glycosylated specific kinase, which 
plays a role in inhibiting cell metastasis and invasion in 
breast cancer. Li et al. found that N-glycosylated SGK196 
can inhibit the metastasis of BLBC cells. Through mecha-
nism studies, it was found that N-glycosylated SGK196 
plays a regulatory role through the PI3K/AKT/GSK3β sig-
naling pathway [110]. This finding provides new insights 
into the function of SGK196 in breast cancer.

Drugs for treating breast cancer by inhibiting 
abnormal glycosylation

At present, breast cancer treatment mainly includes conven-
tional therapy, immunotherapy and small-molecule inhibi-
tors [111]. Conventional therapies refer to radiation therapy, 
chemotherapy and surgery, which have certain side effects 
and lack of specificity. Immunotherapy has clinical signifi-
cance for the treatment of triple-negative breast cancer and 
HER2 positive breast cancer. In immunotherapy, the clini-
cal application of therapeutic antibodies, including PD-L1 
[112], CAR-T cell therapy [113], trastuzumab [114], and 
other clinical applications, has improved the survival rate of 
breast cancer patients. However, immunotherapy also has 
many disadvantages, such as high heterogeneity, laborious 
production and treatment resistance. Meanwhile, the use of 
small-molecule inhibitors also has the above disadvantages. 
It is considered that altered glycans play a role in the occur-
rence, progression, and metastasis of breast cancer. There-
fore, targeted glycosylation has become one of the options 
to develop therapeutic agents for breast cancer.

Targeted glycosylation therapy for breast cancer can 
be divided into the following three categories, as shown 
in Table 3. The first category is synthetic monosaccharide 
analogs. Because cell membranes and secretory proteins 
are glycoproteins, small changes in the glycan chains may 
affect the function of the glycoconjugate, affecting cell 
adhesion, immune recognition, and the growth and metas-
tasis of tumor cells [115]. Monosaccharide analogs with 
active groups are glycosylated after uptake by cells, and 
can then act as inhibitors to interfere with the formation of 
oligosaccharide chains [116, 117]. Currently, synthesized 

can participate in O-linked/N-linked glycosylation and 
can also participate in O-GlcNAcylation as a substrate of 
O-GlcNAc transferase (OGT) [95]. A study has shown that 
the enhanced binding of O-GlcNAc acylated DNA topoi-
somerase IIα (TOP2A) to DNA enhances the interaction 
between TOP2A and cycle regulators such as CDK1 and 
UPF1, affecting the cell cycle process and ultimately pro-
moting the proliferation of breast cancer cells [96]. In addi-
tion, OGT expression levels catalyzing O-GlcNAc acylation 
were elevated in breast cancer cells [97]. There is an ER-
independent link between OGT and the transcription factor 
FOXA1, which promotes oglcn acylation at three FOXA1 
sites (Thr432, Ser441, and Ser443), thereby promoting breast 
cancer metastasis [98]. Therefore, the growth of tumor cells 
can be inhibited by reducing the level of OGT. In addition, 
by comparing the effects of OGT inhibition on the prolifera-
tion and survival of different subtypes of breast cancer cells, 
it was found that TNBC cell lines were more dependent on 
OGT [99].

Secondly, the glycosylation modifications affect cell-cell 
adhesion and mediates cell-matrix interactions. Tumor cells 
disrupt intercellular adhesion and invade surrounding tis-
sues to promote breast cancer progression [100]. The trans-
membrane glycoprotein mucin 1 (MUC1) is the most easily 
identifiable transmembrane protein in the mucin family 
with a highly glycosylated extracellular domain. Normally, 
MUC1 forms a tight mesh structure and covers the surface of 
epithelial cells to protect the cells from extreme conditions 
[101–103]. However, in cancer cells, MUC1 expression is 
upregulated, leading to altered protein structure, glycosyl-
ation patterns, and spatial distribution. These changes in 
MUC1 are pivotal in the onset and progression of breast 
cancer and other malignancies. Abnormal glycosylation in 
the MUC1 makes the O-chain truncation, increased expres-
sion of Tn and STn, formation of new side chains, induction 
of carcinogenic characteristics of cells, and promotion of 
cell growth and invasion by disrupting intercellular adhe-
sion contact [104]. Extracellular matrix (ECM) is a complex 
network composed of glycoproteins, glycosaminoglycans, 
collagen and proteoglycans, which influence tumor devel-
opment and cancer progression [105]. Notably, integrins, 
pivotal cell surface adhesion glycoproteins, play a crucial 
role in ECM interactions and metastasis [106]. Evidence 
suggests that alterations in integrin glycosylation can mod-
ulate the adhesive properties of cancer cells [107]. It can 
be concluded that the alteration of integrin glycosylation 
may affect cell adhesion to ECM, and thus play a role in 
cell migration. Singh et al. examined the differential expres-
sion of integrins avb3 and avb6 in breast cancer cells and 
untransformed breast cells at two different disease stages. 
The results suggest the necessity of N-glycosylation on inte-
grins for cell-ECM interactions [108].
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other ligands, EGFR glycosylation was inhibited, ERK1/2 
signaling pathway was inhibited, and FUT4 expression was 
significantly down-regulated [125]. In summary, Erbitux 
plays an anticancer role by inhibiting fucosylation. Epigal-
locatechin gallate (EGCG) is the monomer with the highest 
content and biological activity in green tea [126]. In breast 
cancer cells, MUC1 expression is upregulated and pro-
tein glycosylation is altered. EGCG can interfere with the 
production of MUC1 and inhibit O-glycosylation. Studies 
have found that EGCG inhibits the expression of miR-25 in 
Luminal A (MCF-7 cells), induces cell cycle arrest in G2/ 
M phase, and thus plays a role in apoptosis and inhibition 
of cell proliferation [127]. In addition, EGCG can inhibit 
the growth of TNBC (MDA-MB-231) cells and can be used 
as a potential therapeutic agent for TNBC patients [128]. 
Due to its low bioavailability and lack of targeting, the use 
of EGCG in clinical practice has been limited. However, 
EGCG can be used as a chemotherapy adjuvant to enhance 
the sensitivity of tumors to drugs [129]. Ginsenoside Rg3 
[130] and N-acetylcysteine (NAC) [131] inhibited fucosyl-
ation in Luminal A (MCF7) and TNBC (MDA-MB-231) 
cell lines.

Links between glucose metabolism and 
glycosylation in breast cancer

The specific changes and effects of glucose metabolism and 
glycosylation in breast cancer have been described in the 
previous chapters. This also brings to light a question worth 

monosaccharide analogs include glucose analog 2-DG 
[118], GalNAc analog 2-KetoGal [119], and focusing ana-
log 6-Azidofucose [120]. Among them, 2-DG is a mono-
saccharide analog that not only inhibits glycolysis, but also 
interferes with glycosylation [121]. In terms of glycosyl-
ation, 2-DG exerts anticancer effects in Luminal A (MCF7) 
and TNBC (MDA-MB-231) breast cancer cell lines by 
blocking glucose-6-phosphate isomerase. The second cat-
egory involves glycosyltransferase/glycoprotein inhibitors. 
Because glycosylation refers to the process of attaching gly-
cans to protein under the catalysis of enzymes. Therefore, 
enzymes or protein-related inhibitors involved in the glyco-
sylation can compete with glycosyltransferase to participate 
in protein glycosylation, block the abnormal glycosylation 
process, and thus inhibit tumor cell metastasis. PGM3 is an 
enzyme involved in the HBP pathway which can be targeted 
by inhibitors. As a competitive inhibitor of PGM3, FR054 
induces a decrease in intracellular UDP-GlcNAc, resulting 
in a decrease in N-glycans. Treatment of breast cancer cells 
with FR054 can induce apoptosis and reduce TNBC (MDA-
MB-231 cells) adhesion and migration [122]. The third cat-
egory is antibodies against glycosylation. Tunicamycin is an 
antibiotic. HER2 positive (SKBR-3 cells) can prevent the 
transfer of GLNAC-1-p to dolichol-P under tunicamycin. 
This is an important step in the production of N-glycans. 
Therefore, tunicamycin reduces cell responsiveness to 
growth factors by inhibiting N-glycosylation, thereby inhib-
iting cancer cell growth [124]. Erbitux is a lgG1 monoclo-
nal antibody targeting EGFR. In Luminal breast cancer cell 
lines, EGFR was competitively blocked from binding to 

Table 3  Targeted glycosylation inhibits breast cancer progression
Classification Inhibitor Mode of action Breast can-

cer type
State of 
development

Refer-
ence

Monosac-
charide 
analogs

Glucose analog 2-DG Influencing the HBP pathway, blocking glucose-
6-phosphate isomerase and playing an anti-cancer 
role in MCF7 and MDA-MB-231 breast cancer 
cells

Luminal A 
TNBC

Phase II  [121]

GalNAcanalog 2-KetoGal Change the structure of O-GalNAc to inhibit the 
spread of cancer cells

— Preclinical  [119]
Fucose analog 6-Azidofucose Preclinical  [120]

glycosyltransferase/ glycopro-
tein inhibitors

FR054 Induces the decrease of intracellular UDP-
GlcNAc, reduces N-glycan, and reduces the adhe-
sion and migration of MDA-MB-231 cells

TNBC Preclinical  [122]

H89 Inhibit N-glycosylation, activate protein kinase A 
(PKA), and inhibit breast cancer cell migration

TNBC Preclinical  [123]

Antibody drugs for 
glycosylation

Tunicamycin 
(TM)

Blocking the N-glycan formation step, that is, pre-
venting the transfer of GlcNAc-1-P to dolichol-P

HER2 
positive

Preclinical  [124]

Erbitux Inhibition of EGFR glycosylation, ERK1/2 
signal pathway, significant downregulation FUT4 
expression

HER2 
positive

Phase II  [125]

EGCG Interfere with MUC1 production and inhibit 
O-glycosylation

Luminal A 
TNBC

Phase III  [127, 
128]

Ginsenoside Rg3 Inhibition of fucosylation Luminal A 
TNBC

Preclinical  [130]

NAC Inhibition of fucosylation TNBC marketed  [131]
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that affect metabolism can also have an impact on the 
HBP pathway. For example, the glycolysis inhibitor 2-DG 
can also inhibit the phosphorylation of GFAT and reduce 
the generation of UDP-GlcNAc, thus affecting the glyco-
sylation pathway [141]. How to design and use metabolic 
inhibitors to regulate HBP and play a therapeutic role needs 
to be further studied.

Conclusion and future perspectives

At present, breast cancer is still the main disease threatening 
women’s life and health, affecting their quality of life. Glucose 
serves as the primary energy substrate for cancer cells, and a 
series of changes in the cell are worth studying. Existing stud-
ies have shown that alterations in glucose metabolic pathways 
(especially increased glycolysis) and abnormal glycosylation 
are associated with breast cancer progression. In addition, the 
HBP pathway links glucose metabolism to the process of gly-
cosylation. Therefore, the inhibition of HBP pathway can also 
be considered in the future discovery and development of breast 
cancer drugs from the perspective of glucose changes. More-
over, although there are limited studies on the development 
of therapeutic agents for breast cancer by targeting glycolysis 
and inhibiting glycosylation, the existing studies still provide 
implications for the future development of novel agents against 
breast cancer. Much more importantly, considering the geneti-
cally heterogeneous nature of breast cancer involving complex 
heritable and somatic factors, future studies should focus on 
exploring different signaling networks associated with various 
breast cancer subtypes. This effort aims to clarify sensitivity 
to therapeutic agents and provide personalized benefits against 
breast cancer.
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