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fragile X mental retardation protein 1 [1, 2]. This protein 
potentially regulates a high number of mRNAs involved 
in neuronal development and neuroplasticity, the brain’s 
ability to reorganize itself by forming new neural connec-
tions throughout life in response to various experiences or 
environmental changes [3]. This decreased expression of 
FMRP or the loss of its function induces an imbalance in 
inhibitory and excitatory neurotransmitters and is associated 
with intellectual disability and other cognitive impairments. 
As reported by Zhang et al. [4], FMRP expression is wide-
spread but is especially high in the brain and testis. In the 
brain, FMRP has been implicated in dendritic spine matu-
ration, synapse formation, and synaptic plasticity, with rel-
evant roles in mRNA transport and translational control, and 
in messenger ribonucleo-protein (mRNP) complexes that 
associate with polyribosomes and in mRNA nuclear export. 
Recently, Geng et al. [5] reported that FMRP interacts with 
the voltage-dependent anion channel (VDAC) regulating 
the formation and function of endoplasmic reticulum (ER)-
mitochondria contact sites (ERMCSs), structures that are 
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produces decreased expression of the fragile X Messen-
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Abstract
Fragile X syndrome (FXS) is a genetic disorder characterized by mutation in the FMR1 gene, leading to the absence or 
reduced levels of fragile X Messenger Ribonucleoprotein 1 (FMRP). This results in neurodevelopmental deficits, includ-
ing autistic spectrum conditions. On the other hand, Fragile X-associated tremor/ataxia syndrome (FXTAS) is a distinct 
disorder caused by the premutation in the FMR1 gene. FXTAS is associated with elevated levels of FMR1 mRNA, leading 
to neurodegenerative manifestations such as tremors and ataxia.

Mounting evidence suggests a link between both syndromes and mitochondrial dysfunction (MDF). In this minireview, 
we critically examine the intricate relationship between FXS, FXTAS, and MDF, focusing on potential therapeutic avenues 
to counteract or mitigate their adverse effects. Specifically, we explore the role of mitochondrial cofactors and antioxi-
dants, with a particular emphasis on alpha-lipoic acid (ALA), carnitine (CARN) and Coenzyme Q10 (CoQ10). Findings 
from this review will contribute to a deeper understanding of these disorders and foster novel therapeutic strategies to 
enhance patient outcomes.
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critical for mitochondrial calcium (mito-Ca2+) homeostasis. 
This is important since inhibition of VDAC or other ERMCS 
components restored synaptic structure, function, and plas-
ticity and rescued locomotion and cognitive functions.

Among the clinical consequences of FXS, mainly involv-
ing neurodevelopmental abnormalities, Fragile X-associ-
ated tremor/ataxia syndrome (FXTAS) is characterized by 
motor deficits, impaired energy metabolism in adult patients 
and mitochondrial dysfunction (MDF) [6–8]. The present 
minireview focuses on some selected reports on the com-
bination of FXS and FXTAS with MDF and with the role 
of some synthetic or naturally occurring antioxidants that 
may result in protective – or adjuvant - effects on the FXS/
FXTAS phenotype.

Oxidative stress and tested antioxidants in FXS and 
FXTAS

In FXS, oxidative stress (OS) has been implicated as a con-
tributing factor to the neurodegenerative manifestations 
seen in the disorder. In particular, OS markers as well as 
oxidative damage in the form of lipid peroxidation and pro-
tein carbonylation were found in in FXS mice models [9]. 
This study also demonstrated impaired antioxidant defense 
mechanisms in FXS individuals, suggesting an imbalance 
between reactive oxygen species (ROS) production and 
antioxidant capacity. In FXTAS, oxidative stress has also 
been implicated in the disease pathophysiologyy [10]. Sev-
eral antioxidants or their combinations have been tested 
in counteracting FXS-/FXTAS-associated damage in both 
clinical trials and in a number of models, including patient 
cells and rodents with specific mutations [11, 12]. Treat-
ment with a natural neurosteroid allopregnanolone was 
able to reduce OS and improved mitochondrial function in 
a 12-week open-label intervention study of six males with 
FXTAS [13]. Table  1 summarizes several antioxidants or 
their combinations that have been tested in counteracting 
FXS/FXTAS-associated damage in several models, as well 

as in clinical trials [15, 18–23]. The current and prospect 
utilization of antioxidants in the treatment of FXS/FXTAS 
has been presented in further reports and reviews, altogether 
raising the realistic prospects of adjuvant therapies as tools 
to ameliorate the health status and life expectancy of FXS/
FXTAS patients [24–29].

Mitochondrial dysfunction in FXS and FXTAS

Mitochondrial dysfunction in FXS and FXTAS has been 
increasingly recognized as a contributing factor to the 
pathogenesis of these disorders. Abnormalities in the trans-
port of nuclear-encoded proteins into mitochondria have 
been observed in carriers with or without FXTAS, sug-
gesting a potential role of mitochondrial dysfunction in the 
pathophysiology [7, 8]. In FXS, deficiency of FMRP has 
been linked to impaired mitochondrial function, altered 
mitochondrial morphology, and disrupted calcium homeo-
stasis [7]. Similarly, FXTAS has been associated with mito-
chondrial abnormalities, including decreased activities of 
respiratory chain complexes in cells derived from FXTAS 
patients [8].

Studies in mouse models of FXS have revealed elevated 
levels of reactive oxygen species (ROS), lipid and protein 
oxidation, implicating mitochondrial enzymes involved in 
oxidative homeostasis, particularly in wild-type and Fmr1 
knockout glial cells [24]. Moreover, Fmr1 deletion in astro-
cytes has been shown to result in decreased mitochondrial 
respiration and increased ROS production [25, 26]. Inter-
estingly, the impact of the premutation, as observed in the 
FMR1 gene, extends beyond FXS and has been implicated 
in other neurodegenerative diseases, such as Parkinson’s 
disease (PD) [27]. Notably, some cases of PD bear striking 
resemblance to FXTAS [29].

Considering recent studies suggesting potential treat-
ments for PD involving a combination of CoQ, B-vitamins/
NADH, CARN, vitamin D, and ALA [28], it is plausible 

Table 1  Use of selected antioxidants in inducing adjuvant effects in FXS/FXAS models
Agent Model Effects Dose Ref.
Allopregnanolone pilot study on FXTAS patients reduced OS and improved mitochondrial 2,4,6 mg [13]

functions in FXS weekly
Sulforaphane fibroblasts from beneficial effect of sulforaphane exerted 5 µM for 72 h [16]

FXTAS patients through NRF2 on brain function,
bioenergetics, and antioxidant defense

Epigallocatechin-3-gallate 
(EGCG)

Fmr1 knockout mice; improved cognition (visual episodic memory) 10 mg/kg [22]

phase I clinical trial and functional competence 5–7 mg/kg/day
Melatonin clinical trials protective effects 3 mg/day [17–19]
Ascorbic acid and α-tocopherol FXTAS patients reversed pathophysiological hallmarks 10 mg/kg/day [21]

(free radical overproduction, oxidative stress,
Rac1 and α-PKC activation), macroorchidism,
and behavior and learning deficits
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to explore the therapeutic potential of these mitochondrial 
nutrients (MNs) for FXS and FXTAS.

Mitochondrial cofactors in FXS and FXTAS

The involvement of some factors in FXS and FXTAS with 
prooxidant effects may be counteracted by some anti-
oxidants from natural or synthetic sources, pointing to the 
beneficial roles of MNs [29–32]. The distinct, yet comple-
mentary roles of antioxidants and of MNs are summarized 
in Table  2. A few studies have reported on the protective 
roles of CARN alone or in combination with antioxidants 
[33–35]. It should be mentioned that an analytical review of 
CARN-focused clinical trials failed to confirm a protective 
role of CARN in FXS patients [36].

The role of CoQ10 in FXS (Fmr1 knockout) mutant mice 
has been reported in two studies [37, 38], where altered 
CoQ10 content, with tissue-specific differences in forebrain 
and heart mitochondria in a newborn mouse model of FXS 
(Fmr1 knockout), was linked to MDF and cellular dys-
function. In particular, altered CoQ10 biosynthesis seems 
to affect mitochondria permeability transition pore activity 
and thermogenic control in brown adipose tissues. These 
findings further stress the link between FMRP and CoQ10 
biosynthesis that could play a role in altered neurodevelop-
ment [38].

No direct information, to the best of our knowledge, is 
available on the role(s) of another key MN, ALA, endowed 
to be an essential nutrient for mitochondrial functions, 
namely in the TCA (Krebs) cycle and as a recognized anti-
oxidant [39]. Several reports on ALA-associated protective 
roles of ALA in other pathologies [40–42]. Further research 
is expected on this subject.

Limitations and conclusion remarks

Limitations of the studies reviewed in this paper include 
small sample sizes, heterogeneous patient populations, and 
variability in treatment protocols. Many studies have been 
conducted using cell lines or mouse models [19, 22, 23], 
and clinical trials with human subjects have been limited 
[15, 18, 34–36]. Although some works did not have control 
groups, making it difficult to draw definitive conclusions 
about treatment effects, other studies emphasize the impor-
tance of conducting clinical trials to assess the potential 
benefits of MNs and antioxidants in the treatment of FXS/
FXTAS [14–24].

Notwithstanding the current limitations on the roles – if 
any – of MNs, it is worth recalling the recognized prevalence 
of MDF, along with a prooxidant state, in FXS/FXTAS [2, 
7, 11–19, 40–47].

Consistent with the inclusion of FXS/FXTAS among 
mitochondrial cytopathies, FXS/FXTAS can be subjected 
to in vitro and ex vivo studies that should determine the 
optimal dosages and combinations of these treatments, as 
well as their long-term safety and efficacy. Moreover, it 
should be noted that MDF and oxidative stress levels may 
vary among individuals. Therefore, a personalized medicine 
approach that considers individual variability in these fac-
tors may be necessary to optimize response to treatment and 
minimize potential side effects. Biomarkers such as mito-
chondrial DNA content, mitochondrial respiration rate, and 
markers of oxidative stress may be useful in assessing treat-
ment response and guiding the dosage and duration of ther-
apy. Such an approach can provide effective FXS/FXTAS 
adjuvant treatment.
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Table 2  Involvement of mitochondrial cofactors (mitochondrial nutrients, MNs) in FXS/FXTAS cells
Mitochondrial cofactor Model Effects Dose Ref.
Acetyl-carnitine 
(CARN)
CARN + butyrate lymphocytes of FXS patients inhibition of fra(X)(q27.3) expression 1.4–3.2 mM [33]
CARN 17 FXS patients modulating energy production; remodelling 50 mg/kg/day [34]

production of polyunsaturated fatty acids
CARN 63 FXS patients beneficial effect on hyperactive-impulsive behavior 50 mg/kg/day [35]
Coenzyme Q10 
(CoQ10)
CoQ10 integrity of forebrain mitochondria CoQ deficiency and an open cyclosporine-sensitive [37]

in Fmr1 knockout (KO) mice channel. Repletion of mitochondrial CoQ within
forebrain closed the channel the Fmr1 KO mice

CoQ10 leak in Fmr1 KO forebrain mitochondria CoQ deficiency within BAT mitochondria resulted [38]
in abnormal substrate oxidation

Alpha-lipoic acid 
(ALA)
TCA cycle mitochondrial deficits anaplerosis of TCA in serine biosynthesis [42]
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