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Abstract
Background Osteoporosis (OP) is characterized by bone mass decrease and bone tissue microarchitectural deterioration in 
bone tissue. This study identified potential biomarkers for early diagnosis of OP and elucidated the mechanism of OP.
Methods Gene expression profiles were downloaded from Gene Expression Omnibus (GEO) for the GSE56814 dataset. A 
gene co-expression network was constructed using weighted gene co-expression network analysis (WGCNA) to identify 
key modules associated with healthy and OP samples. Functional enrichment analysis was conducted using the R cluster-
Profiler package for modules to construct the transcriptional regulatory factor networks. We used the “ggpubr” package in 
R to screen for differentially expressed genes between the two samples. Gene set variation analysis (GSVA) was employed 
to further validate hub gene expression levels between normal and OP samples using RT-PCR and immunofluorescence to 
evaluate the potential biological changes in various samples.
Results There was a distinction between the normal and OP conditions based on the preserved significant module. A total 
of 100 genes with the highest MM scores were considered key genes. Functional enrichment analysis suggested that the 
top 10 biological processes, cellular component and molecular functions were enriched. The Toll-like receptor signaling 
pathway, TNF signaling pathway, PI3K-Akt signaling pathway, osteoclast differentiation, JAK-STAT signaling pathway, 
and chemokine signaling pathway were identified by Kyoto Encyclopedia of Genes and Genomes pathway analysis. SIRT1 
and ZNF350 were identified by Wilcoxon algorithm as hub differentially expressed transcriptional regulatory factors that 
promote OP progression by affecting oxidative phosphorylation, apoptosis, PI3K-Akt-mTOR signaling, and p53 pathway. 
According to RT-PCR and immunostaining results, SIRT1 and ZNF350 levels were significantly higher in OP samples than 
in normal samples.
Conclusion SIRT1 and ZNF350 are important transcriptional regulatory factors for the pathogenesis of OP and may be novel 
biomarkers for OP treatment.
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Introduction

Osteoporosis (OP) is a systemic metabolic skeletal disease 
characterized by osteopenia and disruption of bone micro-
structure, resulting in increased bone fragility and fracture 
incidence [1]. With the aging of the population and the wide-
spread use of glucocorticoids, OP has become an “invisible 
killer” [2].With the global population over 60 years of age 
expected to reach two billion by 2050, the incidence of OP 
is expected to increase rapidly and have a major impact 
on older adults’ health and quality of life, especially post-
menopausal females [3, 4]. In recent years, progress has 
been made in the research on the occurrence and pathogen-
esis of OP using molecular biology, cell biology, and other 
methods, mainly focusing on the Wnt/β-catenin [5, 6] and 
JAK/STAT signaling pathways [7, 8]. However, focusing 
only on a single gene or several genes from a local perspec-
tive can no longer satisfy this highly complex regulatory 
research. Based on the overall regulatory network, genes in 
OP are specifically expressed and closely related to regu-
latory factors [9], that are important in the occurrence and 
development of OP. Therefore, identify biomarkers for the 
occurrence and progression of OP is important for clini-
cal diagnosis. Although the amount of biological data has 
increased exponentially with the rapid development of high-
throughput technologies, most current informatics research 
has focused on studying differential gene expression, ignor-
ing the possible correlations between genes and expression 
types. Weighted Gene Co-expression Network Analysis 
(WGCNA), a biotechnology based on scale-free networks, 
visually displays the interrelationships between various 
parts of biological systems and more accurately displays 
the characteristics of biological systems. This provides an 
important method for systematically studying diseases’ 
physiological and pathological processes [10]. WGCNA has 
been used in the genetic analysis of diseases like breast can-
cer [11], diabetes mellitus [12], Alzheimer’s disease [13], 
and coronary atherosclerotic heart disease [14], confirming 
that these modules and key genes play key roles in disease 
progression.

This study’s analysis of the GEO GSE56814 dataset 
revealed OP-associated hub transcriptional regulators. Bio-
informatics analysis revealed the potential functions of OP-
associated hub genes, and molecular biology experiments 
were performed to validate new biomarkers associated with 
OP progression (Fig. 1).

Methods

Materials

Three normal and three osteoporotic bone tissues were col-
lected from The Affiliated Hospital of Chengde Medical 
University (Chengde, Hebei, China) from 2020 to 2023, and 
are listed in Supplementary Table 1, which was approved by 
the Ethics Committee of The Affiliated Hospital of Chengde 
Medical University (2022.06.16/ No. CYFYLL2020240). 
The samples were immediately stored in -80℃ refrigera-
tor for further experimental validation. The TRIzol reagent 
was procured from Invitrogen Co., Ltd. DEPC water was 
acquired from Soleibao Technology Co., Ltd. (Beijing, 
China). The HiFi-ScriptTM Reverse Transcription Kit was 
purchased from Kangwei Reagent Co., Ltd., and TB Green 
Premix Ex Taq II was obtained from Tiangen Biochemical 
Technology Co., Ltd. The antibodies SIRT1 and ZNF350, 
as well as GAPDH, were procured from Bioss Biological 
Technology Co., Ltd (Beijing, China, NO. BS-0921R and 
BS-1630R) and Gene Tex Biological Technology Co., Ltd 
(Beijing, China, NO. TEX112053 and GTX100118). Cy3-
labeled Goat Anti-Rabbit IgG was obtained from Zhong-
shan Golden Bridge Biotechnology Co., Ltd. (Beijing, 
China). Chromatographic-grade solvents (chloroform, etha-
nol, xylene, and isopropanol) were acquired from Tianjin 
Yongda Chemical Reagent Co. Ltd. (Tianjin, China).

Datasets and samples

The GSE56814 dataset was downloaded from the GEO 
database using GeoQuery package [15]. In the GSE56814 
dataset, hip bone mineral density (BMD) was measured 
using a Hologic 4500-W dual-energy X-ray absorptiom-
eter (DXA) scanner (Hologic Corp., Waltham, MA), and 
the diagnostic criteria for high and low BMD were defined 
based on the top and bottom 30% of BMD values within our 
population. This dataset obtained total RNA from 60 mil-
liliters of peripheral blood of 31 patients with OP and 42 
healthy individuals. Subsequently, mRNA expression levels 
were quantified using the GeneChip Human Exon 1.0 ST 
Array (Affymetrix, Santa Clara, CA) in accordance with the 
manufacturer’s protocol. For WGCNA, we utilized anno-
tation information from the GPL5175 biochip platform to 
match gene probes with their corresponding gene names.

Analyses of module stability and weighted co-
expression networks

Based on the protocol of the WGCNA package in the R lan-
guage, weighted co-expression networks (Healthy and OP) 
were constructed [16]. Paired Pearson correlations were 
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applied to evaluate the weighted co-expression relationships 
among subjects in the adjacency matrix. An appropriate 
power value was determined if the degree of independence 
was 0.9. Gene modules were identified using a topologi-
cal overlap matrix (TOM)-based hierarchical clustering 
approach based on dissimilarity measures (1-TOM). We 
then performed a 50-fold permutation test to classify mod-
ules not conserved in the normal and OP co-expression net-
works according to the module conservation function of the 
WGCNA package [17]. Modular genes are highly intercon-
nected intra-module genes whose corresponding modules 
have the highest modular association (MM) values. We cal-
culated the MM of each gene using the WGCNA function 
signedME, and considered the 100 genes with the highest 
MM values as key genes.

Construction of transcriptional regulatory factor 
network and functional enrichment analysis

The TRRUST Database (https://www.grnpediöttrust) [18, 
19] records the regulatory relationships of transcription 
factors, which contain the targets corresponding to tran-
scription factors and the regulatory relationships between 
transcription factors, describing a comprehensive transcrip-
tional factor regulatory network. In this study, modular 
genes were mapped into the transcription factor regulatory 
network, and a modular gene-transcription factor regulatory 
relationship was obtained, which was visualized using the 
Cytoscape platform. We then used the ClusterProfiler pack-
age in R [20] to annotate genes associated with transcription 
factors and comprehensively studied the functional rel-
evance of hub genes. Functional classification was assessed 
using Gene Ontology (GO) and the Kyoto Encyclopedia of 

Fig. 1 Complete flow diagram of the study
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Statistical analysis

Data were analyzed using OriginPro8.0 software (USA), 
and expressed as mean ± standard error. One-way analysis 
of variance was used to analyze and compare the means of 
the different groups. P values < 0.05 were considered statis-
tically significant.

Result

Identification of WGCNA modules

The original GSE56814 dataset was extracted from the GEO 
database, and R was used to perform background correction 
and normalization preprocessing on the original data. The 
Hclust function was used to remove batch effects, and the 
samples were randomly distributed to form a dendrogram. 
We selected power values 14 and 8 (the lowest power of 
the scale-free topology fitting index was 0.9) to generate 
OP and normal hierarchical clustering trees, respectively 
(Supplementary Fig. 2A-B). Normal samples were analyzed 
using WGCNA, and 15 modules were identified. The nor-
mal samples co-expression network modules were mapped 
to the disease sample network to evaluate the recurrence of 
module characteristics (Fig. 2A-B). To verify the stability of 
the identifier module, we used the module preservation func-
tion to calculate the preserved size of the module (Fig. 2C-
D). The cyan module was retained with a lower degree of 
preservation (median rank = 2.0, Z-summary = 9.6), indicat-
ing that normal and OP states can be identified. The MM 
scores were calculated based on the WGCNA signed KME 
function, and the top 100 genes with the highest MM scores 
were considered key genes.

Construction of transcriptional regulatory factor 
network and functional enrichment analysis

Key genes were imported into the TRRUST database to 
create transcriptional regulatory factors and key gene net-
works. The network consisted of 21 transcriptional regu-
latory factor, 48 key gene nodes and 79 interaction edges 
(Fig. 3). The top 10 biological processes were enriched, 
including type I interferon signaling pathway, transcrip-
tion, DNA-templating, transcription from RNA polymerase 
II promoter, positive regulation of type I interferon pro-
duction, positive regulation of transcription, and negative 
regulation of transcription (Fig. 4A). The transcription fac-
tor complex, nucleus, nucleoplasm, nuclear matrix, nuclear 
chromatin, and cytoplasm were related to the cellular com-
ponent (Fig. 4B). The top 10 molecular functions, including 
transcription regulatory region DNA binding, transcription 

Genes and Genomes (KEGG), and significance was set at 
P < 0.05 and q < 0.1.

Hub genes screening

After extracting the expression of each gene in the Tran-
scriptional Regulatory Factor Network, we applied the 
Wilcoxon algorithm to screen hub differentially expressed 
genes in normal samples and OP samples. In order to visual-
ize the results, we used the “ggpubr” package in R to draw 
violin plots. Statistical significance was set at P < 0.05.

Gene set variation analysis (GSVA)

GSVA is a nonparametric, unsupervised method for assess-
ing gene pool enrichment that converts changes at the gene 
level to changes at the signaling pathway level. The bio-
logical functions of the samples were evaluated [21]. In this 
study, we obtained a set of genes from the Molecular Sig-
nature Database (version 7.0). We comprehensively evalu-
ated the key genes using the GSVA package in R (http://
www.bioconductor.org/gsva) to assess possible changes in 
biological functions between different samples.

Reverse-transcription quantitative polymerase 
chain reaction (RT-qPCR)

Total RNA of bone tissues obtained from the Chengde Med-
ical College’s Affiliated Hospital in Chengde was isolated 
using a UNIQ-10 column TRIzol total RNA extraction kit, 
following the manufacturer’s instructions. cDNA was gen-
erated using the HiFi-ScriptTM Reverse Transcription Kit 
at 37℃ for 15 min, 85℃ for 5 s, and 4℃ in storage. PCR 
amplification was performed using TB Green Premix Ex 
Taq II. The primers used in this experiment were GAPDH, 
SIRT1, and ZNF350 (Homo sapiens; Supplementary Table 
2). Each sample was tested in triplicate, and the relative 
expression of mRNA was calculated using the 2(−△△C

T
) 

method.

Immunofluorescence

Immunofluorescence analysis was performed as previously 
described [22]. Normal and surgical bone specimens were 
fixed in citric acid for 10 min aspirated, and infiltrated with 
3% H2O2 for 20 min. Primary antibodies were applied over-
night (SIRT1, 1:80; ZNF350, 1:120), followed by Cy3-
conjugated goat anti-rabbit IgG for 20 min and DAPI for 
20 min.
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Fig. 2 Clustering dendrograms and the characterization of gene modules identified by WGCNA. (A) OP samples; (B) normal samples; (C) module 
preservation median rank; and (D) Z-summary score
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Fig. 4 Functional enrichment analysis of targets identified in the transcriptional regulatory factor-gene network. (A) Biological process analysis; 
(B) cellular component analysis; (C) molecular function analysis; and (D) KEGG pathway analysis

 

Fig. 3 Transcriptional regulatory factor -key genes network. Orange nodes represent transcriptional regulatory factor, and purple nodes represent 
key genes
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follows: 0.96 ± 0.05, 2.13 ± 0.19; 0.99 ± 0.90, 3.03 ± 0.54, 
respectively, indicating that the mRNA expression of hub 
gene detected in OP samples was significantly or extremely 
significantly increased compared with normal samples 
(P < 0.05 or, P < 0.01) (Fig. 7). Furthermore, we confirmed 
the differential expression of hub genes in the normal and 
OP samples using immunofluorescence. The immunostain-
ing intensities of SIRT1 and ZNF350 were higher in the OP 
samples than in the normal samples (Fig. 8).

Discussion

OP, a systemic bone metabolic disease with a complex 
pathogenesis, affects the quality of life and causes seri-
ous clinical consequences and social burden; however its 
specific pathogenesis has not yet been fully clarified [23]. 
This study, employed bioinformatics analysis to screen 
OP transcriptional regulatory biomarkers and validate the 
molecular biology experiments. WGCNA was used to cal-
culate the co-expression relationships between molecules in 
a network, identify hub genes in modules, and gain insight 
into the expression profiles associated with hub genes and 
functional gene connections. This study used GSE56814 
expression profiles comprising 73 blood samples from 31 
patients with OP and 42 healthy controls. The WGCNA 
algorithm was used to filter the key modules and calculate 
the conservative degree of the modules (Fig. 2), where the 
lower preservation cyan module can distinguish normal and 
OP networks based on normal and disease samples; there-
for, the cyan module was selected as the key module for 
the following analysis. The top 100 genes with the highest 
MM scores were mapped to the TRRUST database to con-
struct the transcriptional factor regulatory network. Targets 

factor binding, protein binding, enzyme binding, DNA bind-
ing, and RNA polymerase II core promoter proximal region 
sequence-specific DNA binding, were identified (Fig. 4C). 
Regarding the KEGG pathway analysis (Fig. 4D), it was 
apparent that the targets mostly participated in the Toll-like 
receptor, TNF, PI3K-Akt, Osteoclast differentiation, JAK-
STAT, and Chemokine signaling pathway.

Hub transcriptional regulatory factors screening 
and analysis

The plot in Fig. 5 shows the expression of differentially 
expressed transcriptional regulatory factors in normal and 
OP samples based on Wilcoxon algorithm, namely SIRT1, 
and ZNF350. A panel of 50 hallmark genes was screened 
in the normal and OP samples using GSVA to identify 
important signaling pathways (Fig. 6A); 31 significantly 
expressed hallmark gene sets were identified by GSVA in 
the samples with high expression of SIRT1. IL6 Jak Stat3 
signaling, apoptosis, and PI3K-Akt-mTOR signaling were 
significantly differentially expressed in different expression 
groups of SIRT1. Additionally, PI3K-Akt-mTOR, oxidative 
phosphorylation, P53 pathway, apoptosis, and hypoxia were 
significantly differentially expressed in the different expres-
sion groups of ZNF350 (Fig. 6B), suggesting SIRT1 and 
ZNF350 promoted the progression of OP by affecting oxi-
dative phosphorylation, apoptosis, PI3K-Akt-mTOR signal-
ing, and p53 pathway.

Experimental validation

Hub genes in normal (n = 3) and OP (n = 3) samples were 
verified using RT-qPCR. The hub gene expression levels 
(SIRT1 and ZNF350) in normal and OP samples were as 

Fig. 5 The expression levels of the hub differentially expressed genes in normal and OP samples. (A) SIRT1 and (B) ZNF350
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Fig. 7 Hub gene mRNA expression levels in normal and OP samples. (A) SIRT1 and (B) ZNF350. Data are presented as the mean ± SD (n = 3). * 
P < 0.05 and ** P < 0.01

 

Fig. 6 GSVA analysis showing the activated hallmark pathways. (A) SIRT1 and (B) ZNF350
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RANKL-induced RAW264.7 macrophage cells [29]. They 
found that the downregulation of TRPV4 probably inhibits 
autophagy in osteoclast differentiation, thereby inhibiting 
OP. Yin et al. believed that glycyrrhizic acid (Gly) could 
inhibit NF-κB, ERK, and JUK signaling pathways in vitro, 
strongly inhibit osteoclast differentiation and bone resorp-
tion, and has a bone-protective effect on OVX mice [30].
The JAK-STAT signaling pathway was primarily recog-
nized as a receptor-activated pathway in response to inter-
feron (IFN)-γ and interleukin 6 (IL-6) cytokine family [31], 
and it is critical for cytokine effects on osteoblast prolifera-
tion and differentiation. Xu et al. suggested that fibroblast 
growth factor 23 (FGF23) is involved in bone and cartilage 
metabolism through the JAK/STAT pathway [7].

We applied the Wilcoxon algorithm to screen the hub 
differentially expressed transcriptional regulatory fac-
tors SIRT1 and ZNF350. Furthermore, RT-PCR and 

involved in the transcriptional factor-gene regulatory net-
work were enriched in the Toll-like receptor, TNF, PI3K-
Akt, JAK-STAT and osteoclast differentiation signaling 
pathway. The PI3K-Akt signaling pathway is critical in dif-
ferentiating skeletal cells such as osteoblasts, chondrocytes, 
myoblasts and adipocytes [24–26]. Xi et al. studied a rat OP 
model and a cultured osteoblast model. They showed that 
the PI3K/Akt signaling pathway suppresses OP by promot-
ing osteoblast proliferation and differentiation and enhanc-
ing bone formation [27]. Osteoclast differentiation and 
activation have been elucidated through relevant biological 
assays of a family of proteins known as the tumor necro-
sis factor receptor (TNFR)/TNF-like proteins. This family 
includes osteoprotegerin, receptor activator of nuclear fac-
tor (NF)-κB (RANK), and the RANK ligand (RANKL) [28]. 
Cao et al. investigated the underlying mechanism of TRPV4 
expression in osteoclast differentiation using M-CSF and 

Fig. 8 Immunofluorescence staining of SIRT1 and ZNF350. (A) SIRT1 and (B) ZNF350. The red immunofluorescence in the pictures represent 
SIRT1 or ZNF350. Cell nuclei were counterstained with DAPI
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transformation (EMT)-associated genes such as MMP9, 
KAP1, and SNAI2, thereby inhibiting tumor EMT [48].

Research suggests that ZNF350 plays a role in the patho-
genesis of diseases through involvement in ferroptosis. 
ZNF350 forms a transcription factor complex by binding 
with IRF1. It directly associates with the GPX4 promoter 
region, suppressing GPX4 transcription and inducing fer-
roptosis [49]. Moreover, ZNF350, by regulating NCOA4 
transcription, modulates iron accumulation, lipid peroxida-
tion, and ferroptosis, thereby influencing glioma progres-
sion [50]. Additionally, ZNF350 typically functions as a 
monomer, impacting the transcription of downstream genes. 
For example, ZNF350 impedes cervical cancer progression 
by directly binding to the MMP9 promoter region and inhib-
iting its transcription [47]. Nevertheless, the role of ZNF350 
in bone homeostasis has not been thoroughly investigated.

Our investigation has identified and substantiated 
ZNF350 as a diagnostic biomarker for OP. The prospec-
tive trajectory of our research will center on meticulous 
validation across diverse sample cohorts and the imple-
mentation of a multi-method approach. Additionally, our 
focus will extend to elucidating the intricate mechanistic 
aspects underpinning the diagnostic efficacy of ZNF350. 
This holistic strategy is poised to deepen our comprehen-
sion of OP and pave the way for the development of more 
refined and effective diagnostic methodologies. Neverthe-
less, this study’s limitations include its reliance on the small 
sample size of the GSE56814 dataset and clinical verifica-
tion research, which such constraints may introduce bias 
and restrict the representation of the target population. Thus, 
it is imperative to conduct further clinical experiments to 
validate these findings in the future, and our team remains 
committed to monitoring this research closely.

Conclusion

We identified key transcriptional regulators and pathways 
associated with OP occurrence and development through 
a series of comprehensive bioinformatics analyses. The 
identified transcriptional regulators included SIRT1 and 
ZNF350, which can serve as potential biomarkers for the 
diagnosis and prognosis of OP and will be further validated 
in further studies.

Abbreviations
BP  Biological processes
CC  Cellular components
FC  Fold change
FGF23  Fibroblast growth factor 23
GEO  Gene Expression Omnibus
Gly  Glycyrrhizic acid

immunofluorescence assay demonstrated that the mRNA 
and protein expression levels of SIRT1 and ZNF350 dif-
fered significantly between normal and OP samples in clini-
cal studies (n = 3), suggesting that SIRT1 and ZNF350 could 
considered as biomarkers for diagnosing OP. SIRT1(Silent 
mating type information regulation 2 homolog- 1) is a type 
III acetyltransferase important in the pathophysiology of 
metabolic diseases, degenerative diseases, cancer, and aging 
[32]. Studies have shown that SIRT1 expression increases in 
the nucleus and cytoplasm of peripheral blood mononuclear 
cells in patients with OP [33]. Similarly, related studies have 
confirmed that the specific knockout of SIRT1 in preosteo-
clasts has no significant effect on the volume of cancellous 
bone; in contrast, the specific knockout of SIRT1 in mature 
osteoblasts results in cancellous bone. The volume of the 
body is significantly reduced, and the activation or overex-
pression of SIRT1 reduces bone loss due to age [34–36].

SIRT1, with diverse roles in bone biology, is central to 
various cellular processes. Louvet et al. linked SIRT1 to 
bone mass in OP. In the separation-based anorexia (SBA) 
mouse model, activating SIRT1 reduced adipogenesis of 
BMSCs and increased osteogenesis, while inhibition had 
opposite effects. Resveratrol restored SIRT1 levels, which 
normalized bone parameters. These findings, seen through 
acetylation levels of transcription factors Runx2 and Foxo1 
[37], underscore SIRT1’s intricate interplay in bone health.

Moreover, SIRT1, a prominent cellular regulator, is a sen-
sor of cellular energy and metabolism [38]. Evidence sup-
ports its involvement in endocrine and metabolic disorders, 
notably OP [39]. Observations indicate SIRT1 influences 
bone remodeling through intricate signaling pathways, 
including the somatotropic axis [40]. The potential asso-
ciation with steroid hormone signaling is substantiated by 
upregulated SIRT1 expression upon estrogen treatment. 
Conversely, ovariectomy (OVX) induces a decline in SIRT1 
expression [41].

SIRT1 plays a pivotal role in epigenetic regulation of 
bone physiology. Nutrients impact metabolic processes 
[42], contributing to SIRT1’s role in orchestrating tissue 
homeostasis through protein deacetylation [43]. Research 
suggests age-related pathologies, including OP, could be 
mitigated by modulating adipose mobilization, myogenic 
differentiation, dietary intake, and overall metabolism [44]. 
This interconnected understanding emphasizes SIRT1’s 
multifaceted impact on bone health and its potential thera-
peutic relevance.

ZNF350, also known as zinc-finger 350, participates in 
cell proliferation during the development of various dis-
eases, such as breast, colon, and cervical cancers [45–47]. 
ZNF350 also acts as a transcriptional corepressor, inhibits 
the expression of SNAI2, and regulates epithelial mediator 
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