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types of chickpea genotypes are Desi and Kabuli, which the 
dark coated, small size, and angular-seed shape are consid-
erable morphological characteristics of Desi, distinguishing 
between Desi and Kabuli [1]. Not only chickpea is valuable 
as a protein source for human food and animal feed, but also 
influences to improve soil fertility because of its nitrogen-
fixing ability [3].

Drought severely threatens chickpea life in all growth 
stages, affecting morphological, physiological, biochemi-
cal, and molecular aspects such that it impairs water status, 
nutrient relations, photosynthesis, assimilate partitioning 
respiration, oxidative damage, and stomatal movement 
in the plants [4]. The plants encounter drought-induced 
injuries while these damages are measurable. Therefore, 
some damage indices informing us about the intracellular 

Introduction

It is drought stress that is the most deleterious abiotic stress 
as a major constraint negatively affects food security. Chick-
pea (Cicer arietinum L.) is a self-pollinated and diploid 
plant that is the world’s second substantial food legume crop 
as a source of easily digested protein and minerals planting 
in arid and semi-arid regions [1, 2]. Generally, two common 
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Abstract
Background  The behavior of Abscisic acid (ABA) as a stress phytohormone may be involved in mechanisms leading to 
tolerance and survival in adverse environmental conditions such as drought stress.
Methods  Here, we evaluated ABA-mediated responses at physio-biochemical and molecular levels in drought-stressed 
seedlings of two different Desi-type chickpea genotypes (10 as a tolerant genotype and 247 as a sensitive one).
Results  Under drought stress, two chickpea genotypes showed a decrease in their relative water content (RWC), and the 
intense decrease was related to the sensitive genotype (73.9%) in severe stress. Hydrogen peroxide (H2O2) and malondi-
aldehyde (MDA) concomitant with the severity of stress increased in genotypes and the higher increase was in the sensi-
tive genotype (5.8-fold and 3.43-fold, respectively). In the tolerant genotype, the enhanced accumulation of total phenolic 
content (1.75-fold) and radical scavenging action, based on 1,1-diphenyl-2-picrylhydrazyl test (DPPH), (1.69-fold) were 
simultaneous with ABA accumulation (1.53-fold). In the tolerant genotype, transcriptional analysis presented upregulation 
of Zeaxanthin epoxidase (ZEP) (1.35-fold), 9-cis-epoxycarotenoid dioxygenase (NCED) (5.16-fold), and Abscisic aldehyde 
oxidase (AAO) (1.52-fold compared to control conditions) genes in severe stress in comparison with mild stress. The sensi-
tive genotype had a declining trend in total chlorophyll (up to 70%) and carotenoid contents (36%). The main conclusion to 
be drawn from this investigation is that ABA with its regulatory effects can affect drought tolerance mechanisms to alleviate 
adverse effects of unsatisfactory environmental conditions.
Conclusions  In this paper, we tried to indicate that drought stress induces overexpression of genes triggering ABA-mediated 
drought responses simultaneously in two genotypes while more increment expression was related to the tolerant genotype. 
At first thought, it seems that the tolerant genotype compared to the sensitive genotype has a genetically inherent ability to 
cope with and drop adverse effects of drought stress through over-accumulation of ABA as drought.
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situation are relative water content (RWC), hydrogen per-
oxide (H2O2), and malondialdehyde (MDA) [5]. Because 
RWC as a tolerance marker can express the whole amount 
of water in plants, it can be a useful indicator of water bal-
ance in plants [6]. ROS accumulation creates oxidative 
damage in drought-subjected plants while their production 
is related to the severity of drought stress [7]. H2O2 as a 
long-living member of this intracellular chemical species 
reacts with some molecules like, lipid, protein, and DNA 
and causes disruption in cell function [8]. Membrane dam-
age occurs a consequence of lipid peroxidation due to the 
overaccumulation of MDA, the main product in the mem-
brane leakiness process [9]. In parallel with the importance 
of damage, Plants have strategies to adapt and survive 
through various morphological, biochemical, and physi-
ological responses [10]. So, understanding the intracellular 
state of plants undergoing drought stress helps us to clas-
sify genotypes in terms of toleration and sensitivity. Physio-
biochemical alterations that are followed by reprogramming 
of gene expression and metabolism are the most important 
occurrence in drought-subjected plants [11]. Among phyto-
hormones, ABA, an stress hormone, plays important roles 
in survive from environmental stress such as drought [12]. 
It is necessary to note that ABA can act as a plant regula-
tor in stomatal closure and stress-responsive gene expres-
sion through induction and suppression of gene expression 
[13]. So, first of all, ABA biosynthesis seems to be quite 
important. In response to drought stress, the changes in the 
expression of specific genes such as ZEP (Zeaxanthin epox-
idase), NCED (9-cis-epoxycarotenoid dioxygenase), AAO 
(Abscisic aldehyde oxidase), upregulated in water stress are 
remarkable [12]. The investigation of the expression of ABA 
biosynthesis-related genes guides to understand the cellular 
response in stressful conditions. Plants are equipped with an 
array of non-enzymatic antioxidants considered as the first 
line of defense system. Among non-enzymatic antioxidants, 
phenolic compounds participate in stress tolerance both 
through indirect (photoprotection), and direct approaches, 
as free radical scavengers by hydrogen or electron-donating, 
singlet oxygen quenchers and metal chelators [14].

A non-enzymatic, and reliable method for evaluat-
ing radical scavenging action is the DPPH (1,1-diphenyl-
2-picrylhydrazyl) test [15]. Responding to stress conditions 
concomitant with physiological changes in plants due to a 
re-established homeostasis demand a new energy source. 
This constructive energy makes through photosynthesis. 
And also, photosynthetic efficiency is a suitable criterion 
to inform us about intracellular situation. Drought stress 
affects chlorophyll a, b, and carotenoids by changing their 
ratio [16]. Carotenoids which are pigment and anti-ROS 
have vital defensive activity and physiological roles in pho-
toprotection and light harvesting in plants [17].

Previous research on the efficiency of screening criteria 
for drought tolerance in chickpea in a greenhouse confirmed 
that a large variation and responses to different physiologi-
cal indices can use for selection between genotypes to form 
lines with new tolerance architecture in chickpea [18]. In 
this study, we investigated the role of the ABA biosynthesis 
pathway and its drought-induced genes in two genotypes in 
response to drought stress. Understanding the intracellular 
state of plants undergoing drought stress helps us to classify 
genotypes in terms of tolerance and sensitivity.

Materials and methods

Plant material and drought treatment

The seeds of two Desi-type chickpea genotypes, drought 
tolerant and sensitive based on an agronomical study [19], 
were obtained from the Gene bank of the College of Agri-
cultural and Natural Resources, University of Tehran, Karaj, 
Iran). The seeds sterilized with 10% sodium hypochlorite 
for 5  min were washed three times with distilled water 
and planted in plastic pots in a growth chamber at 25 °C, 
30% humidity, 16 h light, and 8 h darkness for every day 
[20]. Before drought treatment, pots containing seedlings 
regularly were watered with distilled water at field capacity 
(FC). For determination FC level of the soil, pots contain-
ing 0.5 kg of dry soil and fine sand in a ratio of 2:1 (v/v) 
were weighed (W1). These pots were watered to saturation 
and excess water flows under gravity. Pots were covered by 
plastic bags to prevent evaporation and after 48 h pots were 
weighed (W2). The difference between the two weights 
(W2-W1) was the amount of soil saturation point (100% 
FC). For the determination of irrigation volumes, following 
formulae were used [21]:

50% FC = 0.5 × (W2 − W1)

25% FC = 0.25 × (W2 − W1)

For the drought treatment, the 14-day-old seedlings were 
subjected to three irrigation regimes, including 100% FC 
(as watering control), 50% FC (mild stress), and 25% FC 
(severe stress) conditions for two weeks [22]. After two 
weeks of drought treatment, plant leaves were individually 
taken and stored in − 80 °C.

Relative water content (RWC)

The similar fresh leaves of each genotype were cut and 
weighed (FW). For 24  h, the leaves were soaked in dis-
tilled water at the darkness for the turgid weight (TW). To 
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measure dry weight (DW), samples were oven-dried over-
night at 70 °C and weighed [23]. The percentage of RWC 
was calculated by using the following formula;

RWC = (FW − DW)/(TW − DW) × 100

H2O2 and MDA assay

H2O2 content was estimated according to the following 
method [24]. 0.3 g of fresh leaves were homogenized in an 
ice bath with 3 mL 0.1% (w/v) trichloroacetic acid (TCA). 
After centrifuge (at 12,000 × g, for 15  min at 4° C), 0.5 
mL 10 mM potassium phosphate buffer (pH 7.0) and 1 mL 
1 M KI in a new tube were added to 0.5 mL of the super-
natant. The absorbance was read at 390 nm and the content 
of H2O2 was used for the standard curve. The results were 
indicated as µmol g− 1 Fresh Weight (FW). The thiobarbitu-
ric acid (TBA) test used for the measurement of lipid per-
oxidation in leaf tissues was determined according to the 
method of [25]. 0.5 g of fresh material was homogenized 
with 0.1% (w/v) TCA solution. After centrifuge at 10,000 
× g, for 20 min at 4° C, 2 mL of 0.5% (w/v) thiobarbituric 
acid (TBA) dissolved in 20% (w/v) TCA was added to 1 mL 
homogenate and mixed. After maintaining the mixture at 
95 °C for 30 min, it was cooled and centrifuged at 10,000 × 
g for 5 min at 4° C. The absorbance was read by wavelength 
532 nm and the result was indicated as µmol g− 1 FW.

Total phenolic content

The total phenolic content was estimated using the Folin-
Ciocalteu assay method [26] expressed in mg g− 1 FW. 0.5 g 
of each leaf sample was soaked in 3 mL methanol (95%) in 
the ice bath and incubated in darkness for 24 h. After incu-
bation, 100 µL supernatant of each sample centrifuged at 
13,000 × g, for 10 min at 4 °C was mixed with the reagent, 
Folin-Ciocalteu, and sodium carbonate 7%, so the absor-
bance of samples was determined with a plate reader at 
760 nm. The different concentration of Gallic acid solutions 
was used as standard.

Radical scavenging capacity

The non-enzymatic antioxidant capacity of the extracts was 
determined following the method of [27]. 2 mL ethanolic 
solution of plant extracts were mixed with 1 mL of 0.5 mM 
DPPH ethanol solution and 2 mL of 0.1 M acetate buffer 
(pH 5.5) and was shaken. After 30 min incubation in a dark 
place at room temperature, the absorbance (A) of the mix-
ture was measured at 517 nm. The following formula was 
used to calculate;

%DPPH radical scavenging activity =
[(Acontrol − Atest)/Acontrol] × 100

Endogenous ABA quantification (HPLC)

Quantification of ABA in chickpea leaflets was performed 
using the method of [28]. In order to determination of the 
ABA levels, 1  g of frozen leaves were ground in liquid 
nitrogen with a mortar and pestle. 10 mL of 80% methanol 
was added together with 0.01 g of ascorbic acid. To prevent 
oxidation reactions during extraction, 0.01 g polyvinylpyr-
rolidone (PVP) was added and the homogenate was stirred 
overnight at 4  °C. The recovered supernatant was trans-
ferred to a new tube after centrifuge (at 4000 × g, 15 min at 
4° C) for pH adjustment (to pH 8.0). The aqueous methanol 
evaporated under reduced pressure at 35  °C. The residue 
was dissolved in 5 mL of deionized water. For three cycles, 
the solution was frozen and thawed. The supernatant was 
recovered and adjusted to pH 2.5 after centrifuge (at 4000 × 
g, 15 min at 4° C), and partitioned against ethyl acetate. For 
three times, the solution containing free ABA in ethyl ace-
tate was collected. So, the collection sample was adjusted to 
pH 8.0 and dried. The dried precipitate was dissolved in a 
solution, containing 1 mL of 3% methanol and 0.1 M acetic 
acids. Then a 0.45 mm membrane filter was used for filtra-
tion. The extract (100 µL) was automatically injected in the 
reverse phase column (4.6 × 250 mm Diamonsic C18, 5 μm) 
of the High-Performance Liquid Chromatography (HPLC) 
apparatus (Unicam-Crystal-200, UK). A linear gradient of 
methanol (3–97%), containing 0.01% acetic acid was used 
for elution at a flow rate of 4 mL min− 1. The detection was 
run at 260  nm with a diode array detector. The retention 
time of ABA was 36.4 min and shifted from 0.1 to 0.5 min. 
Quantification of ABA was obtained by comparing the peak 
areas with those of known amounts of ABA (Sigma-Aldrich, 
with 99.97% purity).

Photosynthetic pigments determination

For determination of chlorophyll a, chlorophyll b, total 
chlorophyll, and total carotenoid content, 20  mg of fresh 
leaves were ground in liquid nitrogen and suspended in 5 
mL 80% acetone and centrifuged at 12,000 × g, for 15 min 
at 4° C. The supernatant was used for photosynthetic pig-
ment assay. The absorbance (A) of samples was measured 
at 663, 646, and 470  nm. The content of photosynthetic 
pigments expressed in mg g− 1 FW which was calculated 
according to the following formulae [29];

Chlorophyll a = 12.21A663 − 2.81A646;
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Results

RWC

The results showed a significant decrease in two genotypes 
in all three irrigation regimes but the declining trend in 
the sensitive genotype was more intense than tolerant. In 
response to mild stress, RWC content decreased by 47.8% 
and 13.5% in sensitive and tolerant plants, respectively. In 
severe stress conditions, RWC content decreased in sensi-
tive plants (by 73.9%) and tolerant plants (by 47.3%) com-
pared to control conditions.

H2O2 content

In control conditions, H2O2 content had similar patterns in 
the two genotypes. During the increasing trend of drought 
stress, H2O2 content significantly increased in two geno-
types but an overall higher increase was related to the sensi-
tive plant. In mild stress, the sensitive plant showed 151% 
whereas the tolerant one showed a 41.8% increase in H2O2 
content. In severe stress, the increment of H2O2 content in 
sensitive plants was 5.88-fold but tolerant plant showed a 
lower increase (1.9-fold) compared to control conditions 
(Fig. 1).

MDA content

In normal conditions, the MDA content of tolerant and sen-
sitive genotypes was lower than stress conditions. In mild 
stress, it started to rise in two genotypes but the trend of 
increment in the sensitive plant was higher than in the toler-
ant genotype (up to 132% and 36%, respectively). In severe 
stress, two genotypes had the same pattern as mild stress 
and showed an increase in their MDA content (in sensitive 
243% and in tolerant 63%) while the strength of the increase 
was far higher than mild stress.

Total phenolic content

In non-stressed conditions, the total phenolic content in tol-
erant was more than the sensitive genotype (by 1.38-fold). 
During the increasing trend of drought stress, total pheno-
lic content showed a different pattern in the two genotypes. 
Interestingly, total phenolic content increased in the tolerant 
plant while it decreased in the sensitive one. Sensitive plants 
in mild and severe stress had a 14% and 28.6% decrease, 
respectively, but tolerant plants demonstrated an increase in 
total phenolic content in mild (20%) and severe stress (76%) 
in comparison with control conditions.

Chlorophyll b = 20.13A646 − 5.03A663;

Total Chlorophyll = Chlorophyll a + Chlorophyll b;

Carotenoid content =
(1000 A470 − 3.27 Chlorophyll a − 104 Chlorophyll b)/229

Gene expression analysis by quantitative real-time 
PCR (qRT-PCR)

For RNA isolation, 100 mg leaf of each sample was ground 
in liquid nitrogen. RNA of samples was extracted by using a 
plant DENAzist Column RNA Isolation Kit (DENAzist Asia 
Co., Mashhad, Iran) in RNAase-free condition. The quan-
tity and quality of extracted RNA were respectively checked 
by Nano drop and gel electrophoresis. The first strand of 
complementary DNA (cDNA) was synthesized after remov-
ing all DNA contaminations by DNase treatment according 
to the manufacturer’s protocol diluted (1:20) and was uti-
lized as a template for qRT-PCR analysis. The following 
pair primer sequences were used for amplification processes 
during qRT-PCR: 5ʹ- ​T​G​C​T​A​T​A​A​G​A​G​G​G​G​A​G​G​G​G​C​A-3ʹ 
and 5ʹ- ​C​G​C​G​T​T​C​T​G​C​A​A​G​A​C​C​C​A​G​A-3ʹ for Zeaxanthin 
epoxidase (XM_027337622.1); 5ʹ- ​A​G​A​C​G​G​T​A​T​G​G​T​C​C​
A​C​G​C​T​G-3ʹ and 5ʹ- ​C​C​A​A​A​C​G​G​T​G​G​G​T​T​T​C​G​G​T​G-3ʹ 
for 9-cis-epoxycarotenoid dioxygenase (XM_004488662.3); 
5ʹ- ​C​C​G​C​C​A​C​T​C​G​G​T​T​T​G​G​A​A​A​G − 3ʹ and 5ʹ- ​G​A​G​G​T​
C​G​A​G​A​C​G​A​A​G​C​T​C​G​G-3ʹ for Abscisic-aldehyde oxidase 
(XM_004491094.3); 5ʹ- ​A​C​C​A​C​A​G​A​C​G​C​G​G​G​T​A​C​T​A​A​
C- 3ʹ and 5ʹ-​G​G​G​A​A​C​A​C​T​G​C​T​C​T​T​G​G​T​G​C-3ʹ for Actin 
as a reference gene (XM_004493535.3). The qRT-PCR reac-
tions (20 µL) were prepared by using 10 µL master mix 2x 
(SYBR® Green Real Time PCR Master Mix), 4 µL of 1:20 
diluted template DNA, and 0.8 µL of each gene-specific 
primer (10 pmol). The gene amplification was carried out at 
in 10 min at 95 °C and 40 cycles of denaturation at 95 °C for 
20 s, annealing at 61 °C for 15 s, and extension at 72 °C for 
10 min. Two biological and three technical replicates were 
used for each sample. In this analysis, the reference gene 
was used as an internal standard of ABA biosynthesis genes. 
To analyze gene expression, we used the method base on 
2–ΔΔCT [30].

Statistical analysis

The factorial experiments were repeated two times based on 
a Completely Randomized Design (CRD) and analyzed by 
using SAS Ver 9.4. To determine the significant difference, 
Duncan’s multiple range tests were used. Based on variance 
analysis, because the interaction was significant, all of the 
data represented and discussed according to the interaction.
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tolerant genotype under severe stress (by 53.6%) compared 
to control conditions.

Expression patterns of ABA biosynthesis genes

The increasing progress of drought stress upregulated ABA 
biosynthesis genes in two Desi-type chickpeas in particular 
tolerant genotype. The translational process of ZEP gene 
showed more expression in severe stress than mild stress. 
Tolerant plant presented higher expression in severe than 
mild stress (1.53-fold) also it showed 13.20-fold overex-
pression than sensitive one. In tolerant plants, NCED gene 
showed 145-fold transcriptional level in severe stress, while 
sensitive plants showed 33.5-fold expression compared to 
non-stress conditions. In mild stres, the transcriptional level 
of AAO gene constantly increased in tolerant (by 25.1-fold) 
and sensitive (by 2.8-fold) genotypes. In severe stress, the 
tolerant plant showed 38.3-fold while sensitive one had 
6.63-fold gene expression compared to control conditions 
(Fig. 3).

Antioxidant capacity

Evaluation of antioxidant capacity through DPPH assay 
showed a significant increase during drought stress than 
non-stress conditions. In both mild and severe stress, a high 
level of antioxidant capacity was related to the tolerant gen-
otype (up to 1.40-fold and 1.69-fold respectively). The max-
imum antioxidant capacity of the sensitive genotype was in 
severe stress (1.3-fold) although it was less than the tolerant 
genotype in mild stress (Fig. 2).

ABA content

According to our results, ABA content increased in two 
genotypes by the intensifying trend of drought stress but the 
higher ABA content was presented in the tolerant genotype 
compared to the sensitive one under both control and stress 
conditions. In control, ABA content in the tolerant plant was 
more (51.7 ng mL− 1) than the sensitive genotype (26.5 ng 
mL− 1). In mild stress, ABA content was raised in both toler-
ant and sensitive genotypes (up to 29% and 19.6% respec-
tively). The maximum amount of ABA was observed in the 

Fig. 1  Effect of drought stress 
(control: 100% field capacity, 
mild stress: 50% field capac-
ity, and severe stress: 25% field 
capacity) on RWC (A), H2O2 
(B), and MDA (C) in drought-
tolerant (black columns) and 
drought-sensitive (gray columns) 
chickpea genotypes. Columns 
show mean ± standard deviation. 
Here different letters indicate 
significant differences according 
to Duncan’s multiple range test
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Discussion

As RWC indicated, drought tolerant genotype showed 
higher maintained water in tissues compared to the sensi-
tive one during the stressful conditions. It seems that RWC 
as a cell osmosis reflection may be has a close relation with 
drought tolerance. Therefore, RWC measurement seems to 
be an appropriate criterion to classify genotypes into toler-
ant or sensitive groups.

The increase of ROS content in dehydrated plants may 
affect membrane integrity. So, H2O2 content as a cellular 
damage index may be a signal molecule in measurement 
of drought tolerance. At first thought, it can be a suitable 
reason for the lower increase of H2O2 accumulation in the 
tolerant genotype than the sensitive one. An evaluation 
for tolerance responses in two landrace wheat cultivars 
(Bolani and Sistan) revealed that Bolani or tolerant plants 

Photosynthetic pigments contents

In this study, as expected, the increasing severity of drought 
stress started a declining trend in chlorophyll content in 
two chickpea genotypes. The maximum decrease in chloro-
phyll content was observed in the sensitive genotype (70%) 
whereas the tolerant one had 30% decrease in severe stress 
compared to normal conditions. Under non-stressed condi-
tions, the carotenoid content in sensitive genotype was near 
to tolerant. In mild stress, carotenoid content of the tolerant 
genotype remained unchanged but in severe stress, it started 
to rise (12.5%) compared to normal conditions. The sensi-
tive plants showed a different pattern than the tolerant ones 
and displayed a declining trend with increasing severity of 
drought stress (by 35% decrease in severe stress compared 
to control) (Fig. 4).

Fig. 2  Effect of drought stress 
(control: 100% field capacity, 
mild stress: 50% field capac-
ity, and severe stress: 25% field 
capacity) on Total phenolic 
content (A), DPPH (B), and 
ABA content (C) in drought-
tolerant (black columns) and 
drought-sensitive (gray columns) 
chickpea genotypes. Columns 
show mean ± standard deviation. 
Here different letters indicate 
significant differences according 
to Duncan’s multiple range test
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phenolic compounds controls degree of cellular oxida-
tive injury by inactivating lipid free radicals or preventing 
decomposition of hydro peroxides into free radicals [33]. 
Here, DPPH measurement was used to inform us about the 
ability of cells for antioxidant activity or free radical scav-
enging in plants A previous report referred to the higher 
DPPH-radical scavenging activity corresponding with the 
severe level of drought stress in Amaranthus [34]. Different 
responses of two genotypes may be related to distinct incre-
ment of ABA accumulation. ABA as a signaling compound 
probably causes cellular responses to dehydration and pos-
sibly can affect plant antioxidant status in two genotypes. A 
previous research indicated that ABA treatment increased 
DPPH radical scavenging activity in Gladius, Drysdale, 
and Kharchia in stress conditions [35]. Probably, cell readi-
ness in response to stresses such as drought be the main 
cause for higher ABA accumulation in tolerant genotype 

had lower increases in H2O2 content compared to sensi-
tive plants [20]. According to our results, an overall higher 
MDA content was related to sensitive plants. In agreement 
with our findings, the previous report on Mentha pippeita 
L. documented an increase in MDA content under severe 
drought stress conditions (in 25% FC) in comparison to the 
control [31]. It may justify the drought sensitivity of sensi-
tive plants due to maximum oxidative injury under drought 
stress. H2O2 increment probably simulates MDA accumula-
tion in stressful conditions. H2O2 upsurge results in mem-
brane damage consequence of lipid peroxidation [32]. The 
lower increase of MDA and H2O2 presumably be due to 
the strong non-enzymatic antioxidant activity system that 
accumulation of phenolic compounds facilitates endurance 
of adverse effects in tissues undergoing low water content 
in tolerant genotype. As a matter of fact, in abiotic stresses, 
the plant’s capacity to produce antioxidant agents such as 

Fig. 3  Effect of drought stress 
(control: 100% field capacity, 
mild stress: 50% field capac-
ity, and severe stress: 25% field 
capacity) on relative expression 
of Zeaxanthin epoxidase (ZEP) 
(A), 9-cis-epoxycarotenoid 
dioxygenase (NCED) (B), and 
Abscisic-aldehyde oxidase 
(AAO) (C) in drought-tolerant 
(black columns) and drought-
sensitive (gray columns) 
chickpea genotypes. Columns 
show mean ± standard deviation. 
Here different letters indicate 
significant differences according 
to Duncan’s multiple range test
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closure and controls transpirational rate [39]. In this regard, 
ABA accumulation led to a lower dropped RWC in the tol-
erant genotype. Probably, over accumulation of ABA that 
made guard cells rapidly closed to water loss was triggered 
osmotic balance in tolerant genotype to effortlessly came 
over drought tragedy. In an equal stress situation, ABA-
mediated responses may be effective to distinguish between 
two genotypes in terms of tolerance as our results indicated. 
The increase in ABA content was subsequent of upregula-
tion of ABA biosynthesis genes. A higher transcriptional 
level maybe is representative of genetically drought toler-
ance capacity in tolerant plants. For developing superior 
genotypes of chickpea in breeding programs, understand-
ing the genetic basis and identification of molecular mark-
ers for drought tolerance is require [40]. The previous study 
in Arabidopsis indicated that overexpression of ZEP gene 
(AtZEP) plays important role in response to osmotic stress 
[41]. A previous report about the rice aldehyde oxidase gene 
(OsAO3) participating in ABA biosynthesis is revealed the 
effect of this gene in drought tolerance. Here, NCED gene 
showed noteworthy overexpression in tolerant genotype in 

compared to sensitive one and higher amount of total phe-
nolic content in tolerant genotype confirm this matter. ABA 
can upregulate the expression of PAL genes that leads to 
phenolic compound biosynthesis [36]. During water stress 
conditions, the two genotypes encountered with membrane 
damage as MDA results indicated. Different intensities of 
injuries between tolerant and sensitive plants may be due to 
their ABA contents in dehydration. Exogenously ABA treat-
ment exhibits a lower membrane injury index in drought-
stressed plants compared to untreated ones [37]. The lower 
increase in H2O2 content in tolerant genotype comared to 
sensitive one during stressful conditions probably be effect 
of ABA as an endogenous messenger for alleviation of 
H2O2 upsurge in tolerant genotype. Previous study reported 
that ABA treatment reduce generation of H2O2 in chickpea 
seedlings [38]. Here we observed ABA accumulation in 
contrast with the dwindling trend of RWC in both tolerant 
and sensitive plants under stress. It seems that accumulation 
of ABA can indirectly decreases water content in drought 
affected-tissues. ABA involved in the reduction of volume 
and turgor of guard cells through ion efflux causes stomatal 

Fig. 4  Effect of drought stress 
(control: 100% field capacity, 
mild stress: 50% field capac-
ity, and severe stress: 25% field 
capacity) on chlorophyll a (A), 
chlorophyll b (B), total chloro-
phyll (C), and carotenoid (D) in 
drought-tolerant (black columns) 
and drought-sensitive (gray 
columns) chickpea genotypes. 
Columns show mean ± standard 
deviation. Here different letters 
indicate significant differences 
according to Duncan’s multiple 
range test
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Conclusion

In this paper, we tried to indicate that drought stress induces 
overexpression of genes triggering ABA-mediated drought 
responses simultaneously in two genotypes while more 
increment expression was related to the tolerant genotype. 
At first thought, it seems that the tolerant genotype com-
pared to the sensitive genotype has a genetically inherent 
ability to cope with and drop adverse effects of drought 
stress through over-accumulation of ABA as a drought 
stress signal molecule. So, tolerant Desi genotype because 
of this genetic potential is an appropriate candidate to be 
involved in the breeding programs.
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