
Vol.:(0123456789)

Molecular Biology Reports          (2024) 51:365  
https://doi.org/10.1007/s11033-024-09322-x

ORIGINAL ARTICLE

EGR1 transcriptionally regulates SVEP1 to promote proliferation 
and migration in human coronary artery smooth muscle cells

Qiang Tian1 · Jia‑He Chen1 · Yi Ding2 · Xin‑Yu Wang1 · Jia‑Yun Qiu1 · Qian Cao1 · Li‑Li Zhuang1 · Rui Jin1 · 
Guo‑Ping Zhou1

Received: 29 October 2023 / Accepted: 6 February 2024 
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1) 
is associated with the risk of coronary artery disease, as determined by a genome-wide association study. SVEP1 induces 
vascular smooth muscle cell proliferation and an inflammatory phenotype to promote atherosclerosis. In the present study, 
qRT‒PCR demonstrated that the mRNA expression of SVEP1 was significantly increased in atherosclerotic plaques com-
pared to normal tissues. Bioinformatics revealed that EGR1 was a transcription factor for SVEP1. The results of the luciferase 
reporter assay, siRNA interference or overexpression assay, mutational analysis and ChIP confirmed that EGR1 positively 
regulated the transcriptional activity of SVEP1 by directly binding to its promoter. EGR1 promoted human coronary artery 
smooth muscle cell (HCASMC) proliferation and migration via SVEP1 in response to oxidized low-density lipoprotein 
(ox-LDL) treatment. Moreover, the expression level of EGR1 was increased in atherosclerotic plaques and showed a strong 
linear correlation with the expression of SVEP1. Our findings indicated that EGR1 binding to the promoter region drive 
SVEP1 transcription to promote HCASMC proliferation and migration.
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Introduction

Cardiovascular disease (CVD) remains the leading cause of 
morbidity and mortality worldwide, most of which is due to 
myocardial infarction or stroke [1, 2]. Atherosclerosis is an 
inflammatory disease that induces the development of ath-
erosclerotic plaques and vascular stenosis, which is the main 
underlying etiology of cardiovascular events [3]. However, 
the pathogenesis of atherosclerosis has not yet been clarified 
[4]. Despite improvements in current comprehensive meas-
ures, atherosclerosis is still a serious health threat and social 
burden [5]. Recently, accumulating evidence has revealed 
that smooth muscle cells play critical roles in atheroscle-
rosis by switching to a proliferative, dedifferentiated, and 
inflammatory phenotype in response to atherogenic stimuli 

[6–8]. It is important to uncover the underlying mechanism 
to identify novel therapeutic targets.

SVEP1 encodes sushi (a complement control protein), 
von Willebrand factor type A, epidermal growth factor 
(EGF), and pentraxin domain-containing protein 1, an 
extracellular matrix (ECM) protein that directly interacts 
with integrin α9β1 [9]. In a large-scale exome-wide asso-
ciation study, a coding missense polymorphism in SVEP1 
(p. D2702G) increased the risk of coronary artery disease 
relative to the wild type genotype (odds ratio, 1.14 per risk 
allele) [10]. Further study demonstrated that SVEP1 induced 
vascular smooth muscle cell proliferation and dedifferentia-
tion to aggravate the formation of atherosclerotic plaques 
[11]. Winkler MJ et al. found that wild-type SVEP1 defi-
ciency increased endothelial CXCL1 expression to enhance 
the recruitment of proinflammatory leukocytes [12].

SVEP1 is associated with atherosclerosis, but the expres-
sion of SVEP1 in coronary artery disease has not been thor-
oughly examined. In this study, we examined SVEP1 expres-
sion and showed that SVEP1 was significantly increased 
in the atherosclerotic plaques of patients with coronary 
artery disease compared to normal tissues. Furthermore, 

 *	 Guo‑Ping Zhou 
	 gpzhou2017@126.com

1	 Department of Pediatrics, The First Affiliated Hospital 
of Nanjing Medical University, Nanjing, China

2	 Department of Cardiovascular Surgery, The First Affiliated 
Hospital of Nanjing Medical University, Nanjing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-024-09322-x&domain=pdf


	 Molecular Biology Reports          (2024) 51:365   365   Page 2 of 13

we explored the molecular mechanisms involved in the 
modulation of SVEP1 and found that the transcriptional 
activity of SVEP1 was dependent on the transcription fac-
tor early growth response-1 (EGR1). Finally, we identified 
that EGR1 promoted human coronary artery smooth mus-
cle cell (HCASMC) proliferation and migration via SVEP1 
through its function in the promoter region. This finding may 
contribute to potential therapeutic strategies to alter SVEP1 
expression levels in patients with coronary artery disease.

Materials and methods

Subjects and sample collection

The vascular tissues of five patients undergoing thoracic 
aorta replacement surgery for aortic pathologies were col-
lected from our hospital between September 2018 and April 
2019. This study was approved by the Clinical Research Eth-
ics Committee of the First Affiliated Hospital of Nanjing 
Medical University (2016-SR-144). Informed consent was 
obtained from the patients before participation. The col-
lected arterial tissues were directly placed in cold saline and 
stored on ice during transport to the laboratory. The arterial 
samples were then dissected into atherosclerotic regions 
(plaques) and adjacent normal tissues and placed in tissue-
freezing medium for sectioning [13].

Cell culture

Human embryonic kidney (HEK) 293  T cells and 
HCASMCs were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) with 10% fetal bovine serum, 1% penicil-
lin and streptomycin. The cells were incubated at 37 °C sup-
plied with 5% CO2. Human coronary artery smooth muscle 
cells were stimulated with 50–100 mg/L ox-LDL (Thermo 
Fisher Scientific) to establish proliferation and migration 
models.

Quantitative real‑time PCR (qRT‒PCR)

Total RNA was extracted from tissue and cells using TRIzol 
reagent (Invitrogen) and subsequently reverse-transcribed 
into cDNA using PrimeScript RT Reagent (Takara).

qRT‒PCR was performed on an Applied Biosystems 
Step One Plus Real-Time PCR System using SYBR Green 
technology (Takara). The specificity of amplification was 
assessed by analyzing the melting curve. Each sample was 
analyzed in triplicate with GAPDH as a normalization stand-
ard. The primers used for qRT‒PCR were as follows:

SVEP1: 5’-CAG​CAG​TTG​CAT​TCC​ATG​TCC-3’ (sense), 
5’-AAG​TAA​CCA​TTT​TCG​GGA​GGC-3’ (antisense);

EGR1: 5’-GGT​CAG​TGG​CCT​AGT​GAG​C-3’ (sense), 
5’-GTG​CCG​CTG​AGT​AAA​TGG​GA-3’ (antisense); and.

GAPDH: 5’-ATG​ACA​TCA​AGA​AGG​TGG​TG-3’ (sense), 
5’-CAT​ACC​AGG​AAA​TGA​GCT​TG-3’ (antisense).

Plasmids and small interfering RNA (siRNA)

The SVEP1 genomic DNA fragment (-250 to + 100) was 
inserted into the pGL3-Basic vector (Promega) and named 
pGL-250/ + 100. The JASPAR database version 5.0 (jaspar.
genereg.net) and hTFtarget software (http://​bioin​fo.​life.​hust.​
edu.​cn/​hTFta​rget) were used to predict potential transcrip-
tional binding sites. According to the site-directed mutagen-
esis kit (Takara) protocol, the EGR1 binding site mutant pro-
moter (pGL3-mut) was created and purchased from Tsingke 
Biotech Co. Ltd. The site-specific mutated plasmids were 
named mut-EGR1-A, mut-EGR1-B, and mut-EGR1-A + B 
according to the binding sites. The pENTER-EGR1 overex-
pression plasmids and the corresponding pENTER control 
plasmid were kept in our laboratory.

For the knockdown assays, double-stranded siRNAs were 
synthesized and purified by high-performance chromatogra-
phy (Gene Pharma). Sequences targeting EGR1 and SVEP1, 
as well as the negative control sequence, were as follows:

EGR1: 5’-GTG​ACT​GTT​TGG​CTT​ATA​ATT-3’ (sense), 
5’-TTA​TAA​GCC​AAA​CAG​TCA​CTT-3’ (antisense);

E2F1: 5’-CAC​TGA​ATC​TGA​CCA​CCA​ATT-3’ (sense), 
5’-TTG​GTG​GTC​AGA​TTC​AGT​GTT-3’ (antisense);

SP1: 5’-AUC​ACU​CCA​UGG​AUG​AAA​UGATT-3’ 
(sense),

5’-UCSUUUCSUCCSUGGSGUG​AUT​T-3’ (antisense);
SVEP1: 5’-GCU​ACU​AUC​UAU​UGG​GUG​A-3’ (sense),
5’-AGU​CUA​UAU​CGA​UGG​GAA​A-3’ (antisense); and.
Control: 5’-UUC​UCC​GAA​CGU​GUC​ACG​U-3’ (sense), 

5’-ACG​UGA​CAC​GUU​CGG​AGA​ATT-3’ (antisense).

Transfections and dual‑luciferase reporter assays

Transfections were carried out in HEK 293 T cells and 
HCASMCs by using Lipofectamine™ 3000 transfection 
reagent (Invitrogen) according to the manufacturer’s proto-
col. HEK 293 T cells in 96-well plates were cotransfected 
with 100 ng of each of the luciferase-containing plasmids 
plus 4 ng of a control pRL-TK plasmid as an internal control. 
After 24 h, the cells were harvested, and a luciferase assay 
was performed by using the Dual Reporter Assay System 
(Promega) and a TD-20/20 Turner Designs Iuminometer 
according to the manufacturer’s instructions. For overexpres-
sion or siRNA, the expression plasmid or siRNA was indi-
vidually cotransfected into HEK 293 T cells and HCASMCs. 
The results are representative of at least three independent 
experiments performed in triplicate.

http://bioinfo.life.hust.edu.cn/hTFtarget
http://bioinfo.life.hust.edu.cn/hTFtarget
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Chromatin immunoprecipitation (ChIP) assay

The ChIP assay was performed with the EZ-Magna 
ChIP™ kit according to the manufacturer’s instructions. 
A total of 1 × 107 HEK 293 T cells were fixed with 1% 
formaldehyde for 10 min at room temperature. The cell 
lysates were sonicated to generate 200–1,000 bp DNA 
fragments. The soluble chromatin was incubated with 
anti-EGR1 (Proteintech), negative control anti-IgG (Mil-
lipore) or anti-acetyl histone H3 antibodies (Millipore) at 
4 °C overnight with rotation. After reverse crosslinking 
and DNA purification, DNA from input or immunopre-
cipitated samples was examined by qRT‒PCR with SYBR 
Green (Takara). The primers are as follows:

5’-CAG​ACT​CCA​GGC​GCA​GAA​G-3’ (sense); and 
5’-GAC​TTC​GCT​GGC​GTT​TAC​AG-3’ (antisense).

cHCASMCs were lysed in ice-cold lysis buffer containing 
0.1 mM phenylmethylsulfonyl fluoride (PMSF; KeyGENE 
BioTECH). The samples were subjected to 10% SDS‒PAGE 
and transferred to nitrocellulose membranes. To block non-
specific sites, the membranes were incubated in 5% dry milk 
in TBS-T (0.25 M Tris–HCl; pH 7.6, 0.19 M NaCl, 0.1% 
Tween 20) for 2 h, and then the blots were incubated over-
night at 4 °C with primary antibodies against GAPDH (Pro-
teintech), EGR1 (Proteintech) and SVEP1 (R&D Systems). 
The membranes were washed three times with TBS-T and 
treated with goat anti-rabbit IgG or anti-mouse IgG (Protein-
tech). The signals were measured by a chemiluminescence 
(ECL) system, and the membranes were scanned and ana-
lyzed by Image Lab Software (Bio-Rad).

Enzyme‑linked immunosorbent assay (ELISA)

Cell culture supernatants were harvested by centrifu-
gation at 1000 × g for 10  min. ELISA kits (Invitrogen, 
#BMS223INST, #BMS213HS, and #KAC1211) were used 
to analyze the levels of tumor necrosis factor-α (TNF-α), 
interleukin-6 (IL-6), and interleukin-1β (IL-1β) according 
to the manufacturer’s instructions. The concentrations of 
TNF-α, IL-6, and IL-1β were determined based on standard 
curves.

Cell Counting Kit‑8 (CCK‑8) assay

The CCK-8 (Dojindo) was used to measure cell viability 
according to the manufacturer’s instructions. HCASMCs 
were seeded in 96-well plates at a density of 2.5 × 104 per well. 
After cell transfection and ox-LDL treatment, the medium was 
replaced with 100 µL of complete medium, and then 10 µL of 
CCK-8 reagent was added per well. The cells were incubated 

at 37 °C for 2 h. The optical density (OD) was measured at 
450 nm by a microplate reader (Thermo Fisher).

Cell scratch wound assay

HCASMCs were seeded in a six-well plate, transfected and 
treated. After 24 h, a straight line was drawn through the cells 
with a pipette tip, and medium containing 2% FBS was added. 
Images of the scratched cells were taken at 0 h and 24 h using 
a microscope. HCASMC migration was determined by analyz-
ing the healed area of the scratch.

Flow cytometry assay

2.11. Apoptosis of HCASMCs was assessed by Annexin 
V-FITC Apoptosis Detection Kits (BD Pharmingen, Frank-
lin Lakes, NJ, USA). After incubation for 24 h, transfected 
HCASMCs were harvested as a single cell suspension 
(1 × 106/mL) by trypsin digestion. The staining buffer con-
taining Annexin V-FITC and propidium iodide was added to 
incubate HCASMCs at 4℃ for 30 min. The Flow Cytometer 
(Beckman Coulter, Miami, FL, USA) was used for apoptosis 
assay.

Statistical analysis

Experiments were performed at least in triplicate, and the data 
wwere expressed as mean ± standard deviation (SD). Statistical 
analysis was performed using GraphPad Prism 7. Differences 
among groups were analyzed using unpaired Student’s t test. 
P < 0.05 was considered statistically significant.

Results

SVEP1 expression in atherosclerotic plaques 
and HCASMCs treated with ox‑LDL

The mRNA expression of SVEP1 was investigated by 
qRT‒PCR in 5 pairs of atherosclerotic plaques and matched 
normal tissues from patients with coronary artery disease. 
Our results demonstrated a significant increase in SVEP1 
expression in atherosclerotic plaques compared to normal 
tissues (Fig. 1a). Then, we developed a HCASMC cell model 
treated with ox-LDL. Consistently, the mRNA and protein 
levels of SVEP1 were markedly increased in HCASMCs 
treated with ox-LDL (Fig. 1b, c and d).

SVEP1 silencing alleviates the effect of ox‑LDL 
on inflammation, proliferation and migration 
in HCASMCs

Two siRNAs (siRNA-SVEP1#1 and siRNA-SVEP1#2) were 
used to silence SVEP1. SVEP1 expression in HCASMCs 
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was successfully decreased by siRNA-SVEP1#1 (Sup-
plementary Fig.  1). To determine the effect of SVEP1 
on HCASMC inflammation, proliferation, apoptosis and 
migration, ELISA, CCK-8 assays, flow cytometry assays 
and cell scratch wound assays were performed. The results 
showed that knockdown of SVEP1 inhibited inflammation 
in HCASMCs treated with ox-LDL (Fig. a, b and c). Simi-
larly, silencing SVEP1 significantly attenuated HCASMC 
proliferation in response to ox-LDL treatment (Fig. 2d). As 

shown in Fig. 2e, wound healing in HCASMCs subjected to 
ox-LDL treatment was significantly reduced after transfec-
tion with siRNA-SVEP1. There was no significant difference 
in HCASMC apoptosis by SVEP1 downregulation (Fig. 2).

EGR1 positively regulates the basal transcriptional 
activity of SVEP1 by directly binding to its promoter

To determine the regulatory mechanism of the SVEP1 gene, 
we cloned the 350 bp fragment (-250/ + 100 relative to the 
transcriptional start site) into the pGL3-Basic luciferase 
reporter plasmid and named it pGL-250/ + 100. As shown 
in Fig. 3a, HEK 293 T cells transfected with pGL-250/ + 100 
showed a high level of luciferase activity (13.1-fold more 
than pGL3-basic), indicating that the fragment we cloned 
(-250/ + 100) contained the human SVEP1 promoter region.

To identify potential transcription factor binding sites in 
-250/ + 100 bp, we conducted a series of analyses using Jas-
par software (http://​jaspar.​gener​eg.​net/) and hTFtarget soft-
ware (http://​bioin​fo.​life.​hust.​edu.​cn/​hTFta​rget). The results 
showed that the SVEP1 promoter region contained binding 
sites for several transcription factors, such as SP1, E2F1 and 
EGR1 (Fig. 3b). The region had two EGR1 transcription 
factor binding sites.

To assess the effects of SP1, E2F1 and EGR1 on the reg-
ulation of SVEP1 promoter activity, we cotransfected the 
pGL-250/ + 100 plasmid with SP1, E2F1 or EGR1 siRNA. 
The results showed that only siRNA-EGR1 significantly 
reduced luciferase activity, while siRNA-SP1 and siRNA-
E2F1 had no effect (Fig. 3c). In addition, overexpression 
of EGR1 markedly increased the activity of the SVEP1 
promoter (Fig. 3d). These results indicated that the EGR1 
binding site was essential for the basal activity of the SVEP1 
promoter.

To confirm the critical role of the EGR1 binding site in 
SVEP1 transcription, a series of plasmids with 2–3 bp point 
mutations in EGR1 binding sites were constructed and tran-
siently transfected into HEK 293 T cells (Fig. 3e). As shown 
in Fig. 3f, mutations in EGR1-A and EGR1-B reduced 
SVEP1 promoter activity by 60% and 80%, respectively, 
compared with wild-type promoter activity. Furthermore, 
double site mutations in EGR1 decreased promoter activity 
by 86%. Next, we examined the effect of EGR1 on SVEP1 
promoter activity in response to mutations in its binding 
sites. The results showed that mutations of the EGR1 bind-
ing sites failed to response to silence or overexpression of 
EGR1 (Fig. 3g and h), further confirming that EGR1 posi-
tively regulated EGR1 gene transcription via its consensus 
binding site.

To investigate whether EGR1 binds to the promoter 
region of SVEP1 in vivo, a ChIP assay was performed on 
HEK 293 T cells. HEK 293 T cells were lysed, and chroma-
tin was sonicated. EGR1-associated DNA fragments were 
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Fig. 1   SVEP1 is increased in atherosclerotic plaques and HCASMCs 
treated with ox-LDL. (a) Total RNA was extracted from athero-
sclerotic plaques and matched normal tissues. The mRNA level of 
SVEP1 was analyzed by qRT‒PCR. (b) The mRNA level of SVEP1 
in HCASMCs with or without ox-LDL treatment was analyzed 
by qRT‒PCR. The difference was determined using an unpaired 
t test (***P < 0.001). (c, d) The protein expression of SVEP1 in 
HCASMCs with or without ox-LDL treatment was analyzed by 
Western blotting. The difference was determined using an unpaired 
t test. The data were representative of three independent experiments 
(***P < 0.001, *P < 0.05)
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immunoprecipitated with anti-EGR1 or anti-IgG antibodies. The DNA fragments were then analyzed by qRT‒PCR with 

Fig. 2   SVEP1 silencing allevi-
ates the effect of ox-LDL on 
inflammation, proliferation 
and migration in HCASMCs. 
(a, b, c) The levels of TNF-α, 
IL-6, and IL-1β were meas-
ured by ELISA. (d) HCASMC 
proliferation was assessed using 
a CCK-8 assay. (e) HCASMC 
migration was measured by 
scratch wound assays. (f) The 
apoptosis of HCASMCs was 
assessed by flow cytometry 
assays ***P < 0.001, **P < 0.005 
vs. NC; #P < 0.05, ##P < 0.005 
vs. control
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primers targeting the potential binding site. The results 
showed that the anti-EGR1 antibody precipitated proteins 
bound to the tested sequence, but nonspecific IgG failed to 
precipitate proteins bound to this sequence (Fig. 4a and b).

Overall, EGR1 positively regulates the basal transcrip-
tional activity of SVEP1 by directly binding to its promoter 
region.

(e) A schematic map showing the potential binding of 
EGR1 in the SVEP1 gene promoter. The mutant bases 
are listed in the corresponding regions. (f) Site-directed 
mutagenesis was performed on the pGL-250/ + 100 con-
struct. Various constructs were transfected into HEK 
293  T cells, and luciferase activities were measured 
(***P < 0.001). (g) HEK 293 T cells were cotransfected 
with each mutant promoter plasmid and EGR1 siRNA. 
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Fig. 3   EGR1 positively regulates the basal transcriptional activ-
ity of SVEP1 (a) The human SVEP1 promoter sequence (from -250 
to + 100) was inserted into the pGL3-basic plasmid. Numbering was 
relative to the TSS. The constructed vectors were transiently trans-
fected into HEK 293 T cells, and luciferase activities were measured. 
The data are representative of three independent experiments and 

are expressed as the mean ± SD of normalized luciferase activity. (b) 
The specific binding site bases of each transcription factor. (c) HEK 
293 T cells were cotransfected with the pGL-250/ + 100 plasmid and 
SP1 siRNA, E2F1 siRNA or EGR1 siRNA. (d) HEK 293 T cells were 
cotransfected with the pGL-250/ + 100 plasmid and the EGR1 over-
expression plasmid
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(h) HEK 293 T cells were cotransfected with each mutant 
promoter plasmid and the EGR1 overexpression plasmid. 
These results were representative of three independent 
experiments and were expressed as mean ± SD of the nor-
malized luciferase activity (*P < 0.05, ***P < 0.001).

EGR1 directly drives the expression of SVEP1 
in HCASMCs treated with ox‑LDL

To assess the effect of EGR1 on the expression of SVEP1, 
the expression level of SVEP1 was measured in HCASMCs 
treated with ox-LDL after transient transfection with 
the EGR1 overexpression plasmid or siRNA. The results 

showed that SVEP1 mRNA levels were reduced by 60% in 
the presence of siRNA against EGR1 (Fig. 5a). In addition, 
the mRNA level of SVEP1 increased by 2.17-fold when 
EGR1 was overexpressed (Fig. 5b). These results were con-
sistent with the results at the protein level (Fig. 5c and d). 
These data demonstrated that EGR1 positively regulated the 
expression of SVEP1 in HCASMCs treated with ox-LDL.

Fig. 5   EGR1 positively regu-
lated SVEP1 expression. (a) 
Silencing EGR1 reduced mRNA 
expression in HCASMCs 
treated with ox-LDL. (b) Over-
expression of EGR1 caused an 
increase in mRNA expression 
in HCASMCs treated with 
ox-LDL. (c-d) Silencing or 
overexpressing EGR1 caused 
a reduction or an increase in 
protein expression, respectively, 
in HCASMCs treated with 
ox-LDL Each experiment was 
performed in triplicate, and 
significant differences were 
determined with Student’s t test 
(*P < 0.05, **P < 0.005)
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EGR1 promotes HCASMC proliferation 
and migration via SVEP1

As shown in Fig.  6a and b, siRNA-EGR1 inhibited 
HCASMC proliferation and migration in response to ox-
LDL treatment. Moreover, pEGR1 enhanced HCASMC 
proliferation and migration (Fig. 6c and d). Furthermore, 
siRNA-SVEP1 rescued the effect of pEGR1 on promot-
ing the proliferation and migration of ox-LDL-treated 
HCASMCs (Fig. 6c and d).

The transcription of EGR1 correlates with the level 
of SVEP1 in atherosclerotic plaques and matched 
normal tissues

To examine the expression level of EGR1 and determine 
whether the expression level of EGR1 correlates with the 
expression of SVEP1, we extracted total RNA from athero-
sclerotic plaques and matched normal tissues from patients 
with coronary artery disease and analyzed their expression 
by qRT‒PCR. As shown in Fig. 7a, the expression level of 
EGR1 was increased in atherosclerotic plaques compared 
with matched normal tissues and showed a strong linear cor-
relation with the expression of SVEP1 (Fig. 7b).

Discussion

In this study, we examined SVEP1 expression and showed 
that SVEP1 expression was significantly increased in ath-
erosclerotic plaques compared to matched normal tissues 
from patients with coronary artery disease. However, little is 
known about the mechanism underlying the high expression 
of SVEP1. Thus, we found that the expression of SVEP1 
was regulated by the transcription factor EGR1 through its 
promoter. Furthermore, EGR1 promoted HCASMC prolif-
eration and migration in response to ox-LDL treatment via 
SVEP1. The expression level of EGR1 was increased in ath-
erosclerotic plaques compared to normal tissues and showed 
a strong linear correlation with the expression of SVEP1.

Ayari H et  al. found that SVEP1 mRNA levels were 
higher in human carotid atherosclerotic plaques than in 
paired adjacent normal tissues [14]. This result is consistent 
with our findings. Under atherogenic conditions, vascular 
smooth muscle cells adopt alternative phenotypes, includ-
ing macrophage-like, foam cell-like, myofibroblast-like, and 
mesenchymal stem cell-like phenotypes [15, 16]. Vascular 
smooth muscle cell-derived fibroblasts synthesize matrix 
proteins in atherosclerotic plaques [17]. SVEP1, which is 
an extracellular matrix protein, might also be synthesized 
by vascular smooth muscle cell-derived cells.
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Fig. 6   EGR1 promotes HCASMC proliferation and migration via SVEP1. (a, 
c) HCASMC proliferation was assessed using a CCK-8 assay. (b, d) HCASMC 
migration was measured by scratch wound assays. **P < 0.005 vs. control
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Vascular smooth muscle cells play a particularly com-
plex and crucial role in the development of atherosclerosis. 
Recent studies have revealed that vascular smooth mus-
cle cells switch to form a large proportion of cells within 
plaques in response to exposure to pathologic stimuli 
[15, 16, 18]. Furthermore, a large percentage of coronary 
artery disease loci can regulate gene expression in vascu-
lar smooth muscle cells and influence behavior to promote 

atherosclerosis [19–21]. SVEP1 may affect vascular smooth 
muscle cells through pathways including integrin, Notch, 
and FGF receptor signaling [11], each of which is related to 
atherosclerosis [22–25].

EGR1 is an immediate-early gene that encodes a 
Cys2-His2 type zinc finger transcription factor [26]. 
EGR1 is activated by various stimuli, including cytokines, 
growth factors, hormones, mechanical injury, and hypoxia 
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[27]. EGR1 regulates the transcriptional activity of pro-
liferative, migratory and proinflammatory genes, includ-
ing platelet-derived growth factor (PDGF)-A, PDGF-B, 
PDGF-C, collagen, suppressor of cytokine signaling-1, 
and colony-stimulating factor 1 receptor [26, 28]. The 
SVEP1 gene can be added to this group of genes because 
it also has two EGR1-binding motifs close to the TSS.

Fasolo F et  al. showed that the mRNA and protein 
expression levels of EGR1 were upregulated in human 
and mouse carotid plaques compared to adjacent normal 
tissues [29]. Previous studies also revealed that the protein 
kinase C β/EGR1 axis plays a central role in animal mod-
els of atherosclerosis [30, 31]. Our study showed a similar.

result. EGR1 may be activated in response to ath-
erogenic stimuli and then promotes atherosclerosis 
progression.

EGR1 has been implicated in the proliferation, differen-
tiation, and death of vascular cells [32]. Yue Li et al. found 
that miR-191 suppressed the expression of EGR1 to reduce 
intimal thickening after carotid injury [33]. Zhang J et al. 
showed that an EGR1-specific DNAzyme regulated EGR1 
to inhibit rat vascular smooth muscle cell proliferation [34]. 
EGR1 decoy ODNs inhibit vascular smooth muscle cell 
proliferation and neointimal hyperplasia in the arteries of 
rats with balloon injury [35]. These results demonstrate that 
EGR1 can promote HCASMC proliferation and migration. 
The effect of EGR1 on HCASMCs may be partly dependent 
on SVEP1.

We didn’t perform plaque SVEP1 IHC due to scarce tis-
sue samples. Previous studies have showed that smooth mus-
cle cells represent a major cellular source of SVEP1 under 
pathological conditions [11, 12]. And our study showed that 
there was a signifcant increase in SVEP1 expression level in 
HCASMCs treated with ox-LDL. So we chose HCASMCs 
for these in vitro studies.

In summary, our study revealed that the mRNA expres-
sion of SVEP1 was significantly increased in atherosclerotic 
plaques compared to normal tissues from patients with coro-
nary artery disease and that the expression of the SVEP1 
gene was regulated by the transcription factor EGR1. EGR1 
promotes the proliferation and migration of HCASMCs via 
SVEP1 in response to oxidized low-density lipoprotein 
(ox-LDL) treatment. Thus, understanding this regulatory 
mechanism is critical for understanding the dysregulation of 
SVEP1 gene expression in atherosclerosis. Targeting EGR1 
may provide novel therapeutic strategies for the treatment of 
atherosclerosis and other vascular diseases.
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