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Abstract
Background  Calcium signaling has essential roles in the neurodevelopmental processes and pathophysiology of related 
disorders for instance autism spectrum disorder (ASD).
Methods and results   We compared expression of SLC1A1, SLC25A12, RYR2 and ATP2B2, as well as related long non-
coding RNAs, namely LINC01231, lnc-SLC25A12, lnc-MTR-1 and LINC00606 in the peripheral blood of patients with 
ASD with healthy children. Expression of SLC1A1 was lower in ASD samples compared with control samples (Expres-
sion ratio (95% CI) 0.24 (0.08–0.77), adjusted P value = 0.01). Contrary, expression of LINC01231 was higher in cases 
compared with control samples (Expression ratio (95% CI) 25.52 (4.19–154), adjusted P value = 0.0006) and in male cases 
compared with healthy males (Expression ratio (95% CI) 28.24 (1.91–418), adjusted P value = 0.0009). RYR2 was signifi-
cantly over-expressed in ASD children compared with control samples (Expression ratio (95% CI) 4.5 (1.16–17.4), adjusted 
P value = 0.029). Then, we depicted ROC curves for SLC1A1, LINC01231, RYR2 and lnc-SLC25A12 transcripts showing 
diagnostic power of 0.68, 0.75, 0.67 and 0.59, respectively.
Conclusion  To sum up, the current study displays possible role of calcium related genes and lncRNAs in the development 
of ASD.

Keywords  Autism spectrum disorder · SLC1A1 · SLC25A12 · RYR2 · ATP2B2 · LINC01231 · lnc-SLC25A12 · lnc-
MTR-1 · LINC00606 · lncRNA

Introduction

 Autism spectrum disorder (ASD) denotes to a range of 
neurodevelopmental disorders pigeonholed by defects in 
behavior, communication, interaction, and learning. This 
disorder is associated with genetic and genomic alterations 
and epigenetic changes, particularly in the neuroimmuno-
logical processes [1]. In spite of a strong genetic component 
which is reflected in the high concordance in the monozy-
gotic twins versus dizygotic twins, no single gene has a 
prominent role in ASD [1]. Channelopathies, particularly 
in calcium channels are regarded as important culprits in the 
pathogenesis of ASD [2]. Meanwhile, activity of ion chan-
nels can be influenced by long non-coding RNAs (lncRNAs) 
[3]. Based on the prominence of calcium signaling in the 
pathogenesis of neurodevelopmental disorders, we selected 
SLC1A, SLC25A12, RYR2 and ATP2B2 genes from calcium 
signaling pathway and found their related lncRNAs through 
searching in the relevant data bases, namely ncbi.nlm.nih.
gov, LNCipedia.org and RNAcentral.org.
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SLC1A1 is gene encodes a protein which is a member 
of solute transporters family. This membrane-related mol-
ecule is the central transporter that evaporates the activator 
neurotransmitter glutamate from the extracellular spaces at 
synaptic regions. This function is essential for appropriate 
synaptic activation and to avoid neuronal injury associated 
with disproportionate activation of glutamate receptors. 
This gene is involved in a variety of neurological disor-
ders, particularly epilepsy [4–6]. Glutamate has an indirect 
role in calcium signaling, since it can activate quisqualic 
acid receptors and voltage-gated calcium channels, which 
together facilitate calcium uptake in lower motor neurons 
[7]. Moreover, SLC1A1 has been shown enhance mitochon-
drial sodium/calcium exchange to activate the mitochondrial 
respiratory chain [8].

SLC25A12 codes for a calcium-binding mitochondrial 
carrier. This protein is located in the mitochondria and 
participates in the interchange of aspartate and glutamate 
through the inner membrane of the mitochondria. SLC25A12 
variants have been shown to be associated with autism [9]. 
Moreover, SLC25A12 mutations are known to cause of 
global cerebral hypomyelination [10].

RYR2 gene encodes a protein which forms channels for 
transportation of calcium ions within cells. Certain variants 
in this gene are associated with hypersensitivity to activa-
tion by calcium resulting in enhanced tendency to establish 
calcium waves and delayed afterdepolarizations [11].

ATP2B2 encodes a P-type primary ion transport ATPase 
described by the development of an aspartyl phosphate inter-
mediate throughout the reaction cycle. This enzyme has an 
important role in intracellular calcium homeostasis [12].

Literature search and in silico analyses have led to iden-
tification of LINC01231 [13], lnc-SLC25A12, lnc-MTR-1 
and LINC00606 [14] as related lncRNAs with SLC1A1, 
SLC25A12, RYR2 and ATP2B2, respectively.

We compared expression of SLC1A1, SLC25A12, RYR2, 
ATP2B2, LINC01231, lnc-SLC25A12, lnc-MTR-1 and 
LINC00606 in the blood of patients with ASD with healthy 
children.

Materials and methods

Patients and controls

Totally, 30 ASD cases (11 females and 19 males) and 41 typ-
ically developing children (11 females and 30 males) were 
included in the study. Cases were diagnosed in the associated 
clinics during 2018–2019, using the Diagnostic and Statisti-
cal Manual of Mental Disorders (fifth edition) [15] criteria. 
Autism Diagnostic Observation Schedule-Generic (ADOS-
G) was also used for evaluation of ASD cases [16]. Exclu-
sion criteria were structural brain diseases and systemic 

disorders. Written informed consent forms were signed by 
guardians of all children. The study protocol was approved 
by the ethics committee of Shahid Beheshti University of 
Medical Sciences (IR.SBMU.MSP.REC.1401.199).

Experimental step

RNA was obtained from whole blood using the RNJia Kit 
(ROJE Technologies, Iran). After this step, 75 ng RNA 
was used for cDNA synthesis using AddScript kit (Add-
Bio, Korea). SLC1A1, SLC25A12, RYR2, ATP2B2, 
LINC01231, lnc-SLC25A12, lnc-MTR-1 and LINC00606 
levels were quantified in ASD samples and control samples 
using SYBRGreen Ampliqon master mix (Denmark). B2M 
was considered as normalizer. Experiments were conducted 
in in the ABI step one plus PCR machine. Information about 
primers is presented in Table 1.

Statistical analysis

GraphPad Prism version 9.0 (GraphPad Software, La 
Jolla, CA, USA) was used for this step. Expression levels 
of SLC1A1, SLC25A12, RYR2, ATP2B2 and their related 
lncRNAs were compared between ASD cases and healthy 
controls. Comparative–delta Ct method was used. Distribu-
tion of the values was assessed by the Shapiro-wilk test. 
Unpaired t test or Mann–Whitney U test was used for deter-
mination of differentially expressed genes between two 
groups. Two-way ANOVA (Type 3 Sum of Squares (SS) 
ANOVA) and Tukey post hoc tests were used to examine the 
effect of main factors on gene expression levels in patients 
and controls subgroups.

Undetermined values were set to a maximum Ct + 1 (41) 
and included in the expression levels calculations and statis-
tical analysis. Correlations between expression levels were 
measured with Spearman’s rank correlation coefficient since 
data was not normally distributed.

ROC curves were plotted to evaluate the suitability of 
expression levels of differentially expressed genes for diag-
nostic purposes. The optimum threshold was identified using 
Youden’s J parameter. P < 0.05 was considered as significant.

Results

General information

Table 2 shows general data of participants in the study.

Expression assays

Substantial differences were identified in the levels of 
SLC1A1, LINC01231, RYR2 and lnc-MTR-1 between ASD 
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cases and health controls. In Fig. 1, we used Unpaired t test 
or non-parametric Mann–Whitney U test (without consider-
ing the gender) to compare the expression of studied genes 
between patients and healthy controls.

To examine how the two categorical diseases and gender 
variables, and their interactions, affect the gene expression 
levels, we used a two-way ANOVA and Tukey post hoc tests 
(Table 3).

Disease factor had a noteworthy effect on expression lev-
els of SLC1A1, SLC25A12, lnc-SLC25A12 and RYR2. Sex 

Table 1   Primers characteristics

Gene RNA type locus F primer R primer Length of 
amplicon

Tm

RyR2 Coding 1q43 ATC​CCA​ACG​CAG​CAA​GGA​
AA

TGT​CTG​TAG​CAC​CAT​CTC​
AGCC​

100 60

lnc-MTR-1 lncRNA chr1:236907044–236,916,931 AGC​CTG​ATG​AAC​CAG​TGT​
GCT​

TCC​AGC​AAT​CTG​CCT​CTT​
TCCA​

156 63

ATP2B2 Coding 3p25.3 GCG​AGG​GCA​ACG​AAG​GAT​
GT

CCG​TGA​CCA​GGA​CCA​CAC​
AGA​

123 62

LINC00606 lncRNA chr3:10759484–10,764,192 GCT​ACA​AAG​GAG​CAG​CCA​
CGA​

TCA​GCG​GTT​GTC​ACA​GCA​
CAT​

248 61

SLC1A1 Coding 9p24.2 CGG​CGA​GGA​AAG​GAT​
GCG​A

AGA​GTT​GAG​AGG​TTG​CTG​
TGT​TCT​

130 63

SLC25A12 Coding 2q31.1 GCG​GTC​AAG​GTG​CAG​ACA​
ACTA​

AAC​GCT​CTC​CAT​CAA​CCT​
CAGTA​

94 63

LINC01231 lncRNA chr9:3181589–3,200,500 TTC​TGG​AGG​AAA​GGG​AAG​
AGATT​

GGA​GCC​CAA​GCA​CAG​GTT​ 137 60

lnc-SLC25A12 lncRNA chr2:171855927–171,999,859 CAG​GTG​GGA​TGG​AAG​AAG​
CC

TAC​TGA​GAA​TGA​ACT​TGG​
GCAG​

80 58

Table 2   General data of ASD patients and controls

Group Parameter Value

Patients Sex Males 19
Females 11

Age (Years, mean ± SD) Males 6 ± 1.33
Females 6 ± 1.73

Controls Sex Males 30
Females 11

Age (Years, mean ± SD) Males 6.2 ± 1.88
Females 5.63 ± 1.28

SLC1A1 LINC01231 SLC25A12 lnc-SLC25A12 RYR2 lnc-MTR-1 ATP2B2 LINC00606
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Fig. 1   Expression level of SLC1A1, SLC25A12, RYR2, ATP2B2 
and their related lncRNAs, namely LINC01231, lnc-SLC25A12, 
lnc-MTR-1 and LINC00606 in total ASD patients and controls as 

described by-delta Ct values. Unpaired t test or Mann–Whitney U 
test was used for comparisons (*** P < 0.001, ** P < 0.01, * P < 0.05, 
ns non-significant)
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factor and interaction of sex and disease factors had no effect 
on expression of studied genes (Table 3).

SLC1A1 was under-expressed in ASD cases com-
pared with controls (Expression ratio (95% CI) 0.24 
(0.08–0.77), adjusted P value = 0.01). Contrary, expression 
of LINC01231 was higher in cases compared with controls 
(Expression ratio (95% CI) 25.52 (4.19–154), adjusted P 

value = 0.0006) and in male cases compared with healthy 
males (Expression ratio (95% CI) 28.24 (1.91–418), adjusted 
P value = 0.0009). RYR2 was significantly over-expressed 
in ASD children compared with controls (Expression ratio 
(95% CI) 4.5 (1.16–17.4), adjusted P value = 0.029). On the 
other hand, lnc-MTR-1 had a tendency to be under-expressed 
in cases compared with controls (Expression ratio (95% 

Table 3   Gaphpad prism output from analysis of effect of disease and gender (Tests of Between-Subjects Effects) on expression levels of 
SLC1A1, SLC25A12, RYR2, ATP2B2 and their related lncRNAs, namely LINC01231, lnc-SLC25A12, lnc-MTR-1 and LINC00606 genes

1 Sum of Squares
2 F of Variance
Statistically significant values are shown in bold (P ≤ 0.05)

Source of Variation Group effect Gender effect Interactions

SS1 (TYPE III) F2 P value SS (TYPE III) F P value SS (TYPE III) F P value

SLC1A1 62.08 5.94 0.017 19.06 1.82 0.18 2.58 0.24 0.62
LINC01231 326.4 12.9 0.0006 71.24 2.81 0.098 0.34 0.013 0.9
lnc-SLC25A12 54.54 4.16 0.045 50.5 3.85 0.053 0.73 0.055 0.81
RYR2 70.52 4.95 0.029 30.24 2.12 0.14 1.19 0.083 0.77
SLC25A12 6.88 0.51 0.47 0.017 0.001 0.97 3.92 0.29 0.58
lnc-MTR-1 22.44 3.47 0.066 3.48 0.54 0.46 0.81 0.12 0.72
ATP2B2 29.19 1.93 0.16 5.51 0.36 0.54 10.26 0.68 0.41
LINC00606 32.93 1.4 0.23 85.79 3.66 0.059 1.87 0.08 0.77

Table 4   Expression of SLC1A1, SLC25A12, RYR2, ATP2B2 and their related lncRNAs in ASD cases compared with healthy controls 
(Adjusted P values are shown)

Genes Total patients vs. controls 
(30 vs. 41)

Male patients vs. male 
controls (19 vs. 30)

Female patients vs. female
controls (11 vs. 11)

SLC1A1 Expression ratio (95% CI) 0.24 (0.08–0.77) 0.18 (0.03–0.97) 0.32 (0.02-4)
Adjusted P Value 0.017 0.055 0.642

LINC01231 Expression ratio
(95% CI)

25.52 (4.19–154) 28.24 (1.91–418) 22.9 (0.45–1152)

Adjusted P Value 0.0006 0.009 0.160
SLC25A12 Expression ratio

(95% CI)
0.97 (0.26–3.6) 0.89 (0.12–6.27) 0.43 (0.02–7.46)

Adjusted P Value 0.474 0.998 0.869
lnc-SLC25A12 Expression ratio

(95% CI)
3.76 (1.03–13.7) 4.38 (0.63–30.3) 3.22 (0.19–53.8)

Adjusted P Value 0.045 0.194 0.693
RYR2 Expression ratio

(95% CI)
4.5 (1.16–17.4) 5.48 (0.73-41) 3.7 (0.19–69.5)

Adjusted P Value 0.029 0.128 0.644
lnc-MTR-1 Expression ratio

(95% CI)
0.42 (0.17–1.06) 0.5 (0.13–1.95) 0.36 (0.05–2.62)

Adjusted P Value 0.066 0.546 0.537
ATP2B2 Expression ratio

(95% CI)
0.37 (0.1–1.5) 0.67 (0.08–5.35) 0.21 (0.01–4.37)

Adjusted P Value 0.168 0.958 0.537
LINC00606 Expression ratio

(95% CI)
0.35 (0.09–1.51) 0.45 (0.03–6.06) 0.27 (0.006-12)

Adjusted P Value 0.239 0.855 0.809
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CI) 0.42 (0.17–1.06), adjusted P value = 0.066) (Table 4). 
Finally, there was a significant difference for LNC01231 
expression between male patients and female controls (P 
value = 0.0033) (data not shown).

We also distinguished significant pairwise correlation 
between levels of calcium signaling-related genes and their 
associated lncRNAs both among ASD cases and healthy 
children. Table 5 shows these results. 

Then, we depicted ROC curves for SLC1A1, LINC01231, 
RYR2 and lnc-SLC25A12 transcripts showing diagnostic 
power of 0.68, 0.75, 0.67 and 0.59, respectively (Fig. 2).

The highest sensitivity value was reported for LINC01231 
in male cases (sensitivity = 0.79). The best specificity value 
was demonstrated for Lnc-SLC25A12 among females (spec-
ificity = 0.9). Table 6 shows the details of ROC curve analy-
ses in subgroups of ASD patients.

Discussion

Calcium signaling has essential roles in the neurodevelop-
mental processes and pathophysiology of related disorders 
such as ASD [17]. Certain alterations in the calcium sign-
aling might have damaging effects along pathways affect-
ing the function of endoplasmic reticulum mitochondria 
[17]. Moreover, lncRNAs affect pathophysiology of ASD 
through different mechanisms [18]. In the current study, 
we appraised expression of some calcium signaling related 
mRNAs and their related lncRNAs in the blood of ASD 
cases versus controls.

In a previous study, the same genes were studied by our 
team, in patients with refractory epilepsy; and there was 
a significant correlation among lnc-MTR-1 and ATP2B2, 
ATP2B2 and lnc-SLC25A12 and lnc-MTR-1 and lnc-
SLC25A12 pairs in refractory epileptic patients. The 
highest correlation was between ATP2B2 and lnc-MTR-1 
which is its related long non coding RNA and affects its 
function in neurons [19]. These two genes play a role in 

cellular Calcium metabolism by interaction with proteins 
that involve in signaling, transporting or storage of Calcium 
ions [20]. Also, in that study we found increased expres-
sion of SLC1A1, SLC25A12, lnc-MTR-1 and LINC01231 
genes in male patients in compare with healthy male, which 
demonstrate their up-regulation function in pathogenesis 
on Refractory Epilepsy; but lnc-SLC25A12 which is a non-
coding RNA showed no significant expression different [19].

Expression assays showed under-expression of SLC1A1 
and up-regulation of its related lncRNA, LINC01231 in 
ASD cases compared with controls. On the other hand, 
RYR2 was remarkably over-expressed in ASD children com-
pared with controls, while lnc-MTR-1 had a tendency to be 
under-expressed in cases compared with controls.

SLC1A1 has a function in buffering local glutamate 
concentration at excitatory synapses and modulation of 
distinctive recruitment of different subtypes of glutamate 

Table 5   Spearman’s correlations between RNA expression levels among the ASD patients and controls

*p < 0.05
**p < 0.001

LINC01231 SLC25A12 lnc-SLC25A12 RYR2 lnc-MTR-1 ATP2B2 LINC00606
Patients controls Patients controls Patients controls Patients controls Patients controls Patients controls Patients controls

SLC1A1 − 0.09 − 0.07 0.34 0.24 0.07 − 0.13 0.02 0.13 − 0.02 0.13 − 0.13 0.31* 0.11 − 0.13
LINC01231 0.31 0.38* 0.87** 0.64** 0.82** 0.63** 0.71** 0.38* 0.5* 0.24 0.51* 0.62**
SLC25A12 0.46* 0.56** 0.32 0.53** 0.49* 0.71** 0.19 0.30 0.44* 0.55**
lnc-SLC25A12 0.76** 0.65** 0.74** 0.44* 0.4* 0.16 0.56* 0.51**
RYR2 0.68 0.45* 0.65** 0.37* 0.54* 0.55**
lnc-MTR-1 0.53* 0.29 0.53* 0.54**
ATP2B2 0.27 0.37*

0.00 0.25 0.50 0.75 1.00
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Fig. 2   ROC curves of LINC01231, SLC1A1, RYR2 and lnc-
SLC25A12 transcript levels
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receptors at extrasynaptic sites [21]. The related lncRNA 
with this gene has a number of variants that are associated 
with attention deficit hyperactivity disorder, substance 
abuse, antisocial behavior measurement, educational 
attainment, mathematical ability and insomnia (https://​
www.​genec​ards.​org/​cgi-​bin/​cardd​isp.​pl?​gene=​LINC0​
1231).

RYR2 has been among genes whose copy number vari-
ations are implicated in ASD as revealed in a population-
based investigation in Lebanon [22]. This gene encodes a 
calcium release channel expressed in the brain. Moreover, 
RYR2-related modulation of calcium homeostasis is impli-
cated in cognitive functions and neuronal postsynaptic plas-
ticity [23].

Therefore, dysregulated genes in the circulation of ASD 
patients as revealed in this study have functional roles in the 
regulation of calcium homeostasis and are possibly contrib-
uting to the pathogenesis of ASD.

It is worth mentioning that expression levels of genes in 
the peripheral blood do not necessarily reflect their levels 
in the cerebrospinal fluid (CSF). A recent expression study 
has shown relatively weak correlations between serum pro-
tein concentrations and CSF protein concentrations [24]. 
However, altered expression levels of genes in the periph-
eral blood of ASD cases might affect some crucial signal-
ing pathways in the blood cells, thus indirectly influence 
the pathobiology of disorder. In line with this hypothesis, a 
former exploratory study has suggested that the gene expres-
sion profile of peripheral blood specimens of young ASD 
subjects can be used to detect the biological signatures for 
ASD [25].

The observed correlations between expression levels of 
these genes in the ASD cases and controls further support 
their possible implications in a functional network in the 
pathophysiology of ASD.

ROC curves for SLC1A1, LINC01231, RYR2 and lnc-
SLC25A12 transcripts showed diagnostic power of 0.68, 
0.75, 0.67 and 0.59, respectively. Therefore, LINC01231 is 
the best transcript among mentioned transcripts for separa-
tion of ASD cases from controls. Taken together, the cur-
rent study shows possible role of calcium related genes and 
lncRNAs in the development of ASD. However, additional 
functional studies are required for verification of their func-
tions in the pathoetiology of ASD. Finally, since the sam-
ple size is small, it is better to look at the protein level for 
all protein-coding genes in peripheral blood or repeat RNA 
quantification in another small set of new cases for proper 
validation.
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