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Abstract 
Breast cancer (BC) is one of the most common malignant tumors in women and still poses a significant threat to women 
worldwide. Recurrence of BC in situ, metastasis to distant organs, and resistance to chemotherapy are all attached to high 
mortality in patients with BC. Non-coding RNA (ncRNA) of the type known as “circRNA” links together from one end to 
another to create a covalently closed, single-stranded circular molecule. With characteristics including plurality, evolution-
ary conservation, stability, and particularity, they are extensively prevalent in various species and a range of human cells. 
CircRNAs are new and significant contributors to several kinds of disorders, including cardiovascular disease, multiple organ 
inflammatory responses and malignancies. Recent studies have shown that circRNAs play crucial roles in the occurrence of 
breast cancer by interacting with miRNAs to regulate gene expression at the transcriptional or post-transcriptional levels. 
CircRNAs offer the potential to be therapeutic targets for breast cancer treatment as well as prospective biomarkers for early 
diagnosis and prognosis of BC. Here, we are about to present an overview of the functions of circRNAs in the proliferation, 
invasion, migration, and resistance to medicines of breast cancer cells and serve as a promising resource for future investiga-
tions on the pathogenesis and therapeutic strategies.
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Introduction

Breast cancer is the most common cancer in the world and 
the leading cause of cancer deaths in women. Despite the 
progress achieved in surgery, chemotherapy, radiation, endo-
crine therapy, targeted therapy, immunotherapy and other 
treatments, the incidence of BC has been on the rise glob-
ally over the past decade. The most prevalent cancer among 
women in the world today is breast cancer, overtaking lung 
cancer [1]. Based on the expression of estrogen receptors 
(ER), progestin receptors (PR), KI67, and the human epi-
dermal growth factor receptors (EGFR2/HER2), BC is 

categorized into four types: luminal A, luminal B, ErbB2 
overexpression, and triple-negative breast cancer (TNBC) 
[2]. Increased mortality in BC patients is associated with 
tumor recurrence and metastasis to distant organs such as 
the bone, lungs, brain, and liver [3, 4].

The occurrence of BC is influenced by external ele-
ments, familial genetic predisposition, estrogen replacement 
therapy and long-term high-dose radiation exposure. Muta-
tions in genetic disorders such as P53, BRCA1 and BRCA2 
mutations, as well as people with a history of ovarian or 
breast cancer, are more likely to develop BC [5]. Today, it 
is believed that epigenetic modifications and genetic altera-
tions play significant roles in the pathogenesis of BC. DNA 
methylation and histone modification are examples of epi-
genetic modifications [6]. Additionally, a number of ncR-
NAs, including long non-coding RNA (lncRNA), microRNA 
(miRNA) [7], and circular RNA (circRNA) [8] were found 
to influence the onset and progression of BC.

CircRNA is a kind of covalently closed RNA that was 
first discovered by Sanger et al. in a plant-infected virus in 
1976 [9]. However, due to the inadequate technical condi-
tions at that time, this circRNA was once dismissed as a 
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product of exon splicing errors. CircRNA is an endogenous 
short ncRNA with a closed-loop shape that originates pri-
marily from gene exons [10]. Compared with linear mRNA, 
circRNA lacks an uncovered 5′ end cap and 3′-polyadenylate 
terminal structure, resulting in its less susceptible to nucleic 
acid exonuclease. Many species and types of human cells 
contain circRNAs, which exhibit plurality, evolutionary con-
servation, stability, and particularity. CircRNAs were found 
to be involved in multiple biological processes by acting 
as competitive endogenous RNAs (ceRNAs) to counteract 
the effects of miRNAs [11]. In recent years, the role of cir-
cRNA in regulating transcription or chelating proteins has 
been gradually recognized and concerned. CircRNAs also 
play essential roles in the pathogenesis and expansion of 
breast cancer. For example, circUBR1 was up-regulated in 
BC, which can trigger BC cell proliferation and metastasis 
[12]. Silencing it delayed BC tumor growth in vivo, boosted 
apoptosis, and reduced BC cell proliferation and metastasis 
in vitro. Circ_0003645's expression was considerably ampli-
fied in both breast cancer cell lines and tissues [13]. Elimina-
tion of circ_0003645 hindered the growth of breast cancer 
cells, leading to their programmed cell death. Circ_0003645 
had a positive effect on HMGB1 and facilitated the growth 
of breast cancer cells by attaching miR-139-3p.

Early detection and prompt treatment can significantly 
reduce breast cancer mortality rates. However, early-stage 
breast cancer often does not present obvious symptoms and 
indications. Hence, women tend to neglect the clinical exam-
ination of breast cancer, resulting in breast cancer still being 
diagnosed at a later stage [14]. As a result, early detection of 
breast cancer is essential for effective therapy [15]. Circular 
RNAs have been identified to be differentially expressed in 
the initial stages of breast cancer, which can act as sponges 
for miRNAs to affect mRNA expression, contributing to the 
breast cancer development [16]. Therefore, it is hypothesized 
that circRNA may serve as a potential diagnostic marker 
and novel therapeutic approach for early-stage breast cancer.

In the following, we will focus on introducing the main 
functions of circRNAs and their roles in breast cancer cell 
proliferation, invasion, metastasis, and drug resistance. In 
addition, the potential of circRNAs as diagnostic and prog-
nostic markers for breast cancer will also be highlighted.

Introduction of CircRNA

Biogenesis of circRNA

Initially, it was believed that circRNA was generated through 
the incorrect splicing of exons [17]. With the development 
of bioinformatics and the maturity of RNA sequencing tech-
nology, an increasing number of circRNAs have been dis-
covered in various biological cells [18]. Non-coding RNA 

of a particular kind called circRNA is commonly expressed 
in eukaryotic cells. However, unlike the structure of ordi-
nary long non-coding RNA, the circRNA molecule exhib-
its a covalent bond between its 3′ and 5′ end, resulting in 
the formation of a covalently closed loop. The absence of 
a 3′ and 5′ terminus renders it impervious to be digested 
by RNAase, thereby ensuring its stability in vivo [19]. Cir-
cRNAs are spliced in reverse from their mRNA precursors 
(pre-mRNA). CircRNAs are expressed at low levels in cells 
[20], but their expression levels appear time and tissue speci-
ficity. CircRNAs can be categorized into three subclasses: 
exon circRNAs (EcRNAs), intron circRNAs (ciRNAs), and 
exon–intron circRNAs (EIciRNAs), based on their various 
locations and formation mechanisms [21, 22]. The lasso-
driven cyclization model of exon jumping and the intron 
pairing-driven cyclization model are two hypotheses cur-
rently available to explain how exon circular RNAs are gen-
erated [23].

As is illustrated in Fig. 1, the lasso-driven cyclization 
model of exon-skipping begins with the classical splicing 
of upstream and downstream exons via 3′ and 5′ covalent 
binding, forming an RNA lasso with exon and intron. Sub-
sequently, the intron breaks down and the exon splices back 
into exon circRNA [24]. The pairing of complementary 
sequences on introns outside of the upstream and down-
stream exons in the intron pairing-driven cyclization model 
brings the splicing sites near to each other, thereby facilitat-
ing the formation of reverse splicing (Fig. 1) [25]. Inverted 
repeat Alu pairs (IRAlus) were found in the introns upstream 
and downstream of the ring exon. Its pairing makes the splic-
ing sites outside the upstream and downstream exon to be in 
a closer position, prompting the formation of reverse splic-
ing. The formation of circular RNA could be facilitated by 
IRAlus pairing or other complementary sequences [26]. 
Exon–intron RNA (EIciRNA) is produced by a direct cycli-
zation splicing process after lasso generation without intron 
degradation [27]. Intron circRNA (ciRNA) is created when 
introns are partially degraded and then cyclized after lasso 
formation [28, 29].

Further investigation has revealed that circRNAs have 
significant impacts on a range of diseases, including the 
emergence and progression of tumors [30]. CircRNAs have 
a wide range of biological functions, most commonly as 
a miRNA sponge that regulates gene expression to medi-
ate the occurrence and development of cancer [31]. Some 
circRNAs contain miRNA binding regions, which may 
function as ceRNAs to block miRNAs, thus boosting the 
expression of the target gene [32]. The circRNA/miRNA/
mRNA regulator axis, which resulted from the adsorption 
of miRNAs by circRNAs, liberated the target mRNA from 
functional inhibition [33]. Hansen et al. discovered that 
CIRS-7 was a special sponge for miR-7 that inhibited the 
production of multiple oncogenes controlled by miR-7 [34]. 
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In recent years, the role of circRNA and related proteins in 
controlling protein expression in cancer progression has also 
been extensively investigated [35]. CircRNAs may adhere 
to various RNA-binding proteins (RBPs) to perform various 
functions, including suppressing protein activity, promoting 
the creation of protein complexes, and enabling coopera-
tion among various proteins [36]. For example, circRNA 
MBL contains the conserved protein binding sites of mus-
cle blindness (MBL), and the expression levels of MBL 
strongly influenced circMbl biosynthesis [37]. CircRNA can 
also regulate gene transcription and influence physiological 
and pathological processes [38]. CircITCH regulated the 
expression of ITCH and impeded breast cancer progression 
by adsorbing miR-214 and miR17 like a sponge [39]. Inves-
tigations of circRNA at a translational level uncovered the 
concealed proteomes and their therapeutic implications for 
human health [40]. The interaction between circSCRIB and 
the pre-mRNA of SCRIB hindered the splicing and transla-
tion of SCRIB, thus facilitating the advancement of breast 
cancer [41]. In the last few years, the impact of circRNA on 
breast cancer has become increasingly well-documented and 
researched [30].

The main function of circRNA

The ceRNA notion was first proposed by Salmena et al. 
[32]. They considered that a single miRNA may control 
various target genes, while the same target gene may 
be controlled by several different miRNAs. Because of 
their competitive connection and regulation by the same 
miRNA, these RNAs are known as ceRNAs. CircRNAs 
are competitive endogenous RNAs that control a variety of 

procedures in biology, including the expression of human 
genes, the growth and spread of cancer, and many other 
biological processes (Fig.  2A) [42, 43]. For instance, 
circDDX21 slowed the progression of triple-negative 
breast cancer (TNBC) by adsorbing miR-1264 as a sponge 
to regulate the expression of QKI [44]. Circ_0039960 spe-
cifically targeted miR-1178 to up-regulate PRMT7 expres-
sion, which helped BC cell grow [45]. Numerous disorders 
have been demonstrated to be influenced by the circRNA/
miRNA/mRNA axis [46, 47].

Additionally, circRNA can serve as an RBP sponge. A 
number of biological functions depend on RNA–protein 
complexes (RPCs), which are created when circRNAs bind 
to RBPs [48]. RBPs were responsible for the generation of 
circRNAs and the regulation of gene expression in tran-
scriptional and post-transcriptional level [49]. For example, 
RBPs are involved in RNA alternative splicing, which had 
an impact on the transcription of linear parent genes and 
controlled the production of affiliated proteins, which were 
crucial for the development of tumors [50, 51]. CircACTN4 
derived from exons 2 to 7 of ACTN4 could interact with far 
upstream element binding protein 1 (FUBP1) to inhibit the 
connection between FUBP1 and FIR. Consequently, MYC 
transcription was triggered to facilitate the emergence and 
advancement of breast cancer (Fig. 2B) [52]. Circ-Foxo3 
was able to attach to several proteins and cooperate with 
CDK2 and p21 to block the cell cycle and prevent the tran-
sition from the G1 stage to the S stage [53]. CircFoxo3 was 
also found to be able to promote cardiac senescence through 
binding to as well as inhibiting anti-aging-related proteins 
(ID1 and E2F1) and anti-stress-related proteins (HIF1a and 
FAK) in the cytoplasm [54].

Fig. 1   In the biogenesis of 
circRNA, Exonic circRNAs 
(EcRNAs) are created by back-
splicing, which can involve 
either one or several exons. 
The lasso-driven cyclization 
model of exon jumping, and the 
intron pairing-driven cycliza-
tion model, are the other two 
methods for creating ecRNAs. 
It is the predominant circRNAs 
form. Exon–intron circRNAs 
(EIciRNAs) are primarily found 
in the nucleus and preserve their 
intronic sequences between 
the circularized exons. Intronic 
lariat precursors escape from 
the debranching stage of 
conventional linear splicing 
to become intronic circRNAs 
(ciRNAs), which are prevalent 
in the nucleus
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CircRNA can also control gene transcription through 
a variety of methods. CircRNA can manipulate parental 
genes through the ceRNA mechanism. As an illustration, 
circGFRA1 might function as a miR-34a sponge to con-
trol the production of GFRA1 [55], the parental mRNA, 
leading to the stimulation of BC cell proliferation and 
apoptosis blockage. CircIPO11, derived from the IPO11 
gene transcript and composed of exons 4 and 5 of the 
IPO11 gene, recruited TOP1 to the GLI1 (GLI family 
zinc finger 1) promoter, triggering its transcription and 
thereby activating the hedgehog signal (Fig. 2C) [56].

For a long time, circRNA has been studied as a non-
coding RNA. As a result, its capacity to be translated 
into proteins has been disregarded. Up until 2017, Leg-
nini et al.'s discovery that circZNF609 could be trans-
lated to protein in mouse muscle cells in both a splicing-
dependent and a cap-independent way suggested that 
other eukaryotic circRNAs may encode protein as well 
[57]. The SEMA4B-211aa protein was translated from 
an internal ribosome entry site (IRES) sequence of circ-
SEMA4B in a 5′-cap-independent manner. The binding 
of SEMA4B-211aa to p85 hindered the synthesis of PIP3 
and the phosphorylation of AKT, thereby impeding the 
advancement of breast cancer (Fig. 2D) [58]. By con-
trolling the homeostasis of C-Myc protein, the protein 
FBXW7 produced by circFBXW7 impeded the onset and 
progression of glioblastoma [59].

Roles of circRNA in breast cancer

As a new class of epigenetic regulator, circRNA is receiv-
ing more and more attention in the process of BC tumor 
growth, metastasis, chemotherapy resistance, etc. CircR-
NAs associated with breast cancer mentioned in this paper 
are listed in Table 1. Because circRNAs have a large num-
ber of miRNA binding sites, they can adsorb miRNAs like 
sponges and prevent them from attaching to target genes, 
thus affecting tumor formation.

CircRNA is involved in breast cancer development 
and cell proliferation

Some circRNAs feature miRNA binding sites and can 
function as ceRNAs to suppress the production of miRNA 
and increase the production of the target genes [32]. As a 
result, circRNA can operate as a miRNA sponge to con-
trol gene expression, thereby influencing the emergence 
and advancement of cancer. For instance, P21, a mitosis 
regulator, could attach to the CDK1/cyclinB1 and pre-
vent CDK1 from activating, hence preventing the growth 
and proliferation of G2/M breast cancer cells [60]. The 
low expression of circDDX17 in breast cancer cell lines 
and tissues [61] was linked to poor long-term survival of 

Fig. 2   A CircRNA is a miRNA sponge that indirectly controls mRNA 
expression and a number of biological processes, including the emer-
gence and advancement of breast cancer. B By binding circACTN4 
to FUBP1, the interaction between FUBP1 and FIR is hindered, lead-
ing to the regulation of breast cancer progression. C CircIPO11 binds 

TOP1 to form the CirciPO11-Top1 complex and recruits it to the GLI 
promoter to trigger its transcription. D circSEMA4B containing IRES 
can translate the producing protein SEMA4B-211aa in the open read-
ing frame (ORF)
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breast cancer patients. CircDDX17 controlled cyclization 
factors (CDK1 and P21) by sponging miR-605, which in 
turn promoted apoptosis and reduced cell proliferation. 
Circ_103809 prevented breast cancer cell lines from repro-
ducing. By disrupting the EMT signal cascade, low expres-
sion of circRNA_103809 could impede the G2/M phase 
and reduce the growth and spread of BC cells [62]. The 
amplification of circ_0000526 drastically reduced miR-
492 production and increased the production of suppres-
sor of cytokine signaling 2 (SOCS2) through the sponge 
effect, thereby preventing the proliferation and metastasis 
of breast cancer cells and encouraging cell death [63]. 
Circ_001569 expression was significantly up-regulated in 
BC tissues and cell lines [64]. The elevated expression of 
circ_001569 was associated with lymph node metastases, 
increased clinical stage, and decreased overall lifespan. 
It promoted BC progression through PI3K-AKT pathway. 
CircUBR1 was also up-regulated in BC [12]. Blocking 
circUBR1 expression prevented BC tumor growth in vivo, 
induced apoptosis in vitro, and reduced BC cell prolif-
eration and metastasis. The dual-luciferase reporter gene 
assay confirmed that circUBR1, potentially acting as a 
miR-1299 substrate, stimulated the synthesis of its tar-
get Cyclin D1 (CCND1) and enhanced the proliferation 
and metastasis of BC cells. A high-throughput microarray 
of circRNAs and qRT-PCR research revealed that circG-
FRA1, derived from the GFRA1 gene, was significantly 
increased in breast cancer [55], while increased expression 
of circGFRA1 was associated with a decreased overall sur-
vival. CircGFRA1 up-regulated the expression of GFRA1 
by adsorbing miR-34a to promote breast cancer cell pro-
liferation and inhibit apoptosis. Silencing circGFRA1 
inhibited proliferation and promoted apoptosis by releas-
ing more miR-34a to down-regulate GFRA1 expression in 
BC. In BC tissues and cell lines, circPTK2 expression was 
increased [65]. By sponging miR-136 to modulate NFBI 
and AKT/PI3K pathway, it could dramatically promote 
the growth, spread, and invasion of TNBC cells. Elevated 
levels of circ_0005273 in breast cancer cells up-regulated 
the expression of YAPl (yes-associated protein1) through 
the adsorption of miR-200a-3p, and then inactivated the 
Hippo-YAP1 signaling route, which contributes to breast 
cancer cell multiplication and migration [66]. Besides, the 
reduction of circ_0005273 inhibited BC cell expansion, 
migration, cell cycle, and tumor formation in vivo.

The Warburg effect, also known as aerobic glycolysis, 
is a unique pattern of cell metabolism in cancer cells that 
shows an escalating rate of glucose uptake and lactic acid 
fermentation in an aerobic environment. Unlike normal cells, 
which undergo both oxidative phosphorylation and glycoly-
sis, cancer cells tend to undergo glycolysis in both an anoxic 
and aerobic microenvironment. CircRNF20 was elevated in 
BC tissues and cells and served as a sponge for miR-487a, Ta
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which targeted hypoxia-inducible factor-1 (HIF-1) in BC 
cells. HIF-1 was a transcription factor targeting the promoter 
of hexokinase II (HK2) to speed up transcription and pro-
mote glycolysis in BC cells. Consequently, circRNF20 could 
stimulate the proliferation of BC cells by means of Warburg 
effect (aerobic glycolysis) [67]. In contrast to nearby tissues, 
Li et al. discovered that circ_0000514 was increased in BC 
tissues [42]. They found that circ_0000514 could increase 
the expression of CXCL10 by sponging miR-296-5p to 
promote BC cell invasion and proliferation. Targeting miR-
223-3p, circZFR enhanced the production level of FABP7 in 
breast cancer, boosting the growth, migration, invasion, and 
EMT of BC cells while blocking apoptosis [68]. Inhibiting 
circZFR significantly impeded the growth of tumor cells.

CircRNA is involved in breast cancer invasion 
and metastasis

One of the major causes of death in breast cancer is metas-
tasis. Breast cancer cell metastasis relies on a mechanism 
known as epithelial–mesenchymal transformation (EMT), 
and it was reported that circRNA participated in this process 
[69]. CircNR3C2 was significantly reduced in BC and was 
inversely correlated with distant metastasis and mortality 
in invasive breast cancer [70]. By serving as miR-513a-3p's 
sponge, circNR3C2 increased the levels of E3 ubiquitin-
ligase HRD1. This hindered the expansion, migration, 
invasion, and EMT of breast cancer cells by generalizing 
Vimentin and inducing its degradation through the protea-
some. Through sponging miR-548o, circ_0047604 directly 
targeted DACH1 in breast cancer cells, thus preventing the 
growth and spread of tumor cells [71].

miR-148a-3p and miR-152-3p could be adsorbed by cir-
cANKS1B, boosting the production of the transcription ele-
ment USF1, which then raised the transcription of TGF-1, 
triggering the TGF-1/Smad signal and encouraging EMT 
[72]. Circ_0089153 was highly expressed in BC tissues. It 
increased the expression of E2F6 by serving as the miR-
2467-3p sponge to stimulate BC cell growth, migration, 
invasion, and EMT [73]. Circ_0001955 was also found to 
be up-regulated in breast cancer cells. It increased the gen-
eration of GLUT1 by enhancing miR-1299 and supported 
angiogenesis, migration, invasion, survival, and glycolytic 
metabolism in BC cells [74].

Elevated circCD44 expression in BC cells was negatively 
correlated with patient prognosis [75]. As a competitive 
endogenous RNA, circCD44 inhibited miR-502-5p-medi-
ated KRAS degradation by directly attaching to miR-502-5p. 
Additionally, it could also bind to IGF2BP2 in TNBCs to 
maintain the stability of Myc mRNA, thus promoting the 
breast cancer cell’s spread, invasion and tumorigenesis. 
CircHIPK3 was highly expressed in BC cytoplasm, which 
specifically targeted miR-326 [76]. Down-regulation of 

circHIPK3 dramatically reduced BC cell proliferation, 
migration, invasion, and EMT. Endogenous expression of 
miR-326 partly counteracted the impacts of circHIPK3 on 
apoptosis and EMT-related proteins.

By targeting miR-326, circ_0000511 controlled the 
expression of TAZ in BC cells, thus promoting the expan-
sion, migration, and invasion of BC, while inhibiting BC cell 
death [77]. Circ_0000518 could adsorb endogenous miR-
1225-3p and block its biological activity. MiR-1225-3p was 
able to increase the expression of SOX4 mRNA, thereby 
promoting the growth, infiltration, and migration of BC cells 
[78].

CircRNA is involved in chemotherapy resistance

CircRNAs were found to be expressed in chemotherapy-
resistant breast cancer, suggesting that circRNAs may be 
involved in promoting or reversing chemotherapy resist-
ance in BC cells. Medication resistance-associated circR-
NAs are promising diagnostic and therapeutic indicators that 
may improve the clinical management of BC by boosting 
chemotherapy sensitivity, predicting the efficacy of chemo-
therapeutic agents in resistant populations, and so on. The 
most commonly reported drugs associated with circRNAs in 
recent chemotherapy for BC patients are adriamycin (ADM), 
tamoxifen (TAM), and paclitaxel (PTX).

BC cells that exhibited resistance to ADM displayed 
a robust expression of circ_0001667 [79]. The target of 
circ_0001667, miR-4458, had decreased levels in ADM-
resistant carcinoma tissues and cells. Knockdown of 
circ_0001667 reduced the production of NCOA3 by releas-
ing miR-4458, resulting in a significant decrease in the 
growth, migration, invasion, and ADM resistance of MCF-7/
ADM and MDA-MB-231−/− ADM cells. Circ_0092276 up-
regulated ATG7 expression by adsorbing miR-384, thereby 
enhancing the autophagy of BC cells, augmenting the 
resistance of MCF-7 and MDA-MB-468 cells to adriamy-
cin (ADM), and preventing apoptosis [80]. In patients with 
TNBC, elevated circUBE2D2 expression was strongly corre-
lated with progressed TNM staging, lymph node metastases, 
and worsened prognosis [81]. CircUBE2D2 could protect 
CDCA3 by working as a miR-512-3p sponge to acceler-
ate the development of BC and adriamycin resistance. The 
chemo tolerance to ADM in BC cells was decreased by cir-
cUBE2D2 knockdown, which also inhibited cell growth, 
migration, and invasion.

In TAM-resistant BC cells, the expression of 
circ_0025202 was dramatically reduced [82]. Circ_0025202 
could function as a sponge for miR-182-5p, hindering cell 
proliferation, colony formation, and migration, while also 
enhancing cell apoptosis and susceptibility to tamoxifen. 
It could also further stimulate FOXO3a, the direct target 
gene of miR-182-5p. Meanwhile, circ_0025202 could also 
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target miR-197-3p [83]. Overexpression of miR-197-3p 
enhanced TAM resistance and promoted the proliferation 
of BC cells. Circ_0025202 targeted miR-197-3p, thereby 
enhancing HIPK3 expression, and diminishing TAM resist-
ance and tumorigenesis in BC cells. Both in TAM-resistant 
breast cancer cells and their exosomes, circUBE2D2 was 
significantly up-regulated [84]. By adsorbing miR-200a-3p, 
exosome-mediated circUBE2D2 induced tamoxifen resist-
ance in breast cancer cells.

Circ_0006528 was highly expressed in PTX-resistant 
breast cancer tissues and cells, which directly targeted miR-
1299 and increased CDK8 expression by sponging miR-1299 
to promote the proliferation, migration and invasion of PTX-
resistant breast cancer cells [85]. Silencing circHIPK3 led to 
paclitaxel-resistant BC cells more susceptible to treatment 
through the alteration of HK2 via miR-1286 [86]. In PTX-
resistant BC tissues and cells, circHIPK3 expression was in 
a high level. CircHIPK3 specifically targeted miR-1286 to 
increase the expression of HK2, which therefore aided in the 
formation of BC tumors and decreased the susceptibility of 
BC cells to PTX. LeT-7A-5P/DUSP7 axis was the mecha-
nism through which circABCB10 increased PTX resistance 
in breast cancer [87]. CircABCB10 knockdown increased 
PTX susceptibility and death while preventing invasion and 
autophagy in PTX-resistant BC cells. CircRNF111 levels 
were also elevated in paclitaxel-resistant BC tissues and 
cells [88]. CircRNF111 boosted the production of E2F3 by 
directly aiming at miR-140-5p to induce PTX resistance in 
breast cancer. Silencing circRNF111BC resulted in a sig-
nificant decrease in PTX resistance, cell survival, invasion, 
colony formation, and glycolysis in BC cells.

The miR-153-3p/ANLN axis was controlled by circ-
MMP11 to influence lapatinib resistance in breast cancer 
cells [89]. CircMMP11 increased the production of ANLN 
by functioning as a miR-153-3p sponge, causing BC cells 
more resistance to lapatinib. Knockdown of circMMP11 
showed an increased sensitivity to lapatinib, which inhibited 
the survival, motility and invasion of breast cancer cells, as 
well as induced their apoptosis. In monastrol-resistant cell 
lines, circ_0007874 expression levels were down-regulated. 
Circ_0007874 controlled the TRAF4/Eg5 axis by acting on 
the Eg5 protein and preventing TRAF4 from interacting with 
the Eg5 gene [90], thereby reducing BC cell activity and 
enhancing monastrol-induced cytotoxicity.

Potential of circRNAs as diagnostic 
and prognostic markers

Prognostic assessment plays a crucial role in prolonging the 
survival rate of cancer patients. Multiple studies have sug-
gested that circRNAs might be involved in a variety of breast 
cancer diseases. Circular RNAs have thus drawn further 

consideration as potential prognostic indicators for breast 
cancer [91]. CircRNAs are very common and extremely 
durable molecules that express themselves in particular ways 
depending on the stage of cell, tissue, and development. Cir-
cRNAs are well conserved across species, and resistant to 
RNaseR action [14]. Therefore, circRNAs have the potential 
to be utilized as cancer biomarkers because of their distinc-
tive metabolic characteristics.

CircRNAs up‑regulated in BC and their diagnostic 
and therapeutic values in BC

Breast tumors exhibit a differential expression of circRNAs. 
Some circRNAs have been found to be highly expressed in 
BC and be capable of promoting the development of BC, 
suggesting that they may one day be served as prognostic 
indicators and therapeutic targets for BC. For instance, 
enhanced production of circ_0103552 in BC tissue samples 
is associated with poor prognosis in BC patients [92]. The 
results of loss-of-function study on MCF7 cells and gain-of-
function experiments on MDA-MB-231 cells revealed that 
the survival probability of MCF7 cell line was considerably 
reduced after silencing circ_0103552. Circ_0103552 greatly 
increased cell viability and metastasis of MDA-MB-231 
cells, while decreased their apoptosis by sponging miR-
1236. Silencing circUBR1 in BC hindered the proliferation 
and metastasis of BC cells, triggered apoptosis in vitro, and 
impeded the expansion of BC cancer in vivo [12]. By con-
trolling TAZ expression, circ_0000511 promoted the expan-
sion, migration, and invasion of BC cells, while inhibiting 
BC cell autophagy [77]. In BC patients, circCDYL expres-
sion levels in serum and tissues were markedly up-regulated, 
and this up-regulation was closely correlated with medical 
tumor staging, metastasis, and patient survival. Through 
adsorbing miR-1275, circCDYL controlled the production 
of ATG7 and ULK1, and then affected BC cell autophagy 
and proliferation [93]. BC patients with high circ_0069094 
expression appeared a poor prognosis. Circ_0069094, as a 
suppressor of miR-59, increased the expression of HK2 to 
promote glycolysis. The increased rate of glycolysis altered 
the tumor microenvironment and enhanced the aggressive-
ness of cancer cells [94]. CircYY1 was expressed at an 
increased level in BC tissues and cells, and individuals with 
increased circYY1 expression had a poor prognosis. By 
adsorbing miR769-3p, circYY1 increased the production of 
the oncogene YY1 to support tumorigenesis and glycolysis 
in BC cells [95]. Therefore, up-regulation of all circRNAs 
mentioned heretofore, including circUBR1, circ_0000511, 
circCDYL, circ_0069094, and circYY1 can be used as prog-
nostic indicators and therapeutic targets for BC.

Increased tumor size, lymph node spread, advanced 
TNM staging, aggressiveness of tumors, and poor progno-
sis were all substantially correlated with elevated levels of 
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circUBAP2 [96]. CircUBAP2 could increase the production 
of the carcinogen MTA1 by absorbing miRNA-661, promot-
ing BC cell migration and expansion. The expression of 
circSEPT9 was higher in BC tissues than that in normal 
ones. This finding was positively correlated with a severe 
disease stage and a poor prognosis [97]. Knockdown of circ-
SEPT9 had a profound impact on the spread, migration, and 
invasion of BC cells, causing BC cell death and autophagy, 
and preventing tumor growth and spread in vivo. E2F1 and 
EIF4A3 promoted BC malignancy and progression via the 
circSEPT9/miR-637/LIF axis.

In BC tissues and cell lines, circGNB1 was substantially 
expressed, and its expression was strongly linked with tumor 
volume size and TNM phase [98]. To facilitate the develop-
ment of BC cells, circGNB1 elevated the production of the 
oncogene protein IGF1R by targeting miR-141-5p. Further-
more, a strong correlation was observed between circIFI30 
and poor prognoses in BC tissues and cell lines. It might 
function as an absorbent for miR-520b-3p to increase the 
level of CD44 and hasten the EMT of BC cells and the emer-
gence of an aggressive phenotype [99]. KIF4A has been 
shown to be a promising indicator of prognosis and treat-
ment targets for cancer. CircKIF4A was highly expressed 
in BC and played a regulatory role in controlling BC pro-
gression by controlling KIF4A production through adsorb-
ing miR-375 [100]. Therefore, circUBAP2, circSEPT9, 
circGNB1, circIFI30, and circKIF4A are all excellent can-
didates for targeted therapies and diagnostic and prognostic 
biomarkers for BC patients.

CircRNAs down‑regulated in BC and their values 
in the treatment of BC

Some circRNAs are down-regulated in BC and prevent 
breast cancer from growing and progressing, suggesting 
that these circRNAs could be new BC therapeutic agents. 
For instance, BC patients with low circDDX17 expression 
usually had poor long-term survival [61]. By sponging 
miR-605, it altered the cell cyclization factors (CDK1 and 
P21) to reduce BC cell proliferation and increase apopto-
sis. By increasing the production of ubiquitin-specific pro-
tease 4 (USP4) through the absorption of miR-553 [101], 
circBMPR2 prevented the evolution of BC and TAM resist-
ance. BC patients with decreased DACH1 expression had 
a poor survival rate [71]. By functioning as the sponge for 
miR-548o, circ_0047604 specifically targeted DACH1 in 
BC, thus preventing cancer cell proliferation and migration. 
Therefore, the down-regulation of circDDX17, circBMPR2, 
and circ_0047604 can be employed as possible prognostic 
indicators for BC while they could also be investigated as 
new treatment medicines for BC.

CircNR3C2 was considerably decreased in BC and 
showed an inverse linkage with the spread and death of 

invasive breast cancer [70]. By sponging miR-513A-3p, 
circNR3C2 increased HRD1 production, which in turn pre-
vented migration, invasion and EMT progression of breast 
cancer cells. In the meantime, it could generalize Vimen-
tin in breast cancer and cause its degradation through the 
proteasome, thereby impeding the progression of BC. The 
expression of circ_0006220 was significantly reduced in 
BC [102]. It was a miR-197-5p absorbent and effectively 
controlled CDH19 expression, thereby inhibiting the devel-
opment of BC development. Consequently, circPTK2, circ-
NR3C2, and circ_0006220 are considered to be promising 
biomarkers for the diagnosis and therapy of BC.

Although numerous circRNAs possess potential for 
BC diagnosis and treatment, how to utilize them clinically 
remains unclear, and still needs further research.

Summary and prospects

Because of their distinctive characteristics, circRNAs have 
garnered a lot of interest and have recently emerged as a 
new research hotspot. CircRNAs are important regulators 
of many physiological and pathological processes. They 
are uniquely expressed in tissues, and are expressed in dif-
ferent ways in both tumor and non-tumor tissues. Due to 
their abundance in bloodstream fluid, saliva, and exosomes, 
circRNAs can be used as potential diagnostic or predictive 
biomarkers for diseases, particularly in the emergence, pro-
gression, and prognosis of malignant tumors [103]. CircR-
NAs are now new options for the early identification of BC 
and development of prognostic indicators, owing to their 
aberrant expression in BC and high specificity and sensitiv-
ity in detection.

Despite the progress made in the field of circRNA, there 
are still numerous issues that require further investigation. 
Our current knowledge of circRNA is still relatively shal-
low compared to coding RNA, miRNAs, and lncRNAs. 
The biological function of most circRNAs in physiological 
and pathological processes and how to apply them clini-
cally still need further research. Additionally, there is still 
a lack of knowledge regarding the regulatory processes and 
functions of BC circRNA-miRNA-mRNA regulatory sys-
tem. Considering that there are multiple subtypes of breast 
cancer, each with different clinical treatments and disease 
prognosis, exploring the distinctively expressed circRNAs of 
each subtype and targeting them will undoubtedly become a 
hotspot of research in the diagnosis, treatment and prognosis 
of breast cancer. Target investigation and early mechanism 
validation are the main areas of concern in current research. 
Therefore, it will be important to focus on other mecha-
nisms in-depth, combine laboratory and clinical research, 
and endeavor to translate experimental findings into clini-
cal application and practice in addition to the exploration 
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and preliminary mechanism verification of circRNA in the 
future.
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