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Abstract

Breast cancer (BC) is one of the most common malignant tumors in women and still poses a significant threat to women
worldwide. Recurrence of BC in situ, metastasis to distant organs, and resistance to chemotherapy are all attached to high
mortality in patients with BC. Non-coding RNA (ncRNA) of the type known as “circRNA” links together from one end to
another to create a covalently closed, single-stranded circular molecule. With characteristics including plurality, evolution-
ary conservation, stability, and particularity, they are extensively prevalent in various species and a range of human cells.
CircRNAs are new and significant contributors to several kinds of disorders, including cardiovascular disease, multiple organ
inflammatory responses and malignancies. Recent studies have shown that circRNAs play crucial roles in the occurrence of
breast cancer by interacting with miRNAs to regulate gene expression at the transcriptional or post-transcriptional levels.
CircRNA s offer the potential to be therapeutic targets for breast cancer treatment as well as prospective biomarkers for early
diagnosis and prognosis of BC. Here, we are about to present an overview of the functions of circRNAs in the proliferation,
invasion, migration, and resistance to medicines of breast cancer cells and serve as a promising resource for future investiga-
tions on the pathogenesis and therapeutic strategies.
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Introduction categorized into four types: luminal A, luminal B, ErbB2

overexpression, and triple-negative breast cancer (TNBC)

Breast cancer is the most common cancer in the world and
the leading cause of cancer deaths in women. Despite the
progress achieved in surgery, chemotherapy, radiation, endo-
crine therapy, targeted therapy, immunotherapy and other
treatments, the incidence of BC has been on the rise glob-
ally over the past decade. The most prevalent cancer among
women in the world today is breast cancer, overtaking lung
cancer [1]. Based on the expression of estrogen receptors
(ER), progestin receptors (PR), K167, and the human epi-
dermal growth factor receptors (EGFR2/HER2), BC is
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[2]. Increased mortality in BC patients is associated with
tumor recurrence and metastasis to distant organs such as
the bone, lungs, brain, and liver [3, 4].

The occurrence of BC is influenced by external ele-
ments, familial genetic predisposition, estrogen replacement
therapy and long-term high-dose radiation exposure. Muta-
tions in genetic disorders such as P53, BRCA1 and BRCA2
mutations, as well as people with a history of ovarian or
breast cancer, are more likely to develop BC [5]. Today, it
is believed that epigenetic modifications and genetic altera-
tions play significant roles in the pathogenesis of BC. DNA
methylation and histone modification are examples of epi-
genetic modifications [6]. Additionally, a number of ncR-
NAzs, including long non-coding RNA (IncRNA), microRNA
(miRNA) [7], and circular RNA (circRNA) [8] were found
to influence the onset and progression of BC.

CircRNA is a kind of covalently closed RNA that was
first discovered by Sanger et al. in a plant-infected virus in
1976 [9]. However, due to the inadequate technical condi-
tions at that time, this circRNA was once dismissed as a

@ Springer


http://orcid.org/0000-0002-9716-0195
http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-023-09172-z&domain=pdf

258 Page 2 of 16

Molecular Biology Reports (2024) 51:258

product of exon splicing errors. CircRNA is an endogenous
short ncRNA with a closed-loop shape that originates pri-
marily from gene exons [10]. Compared with linear mRNA,
circRNA lacks an uncovered 5' end cap and 3'-polyadenylate
terminal structure, resulting in its less susceptible to nucleic
acid exonuclease. Many species and types of human cells
contain circRNAs, which exhibit plurality, evolutionary con-
servation, stability, and particularity. CircRNAs were found
to be involved in multiple biological processes by acting
as competitive endogenous RNAs (ceRNAs) to counteract
the effects of miRNAs [11]. In recent years, the role of cir-
cRNA in regulating transcription or chelating proteins has
been gradually recognized and concerned. CircRNAs also
play essential roles in the pathogenesis and expansion of
breast cancer. For example, circUBR1 was up-regulated in
BC, which can trigger BC cell proliferation and metastasis
[12]. Silencing it delayed BC tumor growth in vivo, boosted
apoptosis, and reduced BC cell proliferation and metastasis
in vitro. Circ_0003645's expression was considerably ampli-
fied in both breast cancer cell lines and tissues [13]. Elimina-
tion of circ_0003645 hindered the growth of breast cancer
cells, leading to their programmed cell death. Circ_0003645
had a positive effect on HMGBI1 and facilitated the growth
of breast cancer cells by attaching miR-139-3p.

Early detection and prompt treatment can significantly
reduce breast cancer mortality rates. However, early-stage
breast cancer often does not present obvious symptoms and
indications. Hence, women tend to neglect the clinical exam-
ination of breast cancer, resulting in breast cancer still being
diagnosed at a later stage [14]. As a result, early detection of
breast cancer is essential for effective therapy [15]. Circular
RNAs have been identified to be differentially expressed in
the initial stages of breast cancer, which can act as sponges
for miRNAs to affect mRNA expression, contributing to the
breast cancer development [16]. Therefore, it is hypothesized
that circRNA may serve as a potential diagnostic marker
and novel therapeutic approach for early-stage breast cancer.

In the following, we will focus on introducing the main
functions of circRNAs and their roles in breast cancer cell
proliferation, invasion, metastasis, and drug resistance. In
addition, the potential of circRNAs as diagnostic and prog-
nostic markers for breast cancer will also be highlighted.

Introduction of CircRNA

Biogenesis of circRNA

Initially, it was believed that circRNA was generated through
the incorrect splicing of exons [17]. With the development
of bioinformatics and the maturity of RNA sequencing tech-

nology, an increasing number of circRNAs have been dis-
covered in various biological cells [18]. Non-coding RNA
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of a particular kind called circRNA is commonly expressed
in eukaryotic cells. However, unlike the structure of ordi-
nary long non-coding RNA, the circRNA molecule exhib-
its a covalent bond between its 3’ and 5’ end, resulting in
the formation of a covalently closed loop. The absence of
a 3’ and 5’ terminus renders it impervious to be digested
by RNAase, thereby ensuring its stability in vivo [19]. Cir-
cRNAs are spliced in reverse from their mRNA precursors
(pre-mRNA). CircRNAs are expressed at low levels in cells
[20], but their expression levels appear time and tissue speci-
ficity. CircRNAs can be categorized into three subclasses:
exon circRNAs (EcRNAS), intron circRNAs (ciRNAs), and
exon—intron circRNAs (EIciRNAs), based on their various
locations and formation mechanisms [21, 22]. The lasso-
driven cyclization model of exon jumping and the intron
pairing-driven cyclization model are two hypotheses cur-
rently available to explain how exon circular RNAs are gen-
erated [23].

As is illustrated in Fig. 1, the lasso-driven cyclization
model of exon-skipping begins with the classical splicing
of upstream and downstream exons via 3" and 5’ covalent
binding, forming an RNA lasso with exon and intron. Sub-
sequently, the intron breaks down and the exon splices back
into exon circRNA [24]. The pairing of complementary
sequences on introns outside of the upstream and down-
stream exons in the intron pairing-driven cyclization model
brings the splicing sites near to each other, thereby facilitat-
ing the formation of reverse splicing (Fig. 1) [25]. Inverted
repeat Alu pairs (IRAlus) were found in the introns upstream
and downstream of the ring exon. Its pairing makes the splic-
ing sites outside the upstream and downstream exon to be in
a closer position, prompting the formation of reverse splic-
ing. The formation of circular RNA could be facilitated by
IRAlus pairing or other complementary sequences [26].
Exon—intron RNA (EIciRNA) is produced by a direct cycli-
zation splicing process after lasso generation without intron
degradation [27]. Intron circRNA (ciRNA) is created when
introns are partially degraded and then cyclized after lasso
formation [28, 29].

Further investigation has revealed that circRNAs have
significant impacts on a range of diseases, including the
emergence and progression of tumors [30]. CircRNAs have
a wide range of biological functions, most commonly as
a miRNA sponge that regulates gene expression to medi-
ate the occurrence and development of cancer [31]. Some
circRNAs contain miRNA binding regions, which may
function as ceRNAs to block miRNAs, thus boosting the
expression of the target gene [32]. The circRNA/miRNA/
mRNA regulator axis, which resulted from the adsorption
of miRNAs by circRNAs, liberated the target mRNA from
functional inhibition [33]. Hansen et al. discovered that
CIRS-7 was a special sponge for miR-7 that inhibited the
production of multiple oncogenes controlled by miR-7 [34].
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Fig. 1 In the biogenesis of
circRNA, Exonic circRNAs
(EcRNAGs) are created by back-
splicing, which can involve
either one or several exons. Lasso driven cyclization \
The lasso-driven cyclization model of exon-skipping
model of exon jumping, and the
intron pairing-driven cycliza-
tion model, are the other two
methods for creating ecRNAs.

It is the predominant circRNAs
form. Exon—intron circRNAs
(EIciRNAs) are primarily found
in the nucleus and preserve their
intronic sequences between

the circularized exons. Intronic
lariat precursors escape from
the debranching stage of
conventional linear splicing

to become intronic circRNAs
(ciRNAs), which are prevalent
in the nucleus

pre-mRNA

In recent years, the role of circRNA and related proteins in
controlling protein expression in cancer progression has also
been extensively investigated [35]. CircRNAs may adhere
to various RNA-binding proteins (RBPs) to perform various
functions, including suppressing protein activity, promoting
the creation of protein complexes, and enabling coopera-
tion among various proteins [36]. For example, circRNA
MBL contains the conserved protein binding sites of mus-
cle blindness (MBL), and the expression levels of MBL
strongly influenced circMbl biosynthesis [37]. CircRNA can
also regulate gene transcription and influence physiological
and pathological processes [38]. CircITCH regulated the
expression of ITCH and impeded breast cancer progression
by adsorbing miR-214 and miR17 like a sponge [39]. Inves-
tigations of circRNA at a translational level uncovered the
concealed proteomes and their therapeutic implications for
human health [40]. The interaction between circSCRIB and
the pre-mRNA of SCRIB hindered the splicing and transla-
tion of SCRIB, thus facilitating the advancement of breast
cancer [41]. In the last few years, the impact of circRNA on
breast cancer has become increasingly well-documented and
researched [30].

The main function of circRNA

The ceRNA notion was first proposed by Salmena et al.
[32]. They considered that a single miRNA may control
various target genes, while the same target gene may
be controlled by several different miRNAs. Because of
their competitive connection and regulation by the same
miRNA, these RNAs are known as ceRNAs. CircRNAs
are competitive endogenous RNAs that control a variety of
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procedures in biology, including the expression of human
genes, the growth and spread of cancer, and many other
biological processes (Fig. 2A) [42, 43]. For instance,
circDDX21 slowed the progression of triple-negative
breast cancer (TNBC) by adsorbing miR-1264 as a sponge
to regulate the expression of QKI [44]. Circ_0039960 spe-
cifically targeted miR-1178 to up-regulate PRMT7 expres-
sion, which helped BC cell grow [45]. Numerous disorders
have been demonstrated to be influenced by the circRNA/
miRNA/mRNA axis [46, 47].

Additionally, circRNA can serve as an RBP sponge. A
number of biological functions depend on RNA—protein
complexes (RPCs), which are created when circRNAs bind
to RBPs [48]. RBPs were responsible for the generation of
circRNAs and the regulation of gene expression in tran-
scriptional and post-transcriptional level [49]. For example,
RBPs are involved in RNA alternative splicing, which had
an impact on the transcription of linear parent genes and
controlled the production of affiliated proteins, which were
crucial for the development of tumors [50, 51]. CircACTN4
derived from exons 2 to 7 of ACTN4 could interact with far
upstream element binding protein 1 (FUBP1) to inhibit the
connection between FUBP1 and FIR. Consequently, MYC
transcription was triggered to facilitate the emergence and
advancement of breast cancer (Fig. 2B) [52]. Circ-Foxo3
was able to attach to several proteins and cooperate with
CDK2 and p21 to block the cell cycle and prevent the tran-
sition from the G1 stage to the S stage [53]. CircFoxo3 was
also found to be able to promote cardiac senescence through
binding to as well as inhibiting anti-aging-related proteins
(ID1 and E2F1) and anti-stress-related proteins (HIF1a and
FAK) in the cytoplasm [54].
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Fig.2 A CircRNA is a miRNA sponge that indirectly controls mRNA
expression and a number of biological processes, including the emer-
gence and advancement of breast cancer. B By binding circACTN4
to FUBPI, the interaction between FUBP1 and FIR is hindered, lead-
ing to the regulation of breast cancer progression. C CircIPO11 binds

CircRNA can also control gene transcription through
a variety of methods. CircRNA can manipulate parental
genes through the ceRNA mechanism. As an illustration,
circGFRA1 might function as a miR-34a sponge to con-
trol the production of GFRA1 [55], the parental mRNA,
leading to the stimulation of BC cell proliferation and
apoptosis blockage. CircIPO11, derived from the IPO11
gene transcript and composed of exons 4 and 5 of the
IPO11 gene, recruited TOP1 to the GLI1 (GLI family
zinc finger 1) promoter, triggering its transcription and
thereby activating the hedgehog signal (Fig. 2C) [56].

For a long time, circRNA has been studied as a non-
coding RNA. As a result, its capacity to be translated
into proteins has been disregarded. Up until 2017, Leg-
nini et al.'s discovery that circZNF609 could be trans-
lated to protein in mouse muscle cells in both a splicing-
dependent and a cap-independent way suggested that
other eukaryotic circRNAs may encode protein as well
[57]. The SEMA4B-211aa protein was translated from
an internal ribosome entry site (IRES) sequence of circ-
SEMAA4B in a 5'-cap-independent manner. The binding
of SEMA4B-211aa to p85 hindered the synthesis of PIP3
and the phosphorylation of AKT, thereby impeding the
advancement of breast cancer (Fig. 2D) [58]. By con-
trolling the homeostasis of C-Myc protein, the protein
FBXW7 produced by circFBXW7 impeded the onset and
progression of glioblastoma [59].
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Roles of circRNA in breast cancer

As a new class of epigenetic regulator, circRNA is receiv-
ing more and more attention in the process of BC tumor
growth, metastasis, chemotherapy resistance, etc. CircR-
NAs associated with breast cancer mentioned in this paper
are listed in Table 1. Because circRNAs have a large num-
ber of miRNA binding sites, they can adsorb miRNAs like
sponges and prevent them from attaching to target genes,
thus affecting tumor formation.

CircRNA is involved in breast cancer development
and cell proliferation

Some circRNAs feature miRNA binding sites and can
function as ceRNAs to suppress the production of miRNA
and increase the production of the target genes [32]. As a
result, circRNA can operate as a miRNA sponge to con-
trol gene expression, thereby influencing the emergence
and advancement of cancer. For instance, P21, a mitosis
regulator, could attach to the CDK1/cyclinB1 and pre-
vent CDK1 from activating, hence preventing the growth
and proliferation of G2/M breast cancer cells [60]. The
low expression of circDDX17 in breast cancer cell lines
and tissues [61] was linked to poor long-term survival of
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g breast cancer patients. CircDDX17 controlled cyclization
& _ _ =S - = factors (CDK1 and P21) by sponging miR-605, which in
E ES 2 = 2 = turn promoted apoptosis and reduced cell proliferation.
- - . - - Circ_103809 prevented breast cancer cell lines from repro-

& & < & < ducing. By disrupting the EMT signal cascade, low expres-

gﬁ % é" % gﬂ sion of circRNA_103809 could impede the G2/M phase

p s ps o o and reduce the growth and spread of BC cells [62]. The

i é é i g amplification of circ_0000526 drastically reduced miR-

g g £ g g 492 production and increased the production of suppres-

5 f E E f sor of cytokine signaling 2 (SOCS2) through the sponge

§ § § § § effect, thereby preventing the proliferation and metastasis

% % % % —% of breast cancer cells and encouraging cell death [63].

= = g g = Circ_001569 expression was significantly up-regulated in

% % % % % BC tissues and cell lines [64]. The elevated expression of

§0 gﬂ §° E‘) gﬂ circ_001569 was associated with lymph node metastases,

g & g, g & increased clinical stage, and decreased overall lifespan.

g g Té Ef Té‘ It promoted BC progression through PI3K-AKT pathway.

g 2 £ £u 2 £ CircUBR1 was also up-regulated in BC [12]. Blocking
§ SU  &O =2 a0 =) circUBR1 expression prevented BC tumor growth in vivo,
= 2= 27 27 27 2® induced apoptosis in vitro, and reduced BC cell prolif-
22 eration and metastasis. The dual-luciferase reporter gene
§0<ZC - assay confirmed that circUBR1, potentially acting as a
a!é E 3 § 5 = miR-1299 substrate, stimulated the synthesis of its tar-
S50 3 g g 5 get Cyclin D1 (CCND1) and enhanced the proliferation
and metastasis of BC cells. A high-throughput microarray

of circRNAs and qRT-PCR research revealed that circG-

FRAI1, derived from the GFRA1 gene, was significantly

< increased in breast cancer [55], while increased expression
é & & of circGFRA1 was associated with a decreased overall sur-
k| = 0 @ N vival. CircGFRA1 up-regulated the expression of GFRA1
go 0 2 2 0 by adsorbing miR-34a to promote breast cancer cell pro-
= E E E E liferation and inhibit apoptosis. Silencing circGFRA1

Table 1 (continued)

Cell line name/animal model/clinical sample

circRNA

MCF-10A, MDA-MB-231, BT549, HCC1806, HCC338,

circGNB1

MCF-7, T47D, BT474, SKBR-3, and MDA-MB-361/

Female BALB/c nude mice/Fresh breast cancer samples
MDA-MB-231, MDA-MB-468, BT-549, MCF-10A/Female miR-520b-3p

circIFI30

BALB/c mice (4-6 weeks old) /38 pairs samples of

TNBC tissues and adjacent normal tissues
MCEF-7, T47D, BT474, SKBR3, MCF10A, MDA-MB-453,

circKIF4A

MDA-MB-468, MDA-MB-231, BT549 and HCC38/

Female BALB/c nude mice (4-week-old)
MCF-7, MDA-MB-231, MDA-MB-468, T47D, SKBR3,

circBMPR2

ZR-75-1/Tumor tissues, and paired adjacent non-tumor-

ous tissues of BC patients receiving treatment

circ_0006220 BT

-549, MDA-MB-231, MDA-MB-468, SK-BR-3, T47D,

MCEF-7, MCF-10A/57 primary female BC patients receiv-

ing treatment

inhibited proliferation and promoted apoptosis by releas-
ing more miR-34a to down-regulate GFRA1 expression in
BC. In BC tissues and cell lines, circPTK2 expression was
increased [65]. By sponging miR-136 to modulate NFBI
and AKT/PI3K pathway, it could dramatically promote
the growth, spread, and invasion of TNBC cells. Elevated
levels of circ_0005273 in breast cancer cells up-regulated
the expression of YAPI (yes-associated proteinl) through
the adsorption of miR-200a-3p, and then inactivated the
Hippo-YAPI signaling route, which contributes to breast
cancer cell multiplication and migration [66]. Besides, the
reduction of circ_0005273 inhibited BC cell expansion,
migration, cell cycle, and tumor formation in vivo.

The Warburg effect, also known as aerobic glycolysis,
is a unique pattern of cell metabolism in cancer cells that
shows an escalating rate of glucose uptake and lactic acid
fermentation in an aerobic environment. Unlike normal cells,
which undergo both oxidative phosphorylation and glycoly-
sis, cancer cells tend to undergo glycolysis in both an anoxic
and aerobic microenvironment. CircRNF20 was elevated in
BC tissues and cells and served as a sponge for miR-487a,
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which targeted hypoxia-inducible factor-1 (HIF-1) in BC
cells. HIF-1 was a transcription factor targeting the promoter
of hexokinase II (HK2) to speed up transcription and pro-
mote glycolysis in BC cells. Consequently, circRNF20 could
stimulate the proliferation of BC cells by means of Warburg
effect (aerobic glycolysis) [67]. In contrast to nearby tissues,
Li et al. discovered that circ_0000514 was increased in BC
tissues [42]. They found that circ_0000514 could increase
the expression of CXCL10 by sponging miR-296-5p to
promote BC cell invasion and proliferation. Targeting miR-
223-3p, circZFR enhanced the production level of FABP7 in
breast cancer, boosting the growth, migration, invasion, and
EMT of BC cells while blocking apoptosis [68]. Inhibiting
circZFR significantly impeded the growth of tumor cells.

CircRNA is involved in breast cancer invasion
and metastasis

One of the major causes of death in breast cancer is metas-
tasis. Breast cancer cell metastasis relies on a mechanism
known as epithelial-mesenchymal transformation (EMT),
and it was reported that circRNA participated in this process
[69]. CircNR3C2 was significantly reduced in BC and was
inversely correlated with distant metastasis and mortality
in invasive breast cancer [70]. By serving as miR-513a-3p's
sponge, circNR3C2 increased the levels of E3 ubiquitin-
ligase HRD1. This hindered the expansion, migration,
invasion, and EMT of breast cancer cells by generalizing
Vimentin and inducing its degradation through the protea-
some. Through sponging miR-5480, circ_0047604 directly
targeted DACHI in breast cancer cells, thus preventing the
growth and spread of tumor cells [71].

miR-148a-3p and miR-152-3p could be adsorbed by cir-
cANKS1B, boosting the production of the transcription ele-
ment USF1, which then raised the transcription of TGF-1,
triggering the TGF-1/Smad signal and encouraging EMT
[72]. Circ_0089153 was highly expressed in BC tissues. It
increased the expression of E2F6 by serving as the miR-
2467-3p sponge to stimulate BC cell growth, migration,
invasion, and EMT [73]. Circ_0001955 was also found to
be up-regulated in breast cancer cells. It increased the gen-
eration of GLUT1 by enhancing miR-1299 and supported
angiogenesis, migration, invasion, survival, and glycolytic
metabolism in BC cells [74].

Elevated circCD44 expression in BC cells was negatively
correlated with patient prognosis [75]. As a competitive
endogenous RNA, circCD44 inhibited miR-502-5p-medi-
ated KRAS degradation by directly attaching to miR-502-5p.
Additionally, it could also bind to IGF2BP2 in TNBCs to
maintain the stability of Myc mRNA, thus promoting the
breast cancer cell’s spread, invasion and tumorigenesis.
CircHIPK3 was highly expressed in BC cytoplasm, which
specifically targeted miR-326 [76]. Down-regulation of

@ Springer

circHIPK3 dramatically reduced BC cell proliferation,
migration, invasion, and EMT. Endogenous expression of
miR-326 partly counteracted the impacts of circHIPK3 on
apoptosis and EMT-related proteins.

By targeting miR-326, circ_0000511 controlled the
expression of TAZ in BC cells, thus promoting the expan-
sion, migration, and invasion of BC, while inhibiting BC cell
death [77]. Circ_0000518 could adsorb endogenous miR-
1225-3p and block its biological activity. MiR-1225-3p was
able to increase the expression of SOX4 mRNA, thereby
promoting the growth, infiltration, and migration of BC cells
[78].

CircRNA is involved in chemotherapy resistance

CircRNAs were found to be expressed in chemotherapy-
resistant breast cancer, suggesting that circRNAs may be
involved in promoting or reversing chemotherapy resist-
ance in BC cells. Medication resistance-associated circR-
NAs are promising diagnostic and therapeutic indicators that
may improve the clinical management of BC by boosting
chemotherapy sensitivity, predicting the efficacy of chemo-
therapeutic agents in resistant populations, and so on. The
most commonly reported drugs associated with circRNAs in
recent chemotherapy for BC patients are adriamycin (ADM),
tamoxifen (TAM), and paclitaxel (PTX).

BC cells that exhibited resistance to ADM displayed
a robust expression of circ_0001667 [79]. The target of
circ_0001667, miR-4458, had decreased levels in ADM-
resistant carcinoma tissues and cells. Knockdown of
circ_0001667 reduced the production of NCOA3 by releas-
ing miR-4458, resulting in a significant decrease in the
growth, migration, invasion, and ADM resistance of MCF-7/
ADM and MDA-MB-231—/— ADM cells. Circ_0092276 up-
regulated ATG7 expression by adsorbing miR-384, thereby
enhancing the autophagy of BC cells, augmenting the
resistance of MCF-7 and MDA-MB-468 cells to adriamy-
cin (ADM), and preventing apoptosis [80]. In patients with
TNBC, elevated circUBE2D?2 expression was strongly corre-
lated with progressed TNM staging, lymph node metastases,
and worsened prognosis [81]. CircUBE2D2 could protect
CDCA3 by working as a miR-512-3p sponge to acceler-
ate the development of BC and adriamycin resistance. The
chemo tolerance to ADM in BC cells was decreased by cir-
cUBE2D2 knockdown, which also inhibited cell growth,
migration, and invasion.

In TAM-resistant BC cells, the expression of
circ_0025202 was dramatically reduced [82]. Circ_0025202
could function as a sponge for miR-182-5p, hindering cell
proliferation, colony formation, and migration, while also
enhancing cell apoptosis and susceptibility to tamoxifen.
It could also further stimulate FOXO3a, the direct target
gene of miR-182-5p. Meanwhile, circ_0025202 could also
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target miR-197-3p [83]. Overexpression of miR-197-3p
enhanced TAM resistance and promoted the proliferation
of BC cells. Circ_0025202 targeted miR-197-3p, thereby
enhancing HIPK3 expression, and diminishing TAM resist-
ance and tumorigenesis in BC cells. Both in TAM-resistant
breast cancer cells and their exosomes, circUBE2D2 was
significantly up-regulated [84]. By adsorbing miR-200a-3p,
exosome-mediated circUBE2D2 induced tamoxifen resist-
ance in breast cancer cells.

Circ_0006528 was highly expressed in PTX-resistant
breast cancer tissues and cells, which directly targeted miR-
1299 and increased CDKS8 expression by sponging miR-1299
to promote the proliferation, migration and invasion of PTX-
resistant breast cancer cells [85]. Silencing circHIPK3 led to
paclitaxel-resistant BC cells more susceptible to treatment
through the alteration of HK2 via miR-1286 [86]. In PTX-
resistant BC tissues and cells, circHIPK3 expression was in
a high level. CircHIPK3 specifically targeted miR-1286 to
increase the expression of HK2, which therefore aided in the
formation of BC tumors and decreased the susceptibility of
BC cells to PTX. LeT-7A-5P/DUSP7 axis was the mecha-
nism through which circABCB10 increased PTX resistance
in breast cancer [87]. CircABCB10 knockdown increased
PTX susceptibility and death while preventing invasion and
autophagy in PTX-resistant BC cells. CircRNF111 levels
were also elevated in paclitaxel-resistant BC tissues and
cells [88]. CircRNF111 boosted the production of E2F3 by
directly aiming at miR-140-5p to induce PTX resistance in
breast cancer. Silencing circRNF111BC resulted in a sig-
nificant decrease in PTX resistance, cell survival, invasion,
colony formation, and glycolysis in BC cells.

The miR-153-3p/ANLN axis was controlled by circ-
MMP11 to influence lapatinib resistance in breast cancer
cells [89]. CircMMP11 increased the production of ANLN
by functioning as a miR-153-3p sponge, causing BC cells
more resistance to lapatinib. Knockdown of circMMP11
showed an increased sensitivity to lapatinib, which inhibited
the survival, motility and invasion of breast cancer cells, as
well as induced their apoptosis. In monastrol-resistant cell
lines, circ_0007874 expression levels were down-regulated.
Circ_0007874 controlled the TRAF4/Eg5 axis by acting on
the Eg5 protein and preventing TRAF4 from interacting with
the Eg5 gene [90], thereby reducing BC cell activity and
enhancing monastrol-induced cytotoxicity.

Potential of circRNAs as diagnostic
and prognostic markers

Prognostic assessment plays a crucial role in prolonging the
survival rate of cancer patients. Multiple studies have sug-
gested that circRNAs might be involved in a variety of breast
cancer diseases. Circular RNAs have thus drawn further

consideration as potential prognostic indicators for breast
cancer [91]. CircRNAs are very common and extremely
durable molecules that express themselves in particular ways
depending on the stage of cell, tissue, and development. Cir-
cRNAs are well conserved across species, and resistant to
RNaseR action [14]. Therefore, circRNAs have the potential
to be utilized as cancer biomarkers because of their distinc-
tive metabolic characteristics.

CircRNAs up-regulated in BC and their diagnostic
and therapeutic values in BC

Breast tumors exhibit a differential expression of circRNAs.
Some circRNAs have been found to be highly expressed in
BC and be capable of promoting the development of BC,
suggesting that they may one day be served as prognostic
indicators and therapeutic targets for BC. For instance,
enhanced production of circ_0103552 in BC tissue samples
is associated with poor prognosis in BC patients [92]. The
results of loss-of-function study on MCF7 cells and gain-of-
function experiments on MDA-MB-231 cells revealed that
the survival probability of MCF7 cell line was considerably
reduced after silencing circ_0103552. Circ_0103552 greatly
increased cell viability and metastasis of MDA-MB-231
cells, while decreased their apoptosis by sponging miR-
1236. Silencing circUBR1 in BC hindered the proliferation
and metastasis of BC cells, triggered apoptosis in vitro, and
impeded the expansion of BC cancer in vivo [12]. By con-
trolling TAZ expression, circ_0000511 promoted the expan-
sion, migration, and invasion of BC cells, while inhibiting
BC cell autophagy [77]. In BC patients, circCDYL expres-
sion levels in serum and tissues were markedly up-regulated,
and this up-regulation was closely correlated with medical
tumor staging, metastasis, and patient survival. Through
adsorbing miR-1275, circCDYL controlled the production
of ATG7 and ULKI1, and then affected BC cell autophagy
and proliferation [93]. BC patients with high circ_0069094
expression appeared a poor prognosis. Circ_0069094, as a
suppressor of miR-59, increased the expression of HK?2 to
promote glycolysis. The increased rate of glycolysis altered
the tumor microenvironment and enhanced the aggressive-
ness of cancer cells [94]. CircYY1 was expressed at an
increased level in BC tissues and cells, and individuals with
increased circYY1 expression had a poor prognosis. By
adsorbing miR769-3p, circYY1 increased the production of
the oncogene YY1 to support tumorigenesis and glycolysis
in BC cells [95]. Therefore, up-regulation of all circRNAs
mentioned heretofore, including circUBR1, circ_0000511,
circCDYL, circ_0069094, and circYY1 can be used as prog-
nostic indicators and therapeutic targets for BC.

Increased tumor size, lymph node spread, advanced
TNM staging, aggressiveness of tumors, and poor progno-
sis were all substantially correlated with elevated levels of
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circUBAP2 [96]. CircUBAP2 could increase the production
of the carcinogen MTA1 by absorbing miRNA-661, promot-
ing BC cell migration and expansion. The expression of
circSEPT9 was higher in BC tissues than that in normal
ones. This finding was positively correlated with a severe
disease stage and a poor prognosis [97]. Knockdown of circ-
SEPT9 had a profound impact on the spread, migration, and
invasion of BC cells, causing BC cell death and autophagy,
and preventing tumor growth and spread in vivo. E2F1 and
EIF4A3 promoted BC malignancy and progression via the
circSEPT9/miR-637/LIF axis.

In BC tissues and cell lines, circGNB1 was substantially
expressed, and its expression was strongly linked with tumor
volume size and TNM phase [98]. To facilitate the develop-
ment of BC cells, circGNB1 elevated the production of the
oncogene protein IGF1R by targeting miR-141-5p. Further-
more, a strong correlation was observed between circIFI30
and poor prognoses in BC tissues and cell lines. It might
function as an absorbent for miR-520b-3p to increase the
level of CD44 and hasten the EMT of BC cells and the emer-
gence of an aggressive phenotype [99]. KIF4A has been
shown to be a promising indicator of prognosis and treat-
ment targets for cancer. CircKIF4A was highly expressed
in BC and played a regulatory role in controlling BC pro-
gression by controlling KIF4A production through adsorb-
ing miR-375 [100]. Therefore, circUBAP2, circSEPT9,
circGNBI1, circIFI30, and circKIF4A are all excellent can-
didates for targeted therapies and diagnostic and prognostic
biomarkers for BC patients.

CircRNAs down-regulated in BC and their values
in the treatment of BC

Some circRNAs are down-regulated in BC and prevent
breast cancer from growing and progressing, suggesting
that these circRNAs could be new BC therapeutic agents.
For instance, BC patients with low circDDX17 expression
usually had poor long-term survival [61]. By sponging
miR-605, it altered the cell cyclization factors (CDK1 and
P21) to reduce BC cell proliferation and increase apopto-
sis. By increasing the production of ubiquitin-specific pro-
tease 4 (USP4) through the absorption of miR-553 [101],
circBMPR2 prevented the evolution of BC and TAM resist-
ance. BC patients with decreased DACH1 expression had
a poor survival rate [71]. By functioning as the sponge for
miR-5480, circ_0047604 specifically targeted DACH1 in
BC, thus preventing cancer cell proliferation and migration.
Therefore, the down-regulation of circDDX17, circBMPR2,
and circ_0047604 can be employed as possible prognostic
indicators for BC while they could also be investigated as
new treatment medicines for BC.

CircNR3C2 was considerably decreased in BC and
showed an inverse linkage with the spread and death of
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invasive breast cancer [70]. By sponging miR-513A-3p,
circNR3C2 increased HRD1 production, which in turn pre-
vented migration, invasion and EMT progression of breast
cancer cells. In the meantime, it could generalize Vimen-
tin in breast cancer and cause its degradation through the
proteasome, thereby impeding the progression of BC. The
expression of circ_0006220 was significantly reduced in
BC [102]. It was a miR-197-5p absorbent and effectively
controlled CDH19 expression, thereby inhibiting the devel-
opment of BC development. Consequently, circPTK2, circ-
NR3C2, and circ_0006220 are considered to be promising
biomarkers for the diagnosis and therapy of BC.

Although numerous circRNAs possess potential for
BC diagnosis and treatment, how to utilize them clinically
remains unclear, and still needs further research.

Summary and prospects

Because of their distinctive characteristics, circRNAs have
garnered a lot of interest and have recently emerged as a
new research hotspot. CircRNAs are important regulators
of many physiological and pathological processes. They
are uniquely expressed in tissues, and are expressed in dif-
ferent ways in both tumor and non-tumor tissues. Due to
their abundance in bloodstream fluid, saliva, and exosomes,
circRNAs can be used as potential diagnostic or predictive
biomarkers for diseases, particularly in the emergence, pro-
gression, and prognosis of malignant tumors [103]. CircR-
NAs are now new options for the early identification of BC
and development of prognostic indicators, owing to their
aberrant expression in BC and high specificity and sensitiv-
ity in detection.

Despite the progress made in the field of circRNA, there
are still numerous issues that require further investigation.
Our current knowledge of circRNA is still relatively shal-
low compared to coding RNA, miRNAs, and IncRNAs.
The biological function of most circRNAs in physiological
and pathological processes and how to apply them clini-
cally still need further research. Additionally, there is still
a lack of knowledge regarding the regulatory processes and
functions of BC circRNA-miRNA-mRNA regulatory sys-
tem. Considering that there are multiple subtypes of breast
cancer, each with different clinical treatments and disease
prognosis, exploring the distinctively expressed circRNAs of
each subtype and targeting them will undoubtedly become a
hotspot of research in the diagnosis, treatment and prognosis
of breast cancer. Target investigation and early mechanism
validation are the main areas of concern in current research.
Therefore, it will be important to focus on other mecha-
nisms in-depth, combine laboratory and clinical research,
and endeavor to translate experimental findings into clini-
cal application and practice in addition to the exploration
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and preliminary mechanism verification of circRNA in the
future.
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