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Abstract
Background In the present study, we examine the prevalence of phylogenetic groups, O-serogroups, adhesin genes, antimi-
crobial resistance, the level of gene expression associated with biofilm formation, and the presence of extended-spectrum 
beta-lactamase (ESBL) in UPEC strains isolated from both pediatric and adult patients.
Methods In this cross-sectional study, 156 UPEC isolates were collected from UTI patients. ESBL-producing isolates were 
detected using the double-disc synergy (DDS) method, and biofilm formation was assessed through a microplate assay. The 
presence of O-serogroups, adhesion factors and resistance genes, including ESBLs and PMQR genes, was detected by PCR, 
and isolates were categorized into phylogenetic groups using multiplex PCR. Additionally, the quantitative real-time PCR 
method was also used to determine the expression level of genes related to biofilm.
Results During the study period, 50.6% (79/156) of the samples were obtained from children, and 49.4% (77/156) were from 
adults. The highest rate of resistance was to NA (91.7%), while FM (10.9%) had the lowest rate of antibiotic resistance. In 
addition, 67.9% (106/156) of UPEC isolates were ESBL producers. Most of UPEC isolates belonged to phylogenetic group 
 B2 (37.1%). This study revealed that blaCTX-M and qnrS are widely distributed among UPEC isolates. The mean expression 
levels of fimA genes were significantly higher in non-biofilm producers than in biofilm producers (p < 0.01).
Conclusions The high antibiotic resistance rates in this study highlight the significance of local resistance monitoring and 
investigating underlying mechanisms. Our findings indicate the dominance of phylogroup  B2 and group D as the prevailing 
phylogenetic groups. Consequently, it is imperative to investigate the epidemiological aspects and characterize UPEC isolates 
across diverse regions and time frames.
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AST  Antimicrobial susceptibility testing
CLSI  Clinical Laboratory Standards Institute
OD  Optical density
ESBL  Extended-spectrum beta-lactamase
DDS  Double-disc synergy
PMQR  Plasmid-Mediated Quinolone Resistance
ARGs  Antimicrobial resistance genes

Introduction

Uropathogenic Escherichia coli (UPEC) is the predomi-
nant cause of urinary tract infections (UTIs) and a com-
mon hospital opportunistic pathogen. UPEC has become 
one of the most challenging therapeutic problems due to the 
acquisition of plasmids encoding antibiotic resistance genes 
to β-lactams and quinolones [1, 2]. β-lactams and fluoro-
quinolones are extensively used to treat UTIs due to their 
efficacy, oral bioavailability, wide spectrum of action, and 
patient compliance.

However, the prevalence of multidrug-resistant (MDR) 
microorganisms has hindered the use of these antibiotics 
in recent decades [1, 3]. ESBL genes have also been dis-
covered on a pathogen isolate's special plasmids, which 
encode plasmid-mediated quinolone resistance (PMQR) 
factors, including qnr, aac (6′)-Ib-cr, and qepA. Qnr pro-
teins bind to bacterial DNA gyrase and topoisomerase IV to 
protect them from quinolones. Bacteria have qnr genes A, 
B, C, D, S, E, and VC. aac (6’)-Ib-cr and drug effluxes such 
qepA and oqxAB, are other PMQR determinants [3]. Mobile 
genetic elements such as conjugative plasmids, transposons, 
insertion sequences, and genomic islands can transfer anti-
microbial resistance genes (ARGs) across E. coli strains. 
Recombination in E. coli strains is moderately caused by 
these components. However, E. coli populations are clonal 
and can be categorized into various phylogenetic groups [4, 
5]. Phylotypes A, B1, B2, D, C, E, F, G, and the Escheri-
chia cryptic clade I can be assigned to E. coli based on the 
presence or absence of four genetic sequences: chuA, yjaA, 
TspE4, and arpA [6]. E. coli strains are also classified by 
serological typing of their H (flagellar), O (lipopolysaccha-
ride), and sometimes K (capsular) surface antigens. O1, O2, 
O4, O6, O7, O8, O15, O16, O18, O25, and O75 O-antigen 
types are typically expressed in UPEC clones [7].

Biofilm formation is a hallmark of opportunistic patho-
gens like UPEC. Bacterial cells adhered to biotic or abiotic 
surfaces form a biofilm. UPEC's biofilm mode produces 
many virulence factors (VFs) that aid biofilm cell adhesion 
to biotic or abiotic surfaces [8]. UPEC strains have evolved 
multiple fimbrial adhesins that assist them in colonizing the 
urinary tract [9]. Type 1 fimbriae consist of a major protein, 
FimA, and ancillary proteins, FimF, FimG, and the adhesin 
FimH, all of which are encoded by the fim gene cluster [10]. 

S and P fimbriae are expressed by the sfa operon and the 
pap gene cluster, which includes 11 genes (papA to papK). 
In conclusion, type 1 fimbriae cause UTIs by invading host 
cells, while P and S fimbriae facilitate infection [11]. Over-
all, the existence and expression levels of genes associated 
with biofilm formation determine the potential for biofilm 
formation.

Several studies in Iran and other countries have exam-
ined different characteristics in UPEC strains. Nevertheless, 
there has been a lack of comprehensive research investigat-
ing bacterial characteristics, including antibiotic resistance 
patterns, the distribution of β-lactamase and PMQR genes, 
phylogenetic groups, adhesion genes, O-serogroups, bio-
film formation capacity, and biofilm-related gene expres-
sion levels in UPEC isolates from both children and adults 
with UTIs in northern Iran. This study fills a critical gap in 
research and illuminates UPEC-induced UTIs in this region 
and population.

Materials and methods

Study design and bacterial isolation

The study included 156 UPEC strains obtained from urine 
samples from 77 adults and 79 children who were admit-
ted to hospitals affiliated with Babol University of Medical 
Sciences, north of Iran, during the period 2021–2022 [12].

The identification of the strains was accomplished by 
observing their colony morphology on eosin methylene blue 
(EMB) agar plates (Merck, Germany). The verification of 
lactose-fermenting colonies was performed through stand-
ard microbiological and biochemical tests, such as MR-VP, 
citrate, urease, nitrate reduction, motility at 37 °C, indole 
production, and gas production. Subsequently, a polymer-
ase chain reaction (PCR) detection based on the uid gene 
for β-glucuronidase of E. coli was conducted to confirm the 
species [13]. Confirmed E. coli isolates were inoculated into 
brain heart infusion (BHI) broth containing 20% glycerol at 
37 °C for 24 h, then stored at − 80 °C until further use.

Antimicrobial susceptibility testing (AST)

Antimicrobial susceptibility testing was conducted using the 
Kirby-Bauer disc diffusion method on Mueller–Hinton agar 
(Merck, Germany) following the guidelines established by 
the Clinical Laboratory Standards Institute (CLSI) [14]. The 
16 antimicrobial drugs tested were: amoxicillin/clavulanic 
acid (AMC, 20/10 µg), ceftazidime (CAZ, 30 µg), cefixime 
(CFM, 5 µg), meropenem (MEN, 10 µg), trimethoprim-
sulfamethoxazole (SXT, 1.25/23.75 µg), ciprofloxacin (CP, 
5 µg), ofloxacin (OFX, 5 µg), nalidixic acid (NA, 30 µg), 
norfloxacin (NOR, 10 µg), nitrofurantoin (FM, 300 µg), 
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gentamicin (GM, 10 µg), amikacin (AN, 30 µg), cefazolin 
(CZ, 30 µg), ceftriaxone (CRO, 30 µg), cefotaxim (CTX, 
30 µg), and ampicillin-sulbactam (SAM, 20 µg) (Padtan Teb, 
Iran). The resistance score (RS) was determined based on 
the number of antibiotics to which an isolate demonstrated 
resistance [15]. Additionally, isolates demonstrating resist-
ance to at least one agent in at least three antimicrobial cat-
egories were classified as MDR [16].

Detection of ESBL‑producing E. coli

To detect ESBL production, ceftazidime (30 µg/mL) and 
cefotaxime (30 µg/mL) were used both with and without 
clavulanic acid (10 µg/mL). A positive result for ESBL 
production was identified as an increase of 5 mm or more 
in the zone diameter when clavulanic acid was present [9]. 
E. coli ATCC 25922 and Klebsiella pneumoniae ATCC 
700603 were used as negative and positive control strains, 
respectively.

Biofilm formation assay

Biofilm formation by UPEC strains was tested using the 
microtiter plate assay as previously described [17]. The 
optical density (OD) of stained adherent biofilm was meas-
ured using an ELISA autoreader (Bio-Rad, USA) at a wave-
length of 570 nm. The experiment was performed in trip-
licate and repeated three times. The data were interpreted 
based on the criteria proposed by Stepanović et al. [17].

Detection of UPEC serogroups, VFs, and antibiotic 
resistance genes

Genomic DNA was extracted from fresh colonies as 
described previously [18]. The purity and concentration 
of the isolated DNA were determined using a NanoDrop 
spectrophotometer (Thermo Scientific Wilmington, USA). 
Isolates were screened for the presence of O-serogroups (O1, 
O15, O16, and O25) and VFs, including fimH, fimA, pap, 
and sfa genes. Moreover, isolates harboring resistance deter-
minants, including ESBLs (blaTEM, blaSHV, and blaCTX-M) 
and PMQR genes (qnrA, qnrB, and qnrS) were detected by 
PCR.

PCR amplification was carried out using a 12 μL mixture, 
which included 5 μL of pre-made MasterMix (AMPLIQON, 
Denmark), 5.2 μL of DNase-free distilled water, 0.3 μL of 
each primer (at a concentration of 10 pmol/μL), and 1.2 μL 
of the DNA template. The selection of target genes and the 
nucleotide sequences of the oligonucleotide primers adhered 
to previously described protocols [19]. The PCR thermal 
conditions are detailed in Table S1. The resulting PCR prod-
ucts were resolved on a 1.5% agarose gel prepared in 1X 
TBE (Tris/Borate/EDTA) buffer, and then visualized under 

ultraviolet light following staining with SafeStain loading 
dye (CinnaGen Co., Iran). Moreover, sequences of the O1, 
O15, O16, O25 serotypes, and the qnrB and qnrS genes were 
deposited in the NCBI database with the accession num-
bers OQ469818, OR826277, OQ469820, OQ469819, and 
OQ469817, along with OR826276 (https:// www. ncbi. nlm. 
nih. gov/ nucco re/ OQ469 818.1, https:// www. ncbi. nlm. nih. 
gov/ nucco re/ OR826 277.1, https:// www. ncbi. nlm. nih. gov/ 
nucco re/ OQ469 820 , https:// www. ncbi. nlm. nih. gov/ nucco 
re/ OQ469 819, and https:// www. ncbi. nlm. nih. gov/ nucco re/ 
OQ469 817, as well as https:// www. ncbi. nlm. nih. gov/ nucco 
re/ OR826 276.1).

Phylotyping of UPEC by quadruplex PCR

All UPEC isolates were assigned to phylogenetic groups 
according to the new method of Clermont et al. [6]. Mul-
tiplex PCR was performed using 12 μl reactions contain-
ing 5 μL of MasterMix (AMPLIQON, Denmark), 4.2 μL of 
DNase-free distilled water, 0.2 μL of each primer (10 pmol/
μL), and 1.2 μL of DNA template. Gene amplification was 
achieved using the following thermal cycling protocol: an 
initial denaturation step of 5 min at 94 °C, followed by 30 
cycles, each comprising 30 s at 94 °C, 30 s at 57 °C, and 30 s 
at 72 °C. The process was concluded with a final extension 
step of 5 min at 72 °C. Subsequently, the PCR products were 
subjected to electrophoresis on a 1.5% agarose gel that was 
stained with SafeStain loading dye (CinnaGen Co., Iran). 
Visualization was achieved by exposing the gel to ultraviolet 
light.

Quantitative real‑time PCR (qRT‑PCR) assay

QRT-PCR was used to examine the transcriptional 
expression of genes associated with type I fimbriae 
(fimA and fimH) in UPEC isolates positive for both 
ESBL and  blaCTX-M, with or without biofilm forma-
tion. Therefore, these isolates underwent RNA  extrac-
tion  and  genomic  DNA  removal  using  an  RNe-
asy Mini kit (Viragene Akam Co.). Each RNA extract was 
adjusted to a final concentration of 150 ng/μL. Following 
the manufacturer's instructions, the RNA was reverse-tran-
scribed into cDNA using a High Capacity cDNA Reverse 
Transcription Kit for single-stranded cDNA synthesis 
(Parstous Co.), and all the cDNAs were stored at -20 °C. 
The real-time PCR amplification reaction was prepared in a 
total volume of 25 µL, comprising 2.5 µL of cDNA, 12.5 µL 
of RealQ Plus Master Mix Green from Ampliqon in Den-
mark, 1 µL each of forward and reverse primers (each at a 
concentration of 10 nM), and RNase- and DNase-free water 
adjusted to a final volume of 25 µL. The primer sequences 
used for this analysis can be found in Table S2. To nor-
malize gene expression, the d-glyceraldehyde-3-phosphate 

https://www.ncbi.nlm.nih.gov/nuccore/OQ469818.1
https://www.ncbi.nlm.nih.gov/nuccore/OQ469818.1
https://www.ncbi.nlm.nih.gov/nuccore/OR826277.1
https://www.ncbi.nlm.nih.gov/nuccore/OR826277.1
https://www.ncbi.nlm.nih.gov/nuccore/OQ469820
https://www.ncbi.nlm.nih.gov/nuccore/OQ469820
https://www.ncbi.nlm.nih.gov/nuccore/OQ469819
https://www.ncbi.nlm.nih.gov/nuccore/OQ469819
https://www.ncbi.nlm.nih.gov/nuccore/OQ469817
https://www.ncbi.nlm.nih.gov/nuccore/OQ469817
https://www.ncbi.nlm.nih.gov/nuccore/OR826276.1
https://www.ncbi.nlm.nih.gov/nuccore/OR826276.1
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dehydrogenase A (gapA) gene was used as an internal con-
trol. Real-Time PCR was performed as follows: one cycle 
of initial denaturation at 95 °C for 15 min, followed by 40 
cycles of denaturation at 95 °C for 15 s, annealing at 56, 51, 
and 49 °C for fimA, fimH, and gapA, respectively, for 30 s, 
and extension at 72 °C for 30 s. Expression levels of each 
gene in the clinical strains are presented as fold changes 
compared to transcript levels in E. coli ATCC 25922. These 
changes were determined using the  2-ΔΔCt method.

Statistical analysis

Statistical analysis was conducted using IBM Corp.'s 
SPSS™ software, version 16, located in the United States. 
Categorical variables were presented as frequencies and per-
centages. To assess significant differences, Fisher's exact test 
or the Chi-square (χ2) test was employed. A P value less 
than 0.05 was considered indicative of statistical signifi-
cance. Continuous variables, such as  antibiotic resistance 
scores, were compared between groups using one-way analy-
sis of variance (ANOVA), followed by pairwise comparisons 
conducted using the Gabriel post hoc test.

Results

Demographic information of the participants

During the study period, 50.6% (79/156) and 49.4% (77/156) 
of UPEC isolates were obtained from children and adults, 
respectively. Moreover, 74.4% (116/156) and 25.6% (40/156) 
of UPEC isolates were obtained from female and male 
patients, respectively. All UPEC strains were isolated from 
inpatients diagnosed with UTI. The age range of the study 
group was from less than 1 year to 80 years old.

Phenotypic antimicrobial resistance of UPEC isolates

The antibiotic susceptibility pattern revealed varying fre-
quencies of antibiotic resistance among the 156 UPEC iso-
lates. Specifically, 99.4% (155/156) of the isolates exhibited 
resistance to at least one or more antibiotics. Notably, the 
highest resistance rate was observed against NA (91.7%), 
followed by SXT (74.4%). In contrast, FM (10.9%) and 
MEN (14.1%) exhibited the lowest rates of antibiotic resist-
ance. Based on the study by Magiorakos et al. in 2012, the 
prevalence of MDR isolates was 88.5% (138/156). The total 
resistance rates of UPEC strains to quinolone antibiotics 
were as follows: NA (91.7%, 143/156), CP (66%, 103/156), 
OFX (48.7%, 76/156) and NOR (59%, 92/156). Based on 

ESBL screening test, 67.9% (106/156) of UPEC isolates 
were ESBL producers.

Further analysis revealed that all ESBL-positive strains 
(106 isolates) were resistant to CAZ and CTX, followed by 
NA (91.5%, 97/106), while MEN (4.7%, 5/106) and FM 
(7.5%, 8/106) were the most effective antibiotics against 
ESBL-positive isolates.

Out of non-ESBL isolates (50 isolates), the highest resist-
ance rate was to NA (92%, 46/50), followed by SXT (78%, 
39/50), while the most effective antibiotic was CAZ (12%, 
6/50) and CTX (12%, 6/50). Furthermore, ESBL-producing 
isolates exhibited a higher resistance rate than non-ESBL-
producing isolates against CTX (100% vs. 12%, P < 0.001), 
CAZ (100% vs. 12%, P < 0.001), and CRO (56.6% vs. 38%, 
P < 0.001). While, among non-ESBL-producing isolates, the 
resistance rates to MEN (34% vs. 4.7%, P < 0.001), FM (18% 
vs. 7.5%, P = 0.05), and GM (34% vs. 13.2%, P = 0.002) were 
significantly higher compared to ESBL-producing isolates, 
which is a rather strange finding. The complete antibiotic 
resistance patterns for both ESBL-negative and positive iso-
lates are shown in Fig. 1.

Presence of β‑lactamase genes

Out of 156 UPEC isolates, blaCTX-M (72.4%) was the most 
predominant gene, followed by blaTEM (43.6%) and blaSHV 
(7%). Additionally, 2.6% (4/156) of isolates had three ESBL 
genes, while 18.6% (29/156) had both blaCTX-M and blaTEM, 
11.5% (18/156) had both blaCTX-M and blaSHV, and 2.6% 
(4/156) had both blaTEM and blaSHV simultaneously. Moreo-
ver, among non-ESBL isolates, the frequency of the blaSHV 
gene was significantly higher than in ESBL isolates (7% vs 
4%, P < 0.02).

Presence of PMQR genes

PCR amplification of the PMQR genes revealed that 42.9% 
(67/156) of the isolates harbored at least one PMQR gene, 
with the following distributions: 37.2% (58/156) for the 
qnrS gene (38.7%; 41/106 ESBL-positive and 34%; 17/50 
ESBL-negative), and 10.3% (16/156) for qnrB (9.4%; 
10/106 ESBL-positive and 12%; 6/50 ESBL-negative). 
However, none of the isolates harbored the qnrA gene. Also, 
3.8% (n = 6/156) of isolates harbored both qnrB and qnrS 
simultaneously.

There was no significant relationship between the distri-
bution of qnrS and qnrB genes in ESBL-negative and posi-
tive isolates (P = 0.57 and P = 0.62). However, among ESBL-
positive isolates, the qnrS gene was found to be relatively 
more prevalent than in ESBL-negative isolates, while com-
pared to ESBL-positive isolates, the qnrB gene was detected 
to be relatively more common in ESBL-negative isolates 
(Fig. 1). moreover, the distribution of qnr genes among 
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UPEC isolates obtained from both adults and children is 
presented in Table 1. The proportion of qnrS and qnrB genes 
among adults compared to children was relatively high, but 
the differences were not statistically significant. Addition-
ally, Table 2 presents the relationship between resistance 
to quinolone antibiotics and the distribution of qnr genes.

Phylogenetic analysis

Based on the quadruplex PCR assay findings, a total of 137 
out of 156 UPEC isolates were assigned to 7 of the 8 phylo-
genetic groups, and the results are presented in Table 3. The 
majority of UPEC isolates belonged to phylogenetic group 
 B2, accounting for 37.1% of the total sample, followed by 
groups D, A, and E (12.8%), group F (6.4%), and  B1 (5.1%). 
Notably, none of the isolates tested positive for phylogenetic 
group C. Among the remaining isolates, 12.1% were found 
to be untypeable.

Following group  B2, phylogenetic groups A and D exhib-
ited a higher prevalence among the isolates from children, 
whereas in adults, following group  B2, groups E, A, and 
D were more commonly observed. However, no significant 

difference was noted between the two groups regarding phy-
logenetic distribution.

Moreover, except for phylogenetic group A and F, the 
proportion of  B2,  B1, D and E were more prevalent in ESBL-
producing isolates. However, the statistical analyses did not 
reveal any significant correlation between ESBL-producing 
isolates and phylogenetic groups.

Antimicrobials resistance according to phylogenetic 
group

Phylogenetic groups showed variations in terms of antibiotic 
susceptibility patterns. The most resistant phylogroup was 
phylogroup A (RS median 9; range 5–15), followed by phy-
logroup  B2 (RS median 8; range 2–14) and D (RS median 
9; range 2–11), while the most susceptible phylogroup was 
phylogroup  B1 (RS median = 6; range 0–8). Resistance to 
MEN and FM was not reported in phylogroup  B1. Moreo-
ver, the statistical analyses reveal a significance association 
between the phylogenetic groups and antibiotic resistance 
score (P = 0.032). The median RS decreased progressively 
from a high of 9 (RS mean: 8.9, range 5–15) for phylogroup 

Fig. 1  Antibiotic resistance profile, resistance genes, O-serogroups, 
biofilm formation of uropathogenic Escherichia coli isolates, sorted 
based on ESBL phenotype. AMC amoxicillin/clavulanic acid, CAZ 
ceftazidime, CFM cefixime, MEN meropenem, SXT trimethoprim-

sulfamethoxazole, CP ciprofloxacin, OFX ofloxacin, NA nalidixic 
acid, NOR norfloxacin, FM nitrofurantoin, GM gentamicin, AN Ami-
kacin, CRO ceftriaxone, CTX cefotaxim, SAM ampicillin-sulbactam
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 B2 isolates to a low of 6 (RS mean: 5.37, range, 2–9) for phy-
logroup B1 isolates. Also, based on Tables 4 and 5, among 
the adult isolates, phylogenetic groups A and  B2 had the 
highest RS, while in the children’s isolates, the highest RS 
was associated with phylogenetic groups A and D.

Β‑lactamase, PMQR, adhesion, and O‑serogroups 
genes according to phylogenetic group

The blaCTX-M gene was found to be more prevalent in phylo-
groups  B2 (75.9%) and E (75%). The presence of the blaTEM 

Table 1  Comparison of the adults and children isolates according to 
their resistance genes, O-serogroups, and phylogenetic groups

Variables Total Children 
N = 79
No (%)

Adults 
N = 77
No (%)

P value

Virulence factor genes
 pap 57 (36.5) 36 (45.6) 21 (27.3) 0.01
 sfa 49 (31.4) 32 (40.5) 17 (22.1) 0.01

O-serogroups
 O25 37 (23.7) 4 (5.1) 33 (42.9) <0.001      
 O16 9 (5.7) 4 (5.1) 5 (6.5) 0.74
 O1 9 (5.7) 9 (11.4) 0 0.003
 O15 1 (0.6) 1 (1.3) 0 1

ESBL genes
 blaCTX-M 113 (72.4) 53 (67.1) 60 (77.9) 0.13
 blaSHV 11 (7) 4 (5.1) 7 (9.1) 0.32
 blaTEM 68 (43.5) 45 (57) 23 (29.9) 0.001
 ESBL phenotypic 106 (67.9) 56 (70.9) 50 (64.9) 0.42

Plasmid-mediated quinolone resistance (PMQR) genes
 qnrA 0 0 0 –
 qnrB 16 (10.2) 7 (8.9) 9 (11.7) 0.56
 qnrS 58 (37.1) 24 (30.4) 34 (44.2) 0.07

Phylogenetic groups
 A 20 (12.8) 13 (16.5) 7 (9.1) 0.12
 B1 8 (5.1) 3 (3.8) 5 (6.5)
 B2 8 (37.1) 25 (31.6) 33 (42.9)
 D 20 (12.8) 13 (16.5) 7 (9.1)
 E 20 (12.8) 7 (8.9) 13 (16.9)
 F 1 (0.6) 4 (5.1) 6 (7.8)
 Unknown 10 (6.4) 13 (16.5) 6 (7.8)

Table 2  Distribution of qnr 
genes in relation with quinolone 
resistance

CP Ciprofloxacin, OFX Ofloxacin, NA Nalidixic acid, NOR Norfloxacin

Antibiotic Pattern qnrS-posi-
tive No. (%)

qnrS-nega-
tive No. (%)

P value qnrB-posi-
tive No. (%)

qnrB- nega-
tive No. (%)

P value

CP 103 (66) 42 (40.8) 61 (59.2) 0.22 12 (11.7) 91 (88.3) 0.58
OFX 76 (48.7) 27 (35.5) 49 (64.5) 0.74 8 (10.5) 68 (89.5) 1
NA 143 (91.7) 50 (35) 93 (65) 0.07 15 (10.5) 128 (89.5) 1
NOR 92 (59) 38 (41.3) 54 (58.7) 0.24 11 (12) 81 (88) 0.43

gene was significantly associated with phylogroup D com-
pared to other phylogroups (P = 0.007). In this regard, both 
adult and children isolates follow this pattern as well. qnrS 
and qnrB were more frequently found in phylogroups D and 
F, respectively. The carriage of qnrS and qnrB was not sig-
nificantly associated with different phylogroups.

Regarding the phylogroups, as shown in Table 3, the 
prevalence of pap was higher in phylogroups D (60%), 
followed by  B2 (37.9%), whereas the frequency of sfa was 
more prominent in phylogroup  B2 (48.3%) and F (30%). 
Moreover, isolates belonging to phylogroup  B2 carried 
the sfa gene more frequently than strains belonging to the 
other phylogroups (P= 0.031). Regarding the distribution of 
O-serogroups in different phylogroups, a significantly higher 
frequency of O25 was detected among members of  B2 than 
in other phylogroups (P < 0.001). Furthermore, O16, O1, 
and O15 were more frequent in  B1,  B2, and D phylogroups, 
respectively. However, Tables 4 and 5 show the serogroup 
distribution within the phylogroups of the UPEC strains iso-
lated from adults and children.

Association between biofilm formation 
with phylogenetic groups, O‑serogroups 
and resistance genes

The biofilm-producing strains were predominantly clustered 
in phylogenetic groups  B1 and  B2. On the other hand, the 
majority of the weak biofilm-formers and moderate biofilm-
formers strains belonged to phylogroup  B2 (Table 3). On 
the other hand, no statistically significant difference was 
observed between biofilm formation capacity and both phy-
logenetic groups and ESBL production (Fig. 2). Addition-
ally, Table 6 displays the relationship between antibiotic 
resistance patterns and biofilm formation, and Table 7 illus-
trates the connection of biofilm with VFs, O-serogroups, and 
resistance genes.

Expression levels of the genes involved in biofilm 
formation

To determine the expression levels of the genes involved in 
biofilm formation, we analyzed the expression level of each 
of the genes involved in biofilm formation in UPEC strains 
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Table 3  Distribution of resistance genes, O-serogroup and antibiotic resistance pattern with respect to the phylogenetic group in all patients

AMC amoxicillin/clavulanic acid, CAZ ceftazidime, CFM cefixime, MEN meropenem, SXT trimethoprim-sulfamethoxazole, CP ciprofloxacin, 
OFX ofloxacin, NA nalidixic acid, NOR norfloxacin, FM nitrofurantoin, GM gentamicin, AN amikacin, CRO ceftriaxone, CTX cefotaxim, SAM 
ampicillin-sulbactam

Variables Unknown 
n = 19
No (%)

F 
n = 10
No (%)

E 
n = 20
No (%)

A 
n = 20
No (%)

D 
n = 20
No (%)

B1 
n = 8
No (%)

B2 
n = 58
No (%)

P value

Virulence factor genes
 pap 8 (42.1) 3 (30) 7 (35) 5 (25) 12 (60) 0 22 (37.9) 0.08
 sfa 6 (31.6) 3 (30) 3 (15) 4 (20) 4 (20) 1 (12.5) 28 (48.3) 0.03
 fimA 17 (89.5) 8 (80) 14 (70) 17 (85) 16 (80) 6 (75) 47 (81) 0.87
 fimH 18 (94.7) 10 (100) 19 (95) 20 (100) 19 (95) 8 (100) 54 (93.1) 0.9

O-serogroups
 O25 2 (10.5) 0 4 (20) 0 3 (15) 1 (12.5) 27 (46.6) <0.001 
 O16 3 (15.8) 1 (10) 0 0 0 1 (13.5) 4 (6.9) 0.15
 O1 4 (21.1) 0 0 0 0 0 4 (6.9) 0.08
 O15 0 0 0 0 1 (5) 0 0 0.62

ESBL genes
 blaCTX-M 17 (89.5) 7 (70) 15 (75) 14 (70) 10 (50) 5 (62.5) 44 (75.9) 0.19
 blaSHV 0 0 2 (10) 2 (10) 2 (10) 1 (12.5) 4 (6.9) 0.7
 blaTEM 12 (63.2) 3 (30) 8 (40) 12 (60) 14 (70) 2 (25) 17 (29.3) 0.007
 ESBL phenotypic 12 (63.2) 5 (50) 15 (75) 12 (60) 15 (75) 6 (75) 40 (69) 0.76

Biofilm production
 Non adherent 5 (26.3) 4 (40) 10 (50) 9 (45) 6 (30) 2 (25) 19 (32.8) 0.8
 Weak 12 (63.2) 5 (50) 6 (30) 10 (50) 12 (60) 5 (62.5) 32 (55.2)
 Moderate 2 (10.5) 1 (10) 3 (15) 1 (5) 2 (10) 1 (12.5) 7 (12.1)
 Strong 0 0 1 (5) 0 0 0 0

Plasmid-mediated quinolone resistance (PMQR) genes
 qnrA 0 0 0 0 0 0 0 –
 qnrB 3 (15.8) 2 (20) 1 (5) 3 (15) 1 (5) 0 6 (10.3) 0.670
 qnrS 9 (47.4) 3 (30) 8 (40) 6 (30) 11 (55) 4 (50) 17 (29.3) 0.383

Antibiotic resistance
Penicillins + b-lactamase inhibitors
 AMC 8 (42.1) 8 (80) 6 (30) 8 (40) 9 (45) 3 (37.5) 26 (44.8) 0.47
 SAM 6 (31.6) 5 (50) 14 (70) 16 (80) 11 (55) 2 (25) 46 (79.3) 0.001

3rd and 4th generation cephalosporins
 CAZ 13 (68.4) 6 (60) 15 (75) 15 (75) 15 (75) 6 (75) 41 (70.7) 0.97
 CFM 6 (31.6) 5 (50) 5 (25) 11 (55) 8 (40) 3 (37.5) 31 (53.4) 0.27
 CTX 13 (68.4) 6 (60) 15 (75) 15 (75) 15 (75) 6 (75) 41 (70.7) 0.97
 CRO 8 (42.1) 3 (30) 9 (45) 11 (55) 12 (60) 1 (12.5) 34 (58.6) 0.14

Carbapenem
 MEN 2 (10.5) 1 (10) 4 (20) 2 (10) 2 (10) 0 11 (19) 0.32

Sulfonamides
 SXT 14 (73.7) 8 (80) 14 (70) 13 (65) 14 (70) 7 (87.5) 45 (77.6) 0.88

Quinolones
 CP 12 (63.2) 8 (80) 6 (30) 16 (80) 19 (95) 3 (37.5) 39 (67.2) <0.001
 OFX 8 (42.1) 5 (50) 5 (25) 9 (45) 9 (45) 2 (25) 38 (65.5) 0.03
 NA 17 (89.5) 9 (90) 17 (85) 20 (100) 17 (85) 6 (75) 56 (96.6) 0.07
 NOR 11 (57.9) 7 (70) 7 (35) 14 (70) 15 (75) 2 (25) 36 (62.1) 0.059

Nitrofurans
 FM 2 (10.5) 1 (10) 2 (10) 4 (20) 2 (10) 0 6 (10.3) 0.97

Amino-glycosides
 GM 5 (26.3) 2 (20) 3 (15) 7 (35) 2 (10) 1 (12.5) 11 (19) 0.77
 AN 5 (26.3) 1 (10) 4 (20) 6 (30) 2 (10) 1 (12.5) 14 (24.1) 0.81

Resistance score (mean, 
median, range)

7.57, 8, 2–13 7.70, 8, 2–11 6.75, 6.5, 0–12 8.9, 9, 5–15 8.05, 9, 2–11 5.37, 6, 2–9 8.15, 8, 2–14 0.03
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Table 4  Distribution of resistance genes, O-serogroup and antibiotic resistance pattern with respect to the phylogenetic group in adults

AMC amoxicillin/clavulanic acid, CAZ ceftazidime, CFM cefixime, MEN meropenem, SXT trimethoprim-sulfamethoxazole, CP ciprofloxacin, 
OFX ofloxacin, NA nalidixic acid, NOR norfloxacin, FM nitrofurantoin, GM gentamicin, AN amikacin, CRO ceftriaxone, CTX cefotaxim, SAM 
ampicillin-sulbactam

Variables Unknown 
n = 6
No (%)

F 
n = 6
No (%)

E 
n = 13
No (%)

A 
n = 7
No (%)

D 
n = 7
No (%)

B1 
n = 5
No (%)

B2 
n = 33
No (%)

P value

Virulence factor genes
 pap 2 (33.3) 1 (16.7) 4 (30.8) 0 4 (57.1) 0 10 (30.3) 0.21
 sfa 1 (16.7) 1 (16.7) 1 (7.7) 0 0 1 (20) 13 (39.4) 0.07
 fimA 5 (83.3) 6 (100) 9 (69.2) 5 (71.4) 5 (71.4) 4 (80) 25 (75.8) 0.63
 fimH 5 (83.3) 6 (100) 12 (92.3) 7 (100) 6 (85.7) 5 (100) 29 (87.9) 0.68

O-serogroups
 O25 2 (33.3) 0 3 (23.1) 0 3 (42.9) 1 (20) 24 (72.7) <0.001
 O16 0 1 (16.7) 0 0 0 1 (20) 3 (9.1) 0.52
 O1 0 0 0 0 0 0 0 –
 O15 0 0 0 0 0 0 0 –

ESBL genes
 blaCTX-M 6 (100) 4 (66.7) 10 (76.9) 5 (71.4) 5 (71.4) 3 (60) 27 (81.8) 0.71
 blaSHV 0 0 2 (15.4) 1 (14.3) 2 (28.6) 0 2 (6.1) 0.40

blaTEM 4 (66.7) 0 3 (23.1) 3 (42.9) 3 (42.9) 1 (20) 9 (27.3) 0.22
 ESBL phenotypic 3 (50) 4 (66.7) 10 (76.9) 2 (28.6) 4 (57.1) 4 (80) 23 (69.7) 0.37

Biofilm production
 Non adherent 1 (16.7) 2 (33.3) 7 (53.8) 4 (57.1) 4 (57.1) 1 (20) 14 (42.4) 0.73
 Weak 5 (83.3) 3 (50) 4 (30.8) 3 (42.9) 3 (42.9) 3 (60) 15 (45.5)
 Moderate 0 1 (16.7) 2 (15.4) 0 0 1 (20) 4 (12.1)
 Strong 0 0 0 0 0 0 0

Plasmid-mediated quinolone resistance (PMQR) genes
 qnrA 0 0 0 0 0 0 0 –
 qnrB 2 (33.3) 0 1 (7.7) 1 (14.3) 0 0 5 (15.2) 0.45
 qnrS 4 (66.7) 1 (16.7) 5 (38.5) 3 (42.9) 6 (85.7) 3 (60) 12 (36.4) 0.14

Antibiotic resistance
Penicillins + b-lactamase inhibitors
 AMC 2 (33.3) 4 (66.7) 5 (38.5) 3 (42.9) 3 (42.9) 1 (20) 13 (39.4) 0.83
 SAM 2 (33.3) 5 (83.3) 9 (69.2) 7 (100) 4 (57.1) 2 (40) 27 (81.8) 0.04

3rd and 4th generation cephalosporins
 CAZ 4 (66.7) 5 (83.3) 10 (76.9) 5 (71.4) 4 (57.1) 4 (80) 24 (72.7) 0.95
 CFM 3 (50) 4 (66.7) 3 (23.1) 4 (57.1) 3 (42.9) 2 (40) 18 (54.5) 0.53
 CTX 4 (66.7) 5 (83.3) 10 (76.9) 5 (71.4) 4 (57.1) 4 (80) 24 (72.7) 0.95
 CRO 3 (50) 3 (50) 5 (38.5) 6 (85.7) 4 (57.1) 1 (20) 27 (81.8) 0.02

Carbapenem
 MEN 1 (16.7) 1 (16.7) 4 (30.8) 2 (28.6) 2 (28.6) 0 11 (33.3) 0.77

Sulfonamides
 SXT 5 (83.3) 5 (83.3) 9 (69.2) 6 (85.7) 6 (85.7) 4 (80) 26 (78.8) 0.97

Quinolones
 CP 3 (50) 4 (66.7) 3 (23.1) 6 (85.7) 6 (85.7) 1 (20) 27 (81.8) 0.001
 OFX 2 (33.3) 4 (66.7) 3 (23.1) 5 (71.4) 5 (71.4) 1 (20) 26 (78.8) 0.006
 NA 4 (66.7) 5 (83.3) 10 (76.9) 7 (100) 4 (57.1) 3 (60) 31 (93.9) 0.09
 NOR 3 (50) 4 (66.7) 3 (23.1) 5 (71.4) 4 (57.1) 1 (20) 27 (81.8) 0.006

Nitrofurans
 FM 2 (33.3) 1 (16.7) 1 (7.7) 3 (42.9) 1 (14.3) 0 6 (18.2) 0.42

Aminoglycosides
 GM 2 (33.3) 1 (16.7) 3 (23.1) 5 (71.4) 1 (14.3) 1 (20) 9 (27.3) 0.24
 AN 0 0 2 (15.4) 3 (42.9) 0 0 6 (18.2) 0.16

Resistance score (mean, 
median, range)

7.16, 8, 2–13 7.83, 9, 2–11 6.30, 6, 0–12 10, 11, 5–15 7, 9, 2–11 4.80, 3, 2–9 8.87, 9, 2–14 0.039
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Table 5  Distribution of resistance genes, O-serogroup and antibiotic resistance pattern with respect to the phylogenetic group in Children

Variables Unknown 
n = 13
No (%)

F 
n = 4
No (%)

E 
n = 7
No (%)

A 
n = 13
No (%)

D 
n = 13
No (%)

B1 
n = 3
No (%)

B2 
n = 25
No (%)

P value

Virulence factor genes
pap 6 (46.2) 2 (50) 3 (42.9) 5 (38.5) 8 (61.5) 0 12 (48) 0.64
sfa 5 (38.5) 2 (50) 2 (28.6) 4 (30.8) 4 (30.8) 0 15 (60) 0.64
fimA 12 (92.3) 2 (50) 5 (71.4) 12 (92.3) 11 (84.6) 2 (66.7) 22 (88) 0.82
fimH 13 (100) 4 (100) 7 (100) 13 (100) 13 (100) 3 (100) 25 (100) 0.85
O-serogroups
O25 0 0 1 (14.3) 0 0 0 3 (12) 0.41
O16 3 (23.1) 0 0 0 0 0 1 (4) 0.09
O1 4 (30.8) 0 0 0 0 0 4 (16) 0.07
O15 0 0 0 0 1 (7.7) 0 0 0.53
ESBL genes
blaCTX-M 11 (84.6) 3 (75) 5 (71.4) 9 (69.2) 5 (38.5) 2 (66.7) 17 (68) 0.34
blaSHV 0 0 0 1 (7.7) 0 1 (33.3) 2 (8) 0.27
blaTEM 8 (61.5) 3 (75) 5 (71.4) 9 (69.2) 11 (84.6) 1 (33.3) 8 (32) 0.04
ESBL phenotypic 9 (69.2) 1 (25) 5 (71.4) 10 (76.9) 11 (84.6) 2 (66.7) 17 (68) 0.47
Biofilm production
Non adherent 4 (30.8) 2 (50) 3 (42.9) 5 (38.5) 2 (15.4) 1 (33.3) 5 (20) 0.56
Weak 7 (53.8) 2 (50) 2 (28.6) 7 (53.8) 9 (69.2) 2 (66.7) 17 (68)
Moderate 2 0 1 (14.3) 1 (7.7) 2 (15.4) 0 3 (12)
Strong 0 0 1 (14.3) 0 0 0 0
Plasmid-mediated quinolone resist-

ance (PMQR) genes
qnrA 0 0 0 0 0 0 0 –
qnrB 1 (7.7) 2 (50) 0 2 (15.4) 1 (7.7) 0 1 (4) 0.09
qnrS 5 (38.5) 2 (50) 3 (42.9) 3 (23.1) 5 (38.5) 1 (33.3) 5 (20) 0.72
Antibiotic resistance
Penicillins + b-lactamase inhibitors
AMC 6 (46.2) 4 (100) 1 (14.3) 5 (38.5) 6 (46.2) 2 (66.7) 13 (52) 0.19
SAM 4 (30.8) 0 5 (71.4) 9 (69.2) 7 (53.8) 0 19 (76) 0.006
3rd and 4th generation cephalosporins
CAZ 9 (69.2) 1 (25) 5 (71.4) 10 (76.9) 11 (84.6) 2 (62.7) 17 (68) 0.47
CFM 3 (23.1) 1 (25) 2 (28.6) 7 (53.8) 5 (38.5) 1 (33.3) 13 (52) 0.56
CTX 9 (69.2) 1 (25) 5 (71.4) 10 (76.9) 11 (84.6) 2 (66.7) 17 (68) 0.47
CRO 5 (38.5) 0 4 (57.1) 5 (38.5) 8 (61.5) 0 7 (28) 0.14
Carbapenem
MEN 1 (7.7) 0 0 0 0 0 0 0.53
Sulfonamides
SXT 9 (69.2) 3 (75) 5 (71.4) 7 (53.8) 8 (61.5) 3 (100) 19 (76) 0.71
Quinolones
CP 9 (69.2) 4 (100) 3 (42.9) 10 (76.9) 13 (100) 2 (66.7) 12 (48) 0.01
OFX 6 (46.2) 1 (25) 2 (28.6) 4 (30.8) 4 (30.8) 1 (33.3) 12 (48) 0.86
NA 13 (100) 4 (100) 7 (100) 13 (100) 13 (100) 3 (100) 25 (100) -
NOR 8 (61.5) 3 (75) 4 (57.1) 9 (69.2) 11 (84.6) 1 (33.3) 9 (36) 0.09
Nitrofurans
FM 0 0 1 (14.3) 1 (7.7) 1 (7.7) 0 0 0.55
Amino-glycosides
GM 3 (23.1) 1 (25) 0 2 (15.4) 1 (7.7) 0 2 (8) 0.62
AN 5 (38.5) 1 (25) 2 (28.6) 3 (23.1) 2 (15.4) 1 (33.3) 8 (32) 0.90
Resistance score (mean, median, 

range)
7.76, 8, 4–11 7.50, 7.5, 6–9 7.57, 7, 5–10 8.30, 8, 5–11 8.61, 9, 6–11 6.33, 6, 6–7 7.20, 7, 3–11 0.24

AMC amoxicillin/clavulanic acid, CAZ ceftazidime, CFM cefixime, MEN meropenem, SXT trimethoprim-sulfamethoxazole, CP ciprofloxacin, 
OFX ofloxacin, NA nalidixic acid, NOR norfloxacin, FM nitrofurantoin, GM gentamicin, AN amikacin, CRO ceftriaxone, CTX cefotaxim, SAM 
ampicillin-sulbactam
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compared with those in E. coli ATCC25922 strains by real-
time PCR. According to these results, the mean expression 
levels of fimA genes were significantly higher in non-biofilm 
producers than in biofilm producers (P < 0.01). A significant 
correlation was observed between the increased expression 
of the fimH gene and the ability to form biofilms (p=0.004) 
(Fig. 3).

Discussion

UPEC cause UTIs in both children and adults, but significant 
differences exist [20]. In children, particularly in infants and 
young children, UTIs are more prevalent due to anatomical 
and physiological factors. On the other hand, UTIs in adults, 
especially the elderly, may have different risk factors and 
clinical presentations, including underlying medical condi-
tions and compromised immune system [21].

This  is  the  first  study  comparing  UPEC  iso-
lates  from  children  and  adults  with  UTI  in  north-
ern Iran to examine factors such as antibiotic resistance p-
atterns,  distribution of β-lactamase and PMQR genes, 
phylogenetic groups, adhesion genes, O-serogroups, biofilm 
formation capacity, and gene expression levels (genes asso-
ciated with biofilm formation). In this study, a total of 156 
confirmed UPEC isolates were analyzed, with an approxi-
mately equal distribution between children (50.6%) and 
adults (49.4%).

UPEC isolates were more prevalent in women, account-
ing for a total of 116 cases, representing 74.4%. This finding 
is consistent with several previous studies [22–24] and sup-
ports the notion that sex plays a crucial role in the prevalence 
of UTIs, as reported by Rahn [25]. Furthermore, the preva-
lence of UPEC isolates in hospitalized patients with UTIs 
corresponds to the well-established understanding that UTIs 
are a frequent nosocomial infection [26].

Fig. 2  Biofilm formation, according to phylogenetic group and ESBL 
production. Results are expressed as scatter plots, where bars indicate 
median values with interquartile range. Each dot is the average from 

two independent experiments with eight replicates of each strain per 
experiment. P < 0.05, ANOVA + Tukey's multiple comparison post-
test
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The high prevalence of antibiotic resistance among UPEC 
isolates is a major concern in clinical practice, particularly in 
developing countries. This issue arises from factors such as 
the widespread availability of antibiotic drugs, overprescrib-
ing, and indiscriminate use of antibiotics [27]. In this study, 
the majority of the isolates exhibited significant resistance 
to a wide range of tested antibiotics, with 88.5% of strains 
demonstrating an MDR phenotype. This high prevalence of 

Table 6  Antibiotic resistance pattern based on biofilm formation

AMC amoxicillin/clavulanic acid, CAZ ceftazidime, CFM cefixime, 
MEN meropenem, SXT trimethoprim-sulfamethoxazole, CP Cip-
rofloxacin, OFX ofloxacin, NA nalidixic acid, NOR norfloxacin, FM 
nitrofurantoin, GM gentamicin, AN amikacin, CRO ceftriaxone, CTX 
cefotaxim, SAM ampicillin-sulbactam

Antibiotics Non-biofilm 
n = 56
No (%)

Weak 
n = 82
No (%)

Moderate 
n = 17
No (%)

P value

Penicillins + b-lactamase inhibitors
 AMC 31 (55.4) 33 (40.2) 5 (29.4) 0.089
 SAM 40 (71.4) 53 (64.6) 13 (76.5) 0.525

3rd and 4th generation cephalosporins
 CTX 38 (67.9) 59 (72) 14 (82.4) 0.507
 CAZ 38 (67.9) 59 (72) 14 (82.4) 0.507
 CFM 25 (44.6) 37 (45.1) 5 (29.4) 0.475
 CRO 33 (58.9) 34 (41.5) 11 (64.7) 0.060

Carbapenem
 MEN 10 (17.9) 8 (9.8) 4 (23.5) 0.206

Sulfonamides
 SXT 47 (83.9) 57 (69.5) 11 (64.7) 0.105

Quinolones
 CP 37 (66.1) 53 (64.6) 12 (70.6) 0.894
 OFX 19 (33.9) 34 (41.5) 6 (35.3) 0.649
 NA 52 (92.9) 73 (89) 17 (100) 0.304
 NOR 39 (69.6) 43 (52.4) 10 (58.8) 0.130

Nitrofurans
 FM 8 (14.3) 8 (9.8) 1 (5.9) 0.547

Aminoglycosides
 GM 11 (19.6) 16 (19.5) 4 (23.5) 0.928
 AN 14 (25) 11 (13.4) 8 (47.1) 0.006
 MDR 46 (82.1) 58 (70.7) 11 (64.7) 0.31

Resistance 
score (mean, 
median, 
range)

8.17, 8, 0–12 7.39, 8, 2–15 8.52, 9, 4–14 0.131

Table 7  Distribution of 
VFs, O-serogroups, PMQR 
genes in relation to biofilm 
formation

PMQR plasmid-mediated quinolone resistance, VFs virulence factors

Biofilm formation pap sfa O25 O16 O1 O15 qnrB qnrS

Non-biofilm 33.9 30.4 26.8 0 7.1 0 14.3 35.7
Weak 36.6 32.9 22 9.8 3.7 1.2 7.3 37.8
Moderate 41.2 23.5 23.5 5.9 11.8 0 11.8 41.2

MDR strains underscores their role as a leading causative 
agent of a significant health issue in our area, which aligns 
with findings reported in previous studies conducted in vari-
ous regions [28–30]. Additionally, this highlights the imme-
diate requirement for the careful utilization of antibiotics 
and the development of alternative strategies to address the 
treatment of UTIs caused by MDR-UPEC strains.

Our study revealed that the isolates displayed the high-
est resistance to NA (91.7%), followed by SXT (74.4%), 
and the lowest resistance to FM (10.9%) and MEN (14.1%). 
These findings are consistent with previous reports on UPEC 
resistance worldwide [12, 31–33]. For example, in a com-
prehensive study conducted in Iran, Gharavi et al. demon-
strated that UPEC had low resistance rates against MEN, 
AN, and FM [34]. Therefore, the use of NA for the treat-
ment of UPEC in this particular region may not be effective. 
Conversely, FM and carbapenem drugs such as MEN are 
considered more favorable choices for the initial treatment 
of UTIs. Additionally, the study's discovery of low resistance 
to FM may be attributed to its infrequent use in standard 
UTI treatments.

Previous studies have reported a high prevalence of qui-
nolone resistance in Iran. In this regard, most of the isolates 
were resistant to all the fluoroquinolone-containing antibiot-
ics, a finding consistent with prior research conducted in Iran 
[1, 23]. However, notably, resistance to NA exceeded that 
observed for CP, OFX, and NOR. This discrepancy could 
potentially be attributed to the prolonged utilization of NA 
in the studied region, spanning a period of over five decades.

In a meta-analysis study conducted by Moghaddam et al., 
the resistance rates of quinolone agents, NA and CP, among 
UPEC strains were reported to be 68.4% and 61%, respec-
tively [35].

Jomehzadeh et al. [1] demonstrated that among UPEC 
strains, resistance rates to NA, CP, OFX, gatifloxacin, 
levofloxacin, and moxifloxacin were 71.9%, 61.4%, 50%, 
34.2%, 34.2%, and 29.8%, respectively, in a teaching hos-
pital located in southwest Iran. Our study's findings were in 
agreement with these results [1]. In light of the high fluoro-
quinolone resistance rates observed in children, Akgoz et al. 
recommended avoiding the prescription of these antibiotics 
in pediatric populations and uncomplicated cases [36].

Furthermore, several observations have indicated that the 
emergence of quinolone resistance and the spread of resist-
ance genes could potentially be attributed to the transmission 
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of bacteria from animals to humans. This transmission path-
way involves the consumption of poultry and meat products, 
which, in turn, can be associated with the improper use of 
antibiotics within the livestock industry [37].

According to our findings, 67.9% of the isolates exhib-
ited the production of ESBLs. A meta-analysis conducted 
in Iran from 2008 to 2018 reported a substantial proportion 
of UPEC isolates (43.2%) being phenotypically identified 
as ESBL producers [38]. Moreover, higher prevalence rates 
of ESBL-producing UPEC strains have been documented 
in other regions, such as Shiraz [39], Rasht [40, 41], and 
Isfahan [42].

This heightened frequency may indicate an increasing 
trend of ESBL-producing strains over time. The elevated 
prevalence of ESBL-producing E. coli in Iran and other 
developing countries contrasts with the rates observed in 
developed countries such as Denmark (1.5%) [43], Germany 
(8.0%) [44], and the United States (7% to 15%) [45]. This 
difference can potentially be attributed to the extensive uti-
lization of β-lactam drugs as the primary treatment for UTIs 
and the absence of stringent policies regarding antibiotic 
consumption and prescription in these regions. Regrettably, 
in Iran, there has been insufficient focus on antimicrobial 
screening programs, resulting in infections caused by bacte-
rial strains that are resistant to multiple drugs being one of 
the leading factors contributing to illness and death among 
patients. In Iran, there are  currently no  clear protocols  for 
controlling ESBLs.

Moreover, there was variation in the susceptibility pat-
terns of drugs between ESBL-positive and ESBL-negative 
isolates. ESBL-positive strains exhibited a high level of sus-
ceptibility to MEN and FM, whereas ESBL-negative isolates 
showed a more favorable response to CAZ and CTX. This 
unexpected result suggests the presence of other resistance 
mechanisms or genetic factors contributing to the higher 
resistance rates in non-ESBL-producing isolates. The preva-
lence of antibiotic resistance, particularly ESBL, is higher in 

developing countries compared to developed nations due to 
the socioeconomic status of the society and the availability 
of antibiotics, which leads to self-medication, consumption 
of counterfeit drugs, improper dosage, and no adherence to 
antibiotic therapy. Therefore, the findings of this investiga-
tion highlight the urgent need for proactive surveillance sys-
tems to monitor the emergence and dissemination of ESBL 
in our region, given the high prevalence observed.

PMQR genes, including qnr, have been studied exten-
sively in Iran. However, there is a lack of well-known reports 
that specifically address the molecular detection of PMQR 
determinants in UPEC, particularly in northern Iran. Regard-
ing PMQR genes, our study identified a significant propor-
tion of isolates carrying at least one PMQR gene, primarily 
qnrS followed by qnrB. This finding is consistent with pre-
vious reports that emphasize the involvement of qnrS and 
qnrB in quinolone resistance among UPEC isolates. In line 
with our findings, Sadeghi et al. [7] and Rezazadeh et al. 
[46] have also reported the absence of qnrA genes in their 
isolates. However, variations in the prevalence of the qnrA 
gene have been observed across different studies, indicat-
ing the need for further research to better understand the 
regional and temporal dynamics of these resistance determi-
nants. Additionally, our results reported that 3.8% of isolates 
harbored both qnrB and qnrS simultaneously.

The findings revealed a high prevalence of blaCTX-M and 
blaTEM genes, while blaSHV exhibited a lower frequency. 
Importantly, meta-analytic studies conducted in diverse 
regions of Iran have consistently reported a relatively high 
prevalence of ESBL genes, which aligns with our results 
[38, 47]. Comparable to our investigation, other studies 
have found a high occurrence of blaCTX-M and blaTEM-
positive isolates in various countries and regions, includ-
ing northern and eastern Europe [48]. However, our study 
showed a higher prevalence of these genes compared to 
studies conducted in South Africa and Nigeria [49, 50]. 
Interestingly, a higher frequency of the blaSHV gene was 

Fig. 3  Relative expression of 
genes involved in bacterial 
biofilm formation in uropatho-
genic Escherichia coli. For each 
gene, * indicate a statistically 
significant (P < 0.05) difference 
in expression levels, calculated 
by ANOVA and Tukey’s test
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observed among non-ESBL isolates in comparison to 
ESBL isolates. This finding contradicts certain previous 
studies [51, 52] that reported a higher prevalence of blaSHV 
in ESBL isolates. The variation in the distribution of genes 
highlights the dynamic nature of β-lactamase genes among 
different UPEC populations, emphasizing the necessity for 
ongoing monitoring and surveillance.

Furthermore, the distribution of qnrS and qnrB genes 
was analyzed in relation to ESBL status and age group, 
but no significant correlation was observed. This suggests 
that the mechanisms responsible for qnr genes and ESBL 
production may act independently. Additionally, the age 
group did not demonstrate a significant impact on the dis-
tribution of these genes.

Phylogenetic analysis indicated that the most fre-
quently observed phylotype was  B2, followed by 
D = A = E > F >  B1 > C, respectively. These findings are 
consistent with previous studies conducted in Iran [53, 
54] as well as other countries, including Ethiopia [55], 
Pakistan [56], China [57], and India [58], which also 
reported  B2 as the predominant phylogroup, followed by 
D. However, an intriguing contrast was observed in a study 
conducted by Mohsin et al. [59] in Iraq, where phylotype 
F emerged as the most frequent, followed by C,  B2, E, A, 
D, and  B1, respectively [59]. While there is some varia-
tion, the prevailing trend across multiple studies supports 
the predominance of the  B2 and D phylotypes in UPEC 
populations.

The differences in the prevalence of phylogenetic groups 
may be due to various factors such as genetic traits of the 
host, the location of the infection, the geographical area, 
the methodology used, the origin of the isolates, and differ-
ences in the sample size. In contrast, this study identified 
significant variations in antibiotic resistance patterns among 
different phylogenetic groups. Phylogroup A displayed the 
highest RS, followed by  B2 and D, whereas phylogroup  B1 
exhibited the lowest RS. These findings suggest a correla-
tion between phylogenetic group and antibiotic resistance, 
supporting the notion that phylogenetic group contributes to 
the development of antimicrobial resistance [60]. The post 
hoc analysis indicated a significant difference in RS between 
phylogenetic groups A and  B1, with RS significantly higher 
in phylogroup A compared to  B1 (P = 0.032). The elevated 
RS in phylogroups A,  B2, and D further underscores the 
challenges in treating infections caused by strains belonging 
to these groups.

Our findings revealed that 64.1% of UPEC isolates exhib-
ited biofilm-producing ability, with a majority of them 
belonging to phylogenetic groups  B1 and  B2. However, no 
significant association was found between biofilm forma-
tion and phylogenetic groups. The previous literature has 
reported an association between biofilm-forming ability and 
phylogenetic groups  B2 and  B1 among UPEC isolates [61, 

62]. Moreover, there were no notable distinctions noted in 
the ratio of biofilm-positive strains between ESBL-positive 
and ESBL-negative isolates.

On the other hand, blaCTX-M was found to be more preva-
lent in phylogroups  B2 (75.9%) and E (75%), while blaTEM 
was more frequently detected in phylogroups D (70%) and 
A (60%). Additionally, the presence of the blaTEM gene was 
significantly associated with phylogroup D compared to 
other phylogroups (P = 0.007), which is in line with previ-
ous reports [63]. Regarding PMQR genes, our results did not 
reveal any significant associations between qnrS or qnrB and 
different phylogroups.

The findings of this study showed that serogroup O25 had 
the highest frequency, as determined by O antigen. In this 
regard, serogroup O25 was predominant among adults, while 
serogroup O1 was predominant among children. Serogroup 
O1 is primarily associated with capsular K antigens and is 
linked to extraintestinal infections in humans. It is a major 
causative factor for UTIs and sepsis in pediatric patients. 
Regarding the distribution of O-serogroups among differ-
ent phylogroups, a significantly higher frequency of sero-
group O25 was detected among members of phylogroup  B2 
compared to other phylogroups (P < 0.001). Additionally, 
serogroups O16, O1, and O15 were more frequently found 
in phylogroups  B1,  B2, and D, respectively. These results 
emphasize the need for action against isolates belonging to 
phylogroups  B2 and D, not only in adults but also in children.

Our findings suggest that non-biofilm-producing E. 
coli strains exhibit significantly higher levels of fimA gene 
expression when compared to their biofilm-producing coun-
terparts. Previous studies have also demonstrated that the 
fimA gene and operon are highly expressed in certain E. coli 
isolates, whereas the type 1 fimbrial adhesin, fimH, which 
plays a crucial role in virulence and invasion during murine 
infection, was found to be expressed in only a limited num-
ber of patients. FimH is vital for connecting E. coli with host 
cell receptors during catheter-associated biofilm formation, 
and mutations affecting its expression can result in reduced 
virulence in UPEC [64, 65].

Conclusion

In conclusion, the high fluoroquinolone resistance rates in 
this study underscore the importance of local resistance 
monitoring and investigation of underlying mechanisms. 
Our results reveal the dominance of phylogroups  B2 and 
D as the predominant phylogenetic groups in both adults 
and children. Additionally, our results indicate that members 
of phylogroup A exhibit the highest RS. This study further 
confirms the widespread presence of blaCTX-M, blaTEM, and 
qnrS among UPEC isolates, which also harbor essential 
adhesion-associated virulence genes, particularly papA and 
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fimH. Moreover, phylogenetic groups  B1 and  B2 demonstrate 
a greater capacity for biofilm production compared to other 
phylogroups. These study outcomes affirm the heterogeneity 
and complex genetic backgrounds of UPEC isolates. Con-
sequently, it is imperative to investigate the epidemiologi-
cal aspects and characterize UPEC isolates across diverse 
regions and time frames.
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