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Abstract
Oestrogen, the primary female sex hormone, plays a significant role in tumourigenesis. The major pathway for oestrogen is 
via binding to its receptor [oestrogen receptor (ERα or β)], followed by nuclear translocation and transcriptional regulation 
of target genes. Almost 70% of breast tumours are ER + , and endocrine therapies with selective ER modulators (tamoxifen) 
have been successfully applied. As many as 25% of tamoxifen-treated patients experience disease relapse within 5 years 
upon completion of chemotherapy. In such cases, the ER-independent oestrogen actions provide a plausible explanation for 
the resistance, as well as expands the existing horizon of available drug targets. ER-independent oestrogen signalling occurs 
via one of the following pathways: signalling through membrane receptors, oxidative catabolism giving rise to genotoxic 
metabolites, effects on mitochondria and redox balance, and induction of inflammatory cytokines. The current review focuses 
on the non-classical oestrogen signalling, its role in cancer, and its clinical significance.
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Introduction

Oestrogens are the primary female sex hormones, mainly 
synthesised in the ovaries of premenopausal women, and 
to a lesser extent in the liver, heart, muscle, bone, adipose 
tissue, and brain. Three physiological oestrogens, namely, 
oestrone (E1), oestradiol (E2), and oestriol (E3), are formed 
during cholesterol metabolism. E2 is the predominant and 
most potent oestrogen found in premenopausal women [1]. 
The majority of the effects of oestrogen, also known as the 
genomic effects, are attributed to their binding to the oestro-
gen receptors (ERα and ERβ) and subsequent translocation 
to the nucleus. The ligand-bound ER acts as a transcription 
factor and binds to oestrogen response elements on DNA 
[2]. ER-dependent oestrogen signalling can also be non-
genomic, non-nuclear. Protective effects of E2 on vascular 
tissues is an example of such signalling, where E2-bound ER 
interacts with PI3K (phosphoinositide 3-kinase) activating 

the PI3K/Akt axis resulting in the activation of endothe-
lial nitric oxide synthase [3, 4]. Non-genomic effects of 
hormones in the extranuclear compartments is rapid and 
includes important physiological changes in reproductive 
and nonreproductive cells [5]. ER-independent signalling, 
which mostly (not exclusively) comprises of non-genomic 
effects of oestrogen include signalling cascades through 
membrane receptors and those that directly involve covalent 
interactions between oestrogens and their metabolites with 
other biomolecules [6] (Fig. 1). Oestrogens act as endog-
enous chemical carcinogens through the generation of reac-
tive oxygen species (ROS) and reactive nitrogen species via 
(a) their direct effect on mitochondria, (b) their oxidative 
metabolism forming genotoxic metabolites, and (c) their 
induction of proinflammatory cytokines IL-1β and TNFα 
[7]. While oestrogens and its receptors also acts as a protec-
tive agent in several disease conditions like cardiovascu-
lar [8, 9], exercise-induced muscle damage in women [10] 
and also regulate erythropoiesis under hypoxic condition, 
thereby can be a target for erythrocytosis [11].

ER-independent oestrogen signalling converges with 
major cellular signalling pathways. In brain cells derived 
from mice lacking ERα expression, oestrogen activates 
Mitogen-activated protein kinases (MAPK) signalling. 
In a similar model in Breast cancer (BC), exogenous oes-
trogen treatment increased the levels of phosphorylated 
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protein kinase B (or AKT). Treatment of these cells with 
ER antagonists did not significantly alter AKT phosphoryla-
tion. Moreover, the transient activation of AKT disproved 
the ER-based nuclear events [12]. Similarly, the interaction 
of E2 with G-protein-coupled ER 1 (GPER1) culminates in 
epidermal growth factor receptors (EGFR) [13, 14], PI3/
AKT, and MAPK/ERK signalling [15] and NF-κB activation 
[16]. The current review elaborates on the history and recent 
reports on ER-independent signalling, the role of oestrogen 
and its metabolites in cellular physiology, and their clinical 
significance.

Oestrogen metabolism

Oestrogen synthesis in premenopausal women occurs in 
the ovaries during cholesterol catabolism. The formation of 
pregnenolone is the first step in oestrogen synthesis via the 
action of the cytochrome P450 side-chain cleavage enzyme 
on cholesterol. Pregnenolone is converted into progester-
one by 3β-hydroxysteroid dehydrogenase. Testosterone 
is formed by the sequential action of cytochrome P450 
17α-hydroxylase and 17β-hydroxysteroid dehydrogenase 
(17β-HSD). Androgens are transported from thecal cells to 
granulosa cells. In the final step, the conversion of testoster-
one to E2 is catalysed by aromatase, which belongs to the 

cytochrome P450 superfamily. This enzyme is expressed in 
the brain, gonads, blood vessels, liver, bones, skin, adipose 
tissue, and endometrium. The tissue-specific expression 
of aromatase depends on three factors: alternate splicing, 
tissue-specific promoters, and different transcription factors. 
Distinct promoters are differentially regulated by hormones 
and cytokines. In the brain, aromatase is regulated by post-
translational phosphorylation. In non-reproductive women, 
the main source of E2 is extragonadal organs, where it func-
tions as a paracrine and/or intracrine factor, whereas ovarian 
E2 is released into the blood [6]. Under physiological condi-
tions, oestrogen metabolism involves conjugation to inactive 
sulphates and glucuronides [1]. Oestrone sulphate (E1S) is 
a sulphated oestrogen that serves as the precursor for E2 
synthesis. Desulphonation of E1S, a biologically inactive 
but highly stable derivative, by steroid sulfatase forms E1, 
which is reduced to E2 by 17β-HSD [17]. E1 and E2 are 
metabolised via two routes: formation of catechol oestrogen 
and, to a lesser extent, 16α-hydroxylation [18]. 2-hydroxy 
oestradiol (2-OHE) and 4-hydroxy oestradiol (4-OHE) are 
catechol derivatives of E2 that possess tumourigenic poten-
tial and are detoxified by catechol-O-methyltransferase 
(COMT), which has greater catalytic activity toward 2-OHE, 
thus making it less carcinogenic than 4-OHE [19]. Further-
more, O-methylation of 2-OHE results in the formation of 
2-methoxy oestradiol (2-MeOHE) [19]. The inactivation of 

Fig. 1  The role of oestrogen in the ER-dependent and ER-independ-
ent signalling and the possible therapeutic potential of ER-independ-
ent signalling especially in tamoxifen-resistant BC. (ER: oestrogen 

receptor, PI3K: phosphoinositide 3-kinase, MAPK: Mitogen-acti-
vated protein kinases, ROS: reactive oxygen species, RNS: reactive 
nitrogen species)
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oestrogen occurs via a conjugation reaction and conversion 
of E2 (most potent) to E1 and E3 (less active) forms, which 
help regulate oestrogen activity [1, 20].

In recent decades, advances in research have revealed 
the involvement of gut microbial flora in the metabolism of 
oestrogen, especially dietary phytoestrogens. This group of 
organisms was called astrobleme, broadly classified as Bac-
teroidetes, Firmicutes, Verrucomicrobia, and Proteobacteria 
that mainly involve β-glucuronidases and β-glucosidases. 
The enterohepatic circulation of oestrogen leads to altera-
tions in circulating and excretory oestrogen levels [21]. The 
use of antibiotics four or more times per year is associated 
with a moderate increase in BC risk [22, 23]. Antibiotics 
modulate the gut flora, leading to reduced phytochemical 
oestrogen metabolism and hence increased circulating oes-
trogen levels, thereby increasing the cancer risk.

In‑vitro and in‑vivo studies provide early 
evidence of ER‑independent signalling 
in cancer

Available data on ER-independent mechanisms of oestrogen 
are mostly from BC studies, as they are the most implicated 
in the disease. Direct evidence of oestrogen metabolite geno-
toxicity was obtained from two independent studies: the big 
blue rat cell culture mutation assay [20] and Chinese hamster 
VP-79 cell mutation assay [24]. In-vitro evidence has arisen 
from studies in which oestrogen metabolites were shown to 
cause malignant transformation in MCF-10F cells, which 
are benign breast epithelial cells lacking ER [25, 26]. Fur-
thermore, exposure to physiological concentrations of E2 or 
4-OHE in MCF-10F cells resulted in a loss of heterozygosity 
at common human mammary tumour hot spots. Comparative 
genomic hybridisation techniques showed that 1 µM 4-OHE 
induced several damages, including DNA gain (8q24, 9q34) 
and loss at 13q21 [27]. ER-independent effects of oestrogen 
were confirmed based on two observations: First, the short 
time between the stimulus and downstream signalling activa-
tion and consistent levels of effector expression, and second, 
the inability of ER inhibitors to block these actions [14].

In-vivo studies in SCID mice showed that oestradiol-
exposed, non-malignant MCF-10 cells formed serially trans-
plantable tumours. Direct and concrete evidence in support 
of this hypothesis was obtained from an experiment with 
the ERKO/Wnt-1 model, a transgenic Wnt-1 mouse model 
with ER knockout. The mice were subjected to oophorec-
tomy, and oestradiol was administered at physiological 
concentrations, which revealed a dose-dependent increase 
in breast tumour formation. That study was designed such 
that the confounding effects of progesterone and other ovar-
ian factors were minimised. A limitation of that study was 
the presence of minimally functional (confirmed by PCR) 

ERβ. To overcome any leaky expression of ERα, the ER 
antagonist fulvestrant was used, which did not have any 
effect on tumour incidence. However, the use of letrozole 
in combination with a minimally active form of E2 delayed 
tumour formation, even in animals with intact ovaries [27, 
28]. These studies laid the foundation for the possibility of 
oestrogen-induced tumourigenesis beyond the pretext of ER.

Clinical evidence for the ER-independent effects of oes-
trogen came from the fact that in patients with BRCA1 muta-
tion, almost 75% of whom were ER − , bilateral oophorec-
tomy reduced the BC risk by 53% [29, 30]. Additionally, 
post-menopausal hormone therapy increased the risk of both 
ER + and ER − disease [27, 31]. More recently, growing 
experimental data suggests ER-independent, immunomodu-
latory, DNA damaging effect of selective oestrogen receptor 
modulators (SERMs) like tamoxifen and raloxifene in triple 
negative BC (TNBC).

Oestrogen metabolites play a vital role 
in tumourigenesis

17α-Oestradiol (17α-E2) is a weak oestrogen produced in 
the ovarian follicles that is converted to E1 and further to E2. 
17α-E2 was shown to induce VEGFA mRNA expression in a 
dose- and time-dependent manner via the PI3K/AKT signal-
ling pathway, independent of ER [32]. 4-OHE was found to 
be tumourigenic in hamster kidney [33]. Repeated exposure 
to 4-OHE induced ROS production, malignant transforma-
tion of MCF10A cells, and growth in nude mice via PI3K/
AKT signalling, leading to the overexpression of cell cycle 
genes cdc2, PRC1, and PCNA and the transcription factor 
NRF-1 [34]. In addition, 4-OHE induced the invasion of 
human breast epithelial cells (MCF10F) [35]. The enzyme 
involved in the formation of 4-OHE, cytochrome P4501B1 
(CYP1B1), showed significant activity in the extrahepatic 
targets of oestrogen, including the breast, where it was 
upregulated in tumours compared to normal breast. Poly-
morphism in CYP1B1 at position 432 was observed in BC 
and endometrial cancer populations [21, 36].

In-vitro studies revealed that both 2-OHE and 2-MeOHE 
had a negligible affinity to the ER. In MCF-7 cells, 2-OHE 
significantly enhanced cell growth and protein synthesis in 
the G2/M phase of the cell cycle compared with E2. How-
ever, 2-MeOHE showed cytostatic activity by inhibiting 
DNA synthesis and mitosis [37]. In cultured endothelial 
cells, fulvestrant did not alter the dose-dependent inhibition 
of endothelin-1 synthesis and MAPK activity by 2-MeOHE, 
indicating an ER-independent mechanism [38]. In-vitro 
studies using the osteosarcoma (OS) model yielded simi-
lar results, and 2-MeOHE was shown to induce time- and 
dose-dependent apoptosis without considerable changes 
in normal osteoblasts or decreased resorption in the bone 
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tumour microenvironment. Here, ER-independent action was 
confirmed in three experiments: (a) only a negligible effect 
on cell survival was observed with E2, 2-OHE, and oestrone; 
(b) 2-MeOHE exerted similar effects irrespective of the ER 
status of the cell; and (c) addition of ICI182780 did not sig-
nificantly alter the anti-proliferative effect [39–41]. This was 
accompanied by an increase in interferon (IFN) expression 
in OS cells. 2-MeOHE also increased the phosphorylation of 
eIF-2α, a downstream effector of IFN-mediated anti-prolifer-
ative effects. The analysis of clinical samples also indicated 
decreased phosphorylation in the tumour compared with 
that in normal OS tissues, without significant differences 
in eIF-2α levels [42]. The specificity of 2-MeOHE for OS 
cells was later demonstrated in-vivo, providing insights into 
its therapeutic potential [2, 43]. More recently, the mecha-
nism of 2-MeOHE action was reported to be via a decrease 
in Bcl-2 and VEGF expression and increase in caspase-3 
expression, leading to G2/M cell cycle arrest and prema-
ture apoptosis [44]. In the bone marrow microenvironment, 
2-MeOHE also decreased the expression of cytokines that 
mediate tumour growth, survival, and angiogenesis [45, 
46]. Mechanistically, in-vitro and in-vivo studies have dem-
onstrated macrophage stimulatory protein-1 receptor, a 
receptor tyrosine kinase, as a target for 2-MeOHE [47]. In 
summary, unlike other E2 metabolites, 2-MeOHE plays a 
pronounced tumour-suppressive role by inhibiting cell pro-
liferation and promoting apoptosis (Table 1).

Oestrogens and their genotoxic metabolites 
impair the cellular redox state

Evidence for the production of genotoxic metabolites via 
the oxidative metabolism of endogenous and synthetic 
oestrogens originated in the late 90 s. Oestrogen can act 
as an endogenous chemical carcinogen, with its oxidative 
metabolites forming adducts with DNA, which may result 
in tumour initiation [20]. An imbalance in oestrogen metab-
olism that leads to oxidative damage can be attributed to 
various factors. Overexpression of aromatase leads to exces-
sive synthesis of E2, increased production of 4-OHE, loss 
or decreased function of COMT, low levels of inactivation 
of the oestrogen quinone pathway and GSH, and/or low lev-
els of quinone oxidoreductase and/or CYP reductase [56]. 
For instance, BRCA1/BARD1 transcriptionally controls the 
P450 subsets of genes, namely, CYP1A1 and CYP3A4. Thus, 
alterations in the expression of either of these proteins may 
contribute to tumourigenesis [57]. Oestrogen-induced DNA 
damage can be of three types: generation of free radicals, 
formation of oestrogen (or its metabolites)—DNA adducts, 
and endogenous DNA modifications [58].

The oxidation of catechol oestrogens to semiquinones and 
o-quinones concomitantly produces superoxide anions and 
hydroxyl radicals, and redox cascades lead to DNA, pro-
tein, and lipid damage (Fig. 2). One-electron oxidation of 
E2 generates reactive phenoxyl radical intermediate, further 
giving rise to glutathione thiyl,  NAD∙ radical, and  H2O2. 
Accumulation of  H2O2 leads to DNA base lesions and affects 
redox-sensitive transcription factors such as NRF2 and 
NF-κB, which are key players of inflammatory responses 
[59]. Oestrogen-induced proliferation and activation of 

Table 1  Tumor suppressive functions of 2-MeOHE in different cancers

(↑) upregulation and (↓) downregulation.

Sl. No Cancer Model Mechanism References

1 T lymphoblastic leukemia CEM cells p21 (↑) p53 and BCl-2 (↓) [48]
2 Ovarian cancer BG1, HeyC2, TOV112D Catalytic activation of protein kinase Cδ [49]
3 SKOV-3 cells Not studied [50]
4 Endometrial cancer Ishikawa cells F-spondin signaling [51]
5 Prostate cancer PC-3 cells BCl2 (↓) Bax (↑) [52]
6 PC-3 cells ROS production (↑)

E-Cadherin (↑)
N-Cadherin and vimentin (↓)
Cyclin D1 and β-catenin (↓)

[53]

7 Chronic myeloid leukemia K562 and KCL22 cells, BALB/C nude 
mice

ROS production (↑)
Mitochondrial membrane potential (↓)
miR223 (↑)
PI3K/AKT (↓)

[54]

8 Non-small cell lung cancer (NSCLC) 2D and 3D culture of A549 cells Inhibition of acyl-protein thioesterases 
1 and thus enhanced cellular protein 
S-palmitoylation

[55]
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macrophages also produce ROS and modify the function of 
polymorphonuclear leukocytes, resulting in the formation of 
hypochlorites  (OCl–) [7].

Redox cycling of 2-OHE simultaneously accumulates 
ROS in MCF-10A cells, activating the IκB kinase signal-
ling and thus, anchorage-independent growth [60]. Simi-
larly, this process was found to produce  H2O2 and  OH. in 
MCF-7 and MDA-MB-231 cells, leading to oxidative DNA 
modification expressed by 8–oxo–7,8–dihydroxy–2′–deoxy-
guanosine [61]. O-Methylation of 2-OHE by COMT to form 
2-MeOHE protected BC cells from catechol oestrogen-
induced oxidative DNA damage (formation of 8-hydroxy-
2′-deoxyguanosine) [19]. Catechol oestrogens and quinones, 
in the presence of lactoperoxidase, tyrosinase, or prostaglan-
din H synthase, react with DNA to form stable depurinated 
adducts, which act as endogenous initiators of breast tumo-
rigenesis [61]. Oestrogen-3,4-quinones react with adenine 
and guanine in DNA to form depurinated 4-OHE-1-N3 
adenine and 4-OHE-1-N7 guanine adducts, respectively 
[18, 62]. When hamsters were consistently treated with oes-
trogen, DNA adducts containing endogenous electrophiles 
were observed in the renal cortex. Furthermore, in that 
study, when the animals were treated simultaneously with 
tamoxifen, DNA damage blocking was unsuccessful [58]. 
Although the authors were unable to conclude that tamox-
ifen fails to counteract oestrogen-induced damage, this can 
now be postulated as an ER-independent mechanism.

An oestrogen metabolite-induced redox imbalance has 
also been implicated in tumourigenesis in oestrogen-inde-
pendent organs. The role of oestrogen in the development 
of thyroid cancer was evaluated as the prevalence of thy-
roid cancer was 3–4 times higher in women than in men 
[20]. Follicular thyroid cells produce thyroid hormones 
via iodination of thyroglobulin [63]. In-vivo studies have 
revealed higher exposure to oxidative stress in the thyroid 
glands of female rats owing to increased ROS production 
and decreased ROS degradation [64]. Further experimen-
tal evidence suggests an imbalance in E2 metabolism, as 
detected by a higher ratio of depurinated oestrogen-DNA 
adducts in the urine of women with thyroid cancer [65]. 
Thus, it can be concluded that an imbalance in oestrogen 
metabolism impairs the cellular redox balance, contributing 
to tumourigenesis.

Effects of oestrogen on mitochondria

Mitochondria are the powerhouse of the cell that derive 
energy for the cells from metabolic fuels. This is achieved 
through oxidative phosphorylation, in which electrons travel 
through a series of carrier complexes to the final acceptor, 
 O2, which is reduced to water. Electron transfer is accom-
panied by the expulsion of protons across the inner mito-
chondrial membrane, which creates a potential difference 

Fig. 2  Oestrogen metabolites and its association with cancer
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across the membrane. The change in free energy upon re-
entry of protons into the mitochondrial matrix is coupled 
with ATP synthesis [66]. Lipid-rich mitochondria have been 
described to act as a “sink” for the highly lipophilic oestro-
gen. Moreover, the two main enzymes of oestrogen anabo-
lism, 3-βHSD and aromatase, were found to be localised in 
the mitochondria in ovarian tumour epithelial cells. [67]. 
E2, through anchorage and integrin-dependent signalling, 
was found to induce ROS, especially  H2O2 in the perinu-
clear mitochondria. This ROS induction was accompanied 
by enhanced cell motility; phosphorylation of c-Jun and 
CREB; and binding of the oxidant-sensitive transcription 
factors AP-1, CREB, and NRF1 [67]. Functionally, it also 
modified G1 to S transition and some of the early G1 genes 
through an ER-independent, non-genomic signalling path-
way [68]. These findings provide a novel perspective on the 
role of E2-induced changes in mitochondria and their impact 
on cell cycle regulation.

The treatment of human spermatozoa with endogenous 
E2 and xenoestrogens genistein and bisphenol A alters the 
mitochondrial membrane potential and increases  O2

∙ lev-
els [69]. In isolated rat liver mitochondria, E2 reduces ROS 
generation, consequently protecting mitochondrial integrity 
and preventing the release of cytochrome c, thereby inhib-
iting apoptosis [70]. In ovariectomised mice, E2 directly 
modulated and protected the mitochondrial functions in 
the absence of ERα [71]. In-vitro BC study showed that E2 
induced the expression of ATG3 and Beclin1 and reduced 
the expression of p53, leading to mitochondrial damage by 
autophagy and cellular senescence [72]. Another in-vivo 
study on cardiovascular disease showed that E2 adminis-
tration induced E2-mediated autophagy which is related to 
the Rab9-dependent autophagy pathway [73]. In-vivo study 
using porcine oocytes found E2 to enhance autophagy, 
reducing ROS levels and apoptosis activity promoting effi-
cacy of the development of porcine oocytes [74]. Exogenous 
E2 protected mitochondrial functions in cardiomyocytes of 
ovariectomized rats having insulin resistance [75]. Meno-
pausal women with reduced E2 levels lead to adiposity and 
reduced insulin sensitivity and diabetes.

In summary, these studies demonstrate that E2 plays an 
important role in the regulation of mitochondrial membrane 
potential, ROS production, autophagy, and apoptosis. The 
mechanism of E2-mediated regulation of mitochondrial 
function is yet to be fully elucidated.

Membrane‑bound receptor of E2 in cancer

Among the ER family, ERα is expressed abundantly in tis-
sues due to its critical role in cellular processes. ERα dys-
regulation has been reported in many cancers, including 
breast [76], ovary [77], and uterus [78]. Apart from ERα and 

ERβ, the G-protein coupled receptor superfamilies are also 
known to exert important effects of oestrogen. While ERs 
are intracellularly localised to the mitochondria, GPER1 or 
GPR30 are plasma membrane-bound receptors that activate 
signalling cascades via G-proteins. GPER1 is a 375-amino 
acid transmembrane receptor that binds to E2 and mediates 
non-genomic oestrogen responses [79]. E2-bound GPER1 
phosphorylates ERK1/2 via EGFR, cAMP,  Ca2+, and PKC 
activation. GPER1 is expressed in normal breast mammary 
cells (MCF10A) and is considerably downregulated in dedi-
fferentiated BC cells. Additionally, GPER1 was found to 
reduce cell viability but favoured the migration of metastatic 
BC cells [80]. This could be due to the different downstream 
signalling pathways in the two phenotypes and requires fur-
ther characterisation. Two independent studies confirmed 
this pattern of expression in clinical tumour samples, with 
all normal breast epithelia showing positive immunoreac-
tivity for GPER1, whereas in tumours, its expression var-
ied. Crosstalk between GPER1 and CXCR1 was found to 
be involved in the migration and invasion of BC cells [81]. 
In tumours, GPER1 expression correlated with histologi-
cal grade, ER negativity, HER2 positivity, tumour size, and 
metastasis [82, 83]. Direct in-vivo evidence for the prolif-
erative role of GPER1 was obtained using a mouse model. 
GPER1 knockout mice were crossed with the transgenic 
mammary tumourigenesis model, MMTV-PyMT. Interest-
ingly, the initial tumour development process was similar in 
wild-type and GPER1 deficient mice. After a few weeks, the 
GPER1 null mice showed smaller tumours, lower prolifera-
tion, lower grade, and lesser metastasis [84] GPER1 was 
reported to have the potential to function as a prognostic 
marker in various cancers [85]. Plasma membrane-bound 
GPER1 expression is a negative prognostic factor in ER + , 
tamoxifen-treated, and high-risk BC [86, 87].

Anti-oestrogens tamoxifen and fulvestrant, natural com-
pounds hydroxytyrosol and oleuropein, phytoestrogen 
coumestrol, and endocrine disruptor bisphenol A bind to and 
act as non-selective agonists of GPER1 [88]. The selectivity 
of receptors and cross-reactivity of ligands depend on the 
effective ligand concentration [89]. E2 and genistein were 
reported to protect fibroblasts and keratinocytes from ROS-
induced damage by activating GPER1 [90]. Genistein pro-
moted the proliferation of thyroid squamous cell carcinoma 
SW579 cells via GPER1 activation [91]. Chlorobisphenol A, 
an oestrogenic compound, was found to induce cell prolif-
eration in neuronal cells in-vitro via both ERα and GPER1 
pathways [92]. C–C motif chemokine ligand 18 (CCL18), 
a cytokine overexpressed in tumours, was also shown to 
bind to GPER1 [93]. GPER1 antagonists such as G-15 [94], 
G-36 [95], and C4PY (meso-(p-acetamidophenyl)-calix[4]
pyrrole) and GPER1 agonists such as 131I-fulvestrant [96] 
and 5408–0877 [97] are among the GPER1 modulating com-
pounds identified previously (Table 2).
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In osteoblasts, E2 inhibits autophagy and apoptosis via 
the GPER1/AKT axis [103]. Evidence shows lower mortal-
ity rates in women with colorectal cancer (CRC), which may 
be due to the role of oestrogen. While ERβ is downregulated 
in CRC, public datasets on CRC suggest that the overexpres-
sion of GPER1 can selectively rescue tumourigenic effects 
via the Wnt/β-catenin pathway [104]. Increased expression 
of GPER1 was observed in gastric cancer and reported to 
be associated with EMT and poor prognosis [105, 106]. In 
NSCLC A549 cells, GPER1 agonist decreased the prolif-
eration and enhanced the apoptotic activity by modulating 
the redox enzymes of the cell [107]. Histological analysis 
of NSCLC tissues revealed that higher nuclear localisation 
of GPER1 correlated with poor recurrence-free and overall 
survival [108]. In papillary thyroid cancer, GPER1 has been 
implicated in tumourigenesis and is a potential therapeutic 
target [109]. GPER1 is overexpressed in the cell membrane 
and cytoplasm of uterine cervical adenocarcinoma in situ 
and adenocarcinoma, unlike the strong nuclear expression of 
GPER1 in normal tissue. GPER1-positive patients have poor 
overall survival [110]. In leiomyosarcoma cells, insulin was 
found to increase the levels of GPER1 mRNA and protein 
via the PRKCD/MAPK1/c-Fos/AP axis [87]. GPER1 was 
reported to be overexpressed in prostate cancer-associated 
fibroblasts and to regulate its interaction with tumour-asso-
ciated macrophages, which have the potential to regulate 
the tumour microenvironment [111]. In glioblastoma, pre-
menopausal women with high GPER1 levels showed better 
prognosis [112]; however, there is a need to understand the 
complex signalling pathways that occur parallelly inducing 
the genomic and non-genomic effects of GPER1 signalling.

Oestrogen signaling via GPER1 has been studied in sev-
eral non-cancer models [113, 114]. Mechanistically, these 
studies showed the involvement of necroptosis, ERK sig-
nalling, which are crucial in tumorigenesis as well. In-vitro 
studies also showed the protective role of Genistein/E2 on 
mitochondria via GPER1 pathway in non-alcoholic fatty 
liver disease in postmenopausal women and mice muscle 
cells [115]. GPER1 also partially mediates genistein stimu-
lation and improves glucose tolerance in-vivo [116]. In-vivo 

studies showed that E2 protects the mitochondrial functions 
of muscle cells. Estrogen-supplemented postmenopausal 
women and ovariectomized mice restored complex I func-
tion in muscle and liver cells [117]. In both cancer and 
other diseases, estrogen signaling via GPER1 confirmed to 
have protective effects over mitochondria functions. How-
ever, more research on the mechanism of GPER1 pathway 
on mitochondria will help to identify novel therapeutic 
approaches. Further studies are required to shed light on the 
relationship and balance between ER and GPER1 activities. 
The role of GPER1 in TNBC might be of clinical signifi-
cance, that requires experimental evidence.

Therapeutic significance of ER‑independent 
oestrogen signalling

ER-independent oestrogen signalling provides a plausible 
explanation for resistance to ER antagonist therapies, such 
as RET signalling mediated Raloxifene resistance demon-
strated in-vitro [118]. A recent study demonstrated novel 
analogues of Tamoxifen, showing potential toxicity against 
TNBC cell lines MDA-MB-231 and MDA-MB-468 [119]. 
With the emerging success of drug repurposing, off-target 
effects of these ER modulators are being explored for their 
roles in other diseases [120]. 2-MeOHE sensitises BC cells 
to taxane treatment by centrosome de-clustering [121]. 
Apart from cell growth arrest and apoptosis, 2-MeOHE 
also demonstrated the potential to overcome drug resist-
ance in multiple myeloma (MM). Similarly, in OS cells, it 
inhibited mitochondrial biogenesis via PPARγ, coactivator 
1α, and cytochrome c oxidase I. It was also proved to be a 
potent inhibitor of succinate dehydrogenase complex subunit 
A and sirtuin 3 [122]. In-vitro, MM models of melphalan 
(LR-5), doxorubicin (Dox-40 and Dox-6), and dexametha-
sone (MM.1R) resistance were shown to undergo apoptosis 
upon treatment with 2-MeOHE. Its therapeutic potential was 
evaluated in clinical trials involving patients with hormone-
refractory prostate cancer and reported to be a well-tolerated 
drug, with non-linear pharmacokinetics and suboptimal 

Table 2  Different modulators of GPER1 from literature

(↑) increase, (↓) decrease, and BM Bone marrow.

Compound Agonist/Antagonist Model Cellular effects References

Lupeol Antagonist In-silico – [98]
Quercetin Antagonist In-vitro, BM cells ↓ AKT phosphorylation

↓ NF-κB activation
[99]

Bisphenol S Agonist Murine hypothalamic cell lines ↑ Agrp expression [100]
17β-aminoestrogens Agonist MCF7 and SIHA cells ↓ c-fos phosphorylation [101]
Synthetic compounds SK0 

and SK0P
Agonist In-silico and in-vitro ↓ Cell proliferation [102]
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plasma levels. Despite its poor availability for oral adminis-
tration, it showed some anti-cancer activity at 1200 mg/day 
[123]. In prostate cancer, the administration of 2-MeOHE 
in combination with eugenol showed better efficacy, thus 
reducing the therapeutic concentration and adverse effects 
(1). 2-MeOHE was effective against melanoma in-vitro 
and in-vivo and acted synergistically with PD-1 blockade 
immunotherapy [124]. Synergistic treatment with 2-MeOHE 
and erlotinib induced apoptosis in hepatocellular cancer 
(HCC) cells and inhibited the stemness of erlotinib-resistant 
hypoxic cells [125]. To improve the efficacy of 2-MeOHE, 
polymeric micelles were used for delivery, which increased 
the cellular uptake and enhanced the anti-tumour activity 
in-vitro [126]. Similarly, the micellar administration of 
2-MeOHE showed a beneficial effect in lung cancer cells 
by modulating hypoxia, cell cycle, and apoptosis [126, 127]. 
Liposomal delivery of 2-MeOHE nanoparticles was effec-
tive in the treatment of uterine leiomyoma in-vivo using 
patient-derived xenografts. There was an almost two-fold 
difference in the tumour size, proliferation, and apoptosis 
[128]. There is a need to conduct rigorous clinical trials to 
establish 2-MeOHE as a therapeutic agent in conjunction 
with existing therapies.

An in-vitro study showed that overexpression of ERα36 
and GPER1 can affect responsiveness to tamoxifen and pro-
mote tumour progression, thereby not supporting this treat-
ment in ER + BC [129]. E2-mediated GPR30 activation was 
reported to induce the mTOR signalling pathway, promoting 
p62 phosphorylation which, in turn, increased ESR1 expres-
sion. Targeting this signalling pathway to decrease ESR1 
expression holds therapeutic potential in oestrogen-sensitive 
cells [130]. The antidepressant drug fluoxetine was found 
to exert oestrogen-like actions through GPER1 activation, 
leading to the activation of PI3/AKT and ERK signalling 
cascades [131]. The n-butanol extract of Huaier was found 
to inhibit gastric cancer proliferation, invasion, and metas-
tasis in-vitro by inhibiting GPER1-mediated PI3/AKT sig-
nalling [105]. siRNA-mediated knockdown of GPER1 sup-
pressed the proliferation, invasion, and migration of gastric 
cancer cells by attenuating PI3/AKT-mediated EMT [106]. 
The GPER agonist G1 altered the mitochondrial membrane 
potential, DNA damage, and apoptosis in mantle cell lym-
phoma (MCL), thereby confirming the potential of G1 in 
combination with ibrutinib as a candidate therapy for MCL 
[132]. Targeting GPER1 is a promising approach for modu-
lating cisplatin resistance in gastric cancer. In-vitro GPER1 
knockdown increased sensitivity to cisplatin and induced 
changes in EMT [133]. Cepharanthine hydrochloride was 
reported to induce mitophagy by binding to GPER1 in HCC 
primary cells, cell lines, and mouse xenograft models [134]. 
The GPER1 agonist G1 showed a potential anti-tumour 
effect in glioblastoma in-vivo [112]. However, there are few 

data from mechanistic studies on targeting GPER1 and suf-
ficient clinical evidence to prove its specificity to GPER1.

In summary, the expression of ER and GPER1 was 
reported to be independent in BC, and both receptors 
showed distinct binding affinities to various oestrogen 
metabolites [135]. In addition, most ER antagonists serve 
as GPER1 agonists; hence, treatment modalities require a 
deep understanding of these pathways, especially in BC 
[135]. GPER1/EGFR signalling plays an important role in 
increasing tamoxifen resistance in ER-positive BC [136]. 
Increased expression of GPER1 and GPER1-EGFR medi-
ated signalling play a major role in TNBC progression [137, 
138] modulating the GPER1 signalling pathway could be an 
effective approach in the treatment of both hormone-positive 
cancer and TNBC. Recent advances in research have pro-
vided other options such as proteolysis-targeting chimeras 
(PROTACs) to target specific proteins of interest. Hence, 
GPER1 holds potential as a therapeutic target in cancer, and 
the modulation of its expression can complement existing 
anti-oestrogen therapies and help manage drug resistance in 
oestrogen-driven cancers.

Conclusion

Almost 70% of breast tumours are ER + , and endocrine 
therapies with selective ER modulators (tamoxifen) or 
downregulators (fulvestrant) are a common treatment 
modality for such subtypes. Approximately 25% of tamox-
ifen-treated patients present with disease recurrence 5 years 
post-therapy. Several mechanisms, including MAPK- and 
AKT-induced downregulation of ER and epigenetic modi-
fications, have been implicated in tamoxifen resistance. Fur-
thermore, 20–30% of ER + patients develop either de-novo 
or acquired resistance to tamoxifen. As described previously, 
ER-independent actions may represent a mode of resistance 
to anti-ER therapy. Furthermore, modulating the oestrogen 
metabolism imbalance leading to free radical-mediated DNA 
damage, addressing the therapeutic potential of oestrogen-
mitochondrial interactions, and targeting GPER1 offer novel 
treatment strategies, especially for TNBC.
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