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Abstract

Oestrogen, the primary female sex hormone, plays a significant role in tumourigenesis. The major pathway for oestrogen is
via binding to its receptor [oestrogen receptor (ERa or )], followed by nuclear translocation and transcriptional regulation
of target genes. Almost 70% of breast tumours are ER +, and endocrine therapies with selective ER modulators (tamoxifen)
have been successfully applied. As many as 25% of tamoxifen-treated patients experience disease relapse within 5 years
upon completion of chemotherapy. In such cases, the ER-independent oestrogen actions provide a plausible explanation for
the resistance, as well as expands the existing horizon of available drug targets. ER-independent oestrogen signalling occurs
via one of the following pathways: signalling through membrane receptors, oxidative catabolism giving rise to genotoxic
metabolites, effects on mitochondria and redox balance, and induction of inflammatory cytokines. The current review focuses
on the non-classical oestrogen signalling, its role in cancer, and its clinical significance.
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Introduction

Oestrogens are the primary female sex hormones, mainly
synthesised in the ovaries of premenopausal women, and
to a lesser extent in the liver, heart, muscle, bone, adipose
tissue, and brain. Three physiological oestrogens, namely,
oestrone (E1), oestradiol (E2), and oestriol (E3), are formed
during cholesterol metabolism. E2 is the predominant and
most potent oestrogen found in premenopausal women [1].
The majority of the effects of oestrogen, also known as the
genomic effects, are attributed to their binding to the oestro-
gen receptors (ERa and ERf) and subsequent translocation
to the nucleus. The ligand-bound ER acts as a transcription
factor and binds to oestrogen response elements on DNA
[2]. ER-dependent oestrogen signalling can also be non-
genomic, non-nuclear. Protective effects of E2 on vascular
tissues is an example of such signalling, where E2-bound ER
interacts with PI3K (phosphoinositide 3-kinase) activating
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the PI3K/AKkt axis resulting in the activation of endothe-
lial nitric oxide synthase [3, 4]. Non-genomic effects of
hormones in the extranuclear compartments is rapid and
includes important physiological changes in reproductive
and nonreproductive cells [5]. ER-independent signalling,
which mostly (not exclusively) comprises of non-genomic
effects of oestrogen include signalling cascades through
membrane receptors and those that directly involve covalent
interactions between oestrogens and their metabolites with
other biomolecules [6] (Fig. 1). Oestrogens act as endog-
enous chemical carcinogens through the generation of reac-
tive oxygen species (ROS) and reactive nitrogen species via
(a) their direct effect on mitochondria, (b) their oxidative
metabolism forming genotoxic metabolites, and (c) their
induction of proinflammatory cytokines IL-1p and TNFa
[7]. While oestrogens and its receptors also acts as a protec-
tive agent in several disease conditions like cardiovascu-
lar [8, 9], exercise-induced muscle damage in women [10]
and also regulate erythropoiesis under hypoxic condition,
thereby can be a target for erythrocytosis [11].
ER-independent oestrogen signalling converges with
major cellular signalling pathways. In brain cells derived
from mice lacking ERa expression, oestrogen activates
Mitogen-activated protein kinases (MAPK) signalling.
In a similar model in Breast cancer (BC), exogenous oes-
trogen treatment increased the levels of phosphorylated
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Fig.1 The role of oestrogen in the ER-dependent and ER-independ-
ent signalling and the possible therapeutic potential of ER-independ-
ent signalling especially in tamoxifen-resistant BC. (ER: oestrogen

protein kinase B (or AKT). Treatment of these cells with
ER antagonists did not significantly alter AKT phosphoryla-
tion. Moreover, the transient activation of AKT disproved
the ER-based nuclear events [12]. Similarly, the interaction
of E2 with G-protein-coupled ER 1 (GPER1) culminates in
epidermal growth factor receptors (EGFR) [13, 14], PI3/
AKT, and MAPK/ERK signalling [15] and NF-kB activation
[16]. The current review elaborates on the history and recent
reports on ER-independent signalling, the role of oestrogen
and its metabolites in cellular physiology, and their clinical
significance.

Oestrogen metabolism

Oestrogen synthesis in premenopausal women occurs in
the ovaries during cholesterol catabolism. The formation of
pregnenolone is the first step in oestrogen synthesis via the
action of the cytochrome P450 side-chain cleavage enzyme
on cholesterol. Pregnenolone is converted into progester-
one by 3f-hydroxysteroid dehydrogenase. Testosterone
is formed by the sequential action of cytochrome P450
17a-hydroxylase and 17p-hydroxysteroid dehydrogenase
(17B-HSD). Androgens are transported from thecal cells to
granulosa cells. In the final step, the conversion of testoster-
one to E2 is catalysed by aromatase, which belongs to the
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cytochrome P450 superfamily. This enzyme is expressed in
the brain, gonads, blood vessels, liver, bones, skin, adipose
tissue, and endometrium. The tissue-specific expression
of aromatase depends on three factors: alternate splicing,
tissue-specific promoters, and different transcription factors.
Distinct promoters are differentially regulated by hormones
and cytokines. In the brain, aromatase is regulated by post-
translational phosphorylation. In non-reproductive women,
the main source of E2 is extragonadal organs, where it func-
tions as a paracrine and/or intracrine factor, whereas ovarian
E2 is released into the blood [6]. Under physiological condi-
tions, oestrogen metabolism involves conjugation to inactive
sulphates and glucuronides [1]. Oestrone sulphate (E1S) is
a sulphated oestrogen that serves as the precursor for E2
synthesis. Desulphonation of E1S, a biologically inactive
but highly stable derivative, by steroid sulfatase forms E1,
which is reduced to E2 by 17-HSD [17]. E1 and E2 are
metabolised via two routes: formation of catechol oestrogen
and, to a lesser extent, 16a-hydroxylation [18]. 2-hydroxy
oestradiol (2-OHE) and 4-hydroxy oestradiol (4-OHE) are
catechol derivatives of E2 that possess tumourigenic poten-
tial and are detoxified by catechol-O-methyltransferase
(COMT), which has greater catalytic activity toward 2-OHE,
thus making it less carcinogenic than 4-OHE [19]. Further-
more, O-methylation of 2-OHE results in the formation of
2-methoxy oestradiol (2-MeOHE) [19]. The inactivation of
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oestrogen occurs via a conjugation reaction and conversion
of E2 (most potent) to E1 and E3 (less active) forms, which
help regulate oestrogen activity [1, 20].

In recent decades, advances in research have revealed
the involvement of gut microbial flora in the metabolism of
oestrogen, especially dietary phytoestrogens. This group of
organisms was called astrobleme, broadly classified as Bac-
teroidetes, Firmicutes, Verrucomicrobia, and Proteobacteria
that mainly involve p-glucuronidases and -glucosidases.
The enterohepatic circulation of oestrogen leads to altera-
tions in circulating and excretory oestrogen levels [21]. The
use of antibiotics four or more times per year is associated
with a moderate increase in BC risk [22, 23]. Antibiotics
modulate the gut flora, leading to reduced phytochemical
oestrogen metabolism and hence increased circulating oes-
trogen levels, thereby increasing the cancer risk.

In-vitro and in-vivo studies provide early
evidence of ER-independent signalling
in cancer

Available data on ER-independent mechanisms of oestrogen
are mostly from BC studies, as they are the most implicated
in the disease. Direct evidence of oestrogen metabolite geno-
toxicity was obtained from two independent studies: the big
blue rat cell culture mutation assay [20] and Chinese hamster
VP-79 cell mutation assay [24]. In-vitro evidence has arisen
from studies in which oestrogen metabolites were shown to
cause malignant transformation in MCF-10F cells, which
are benign breast epithelial cells lacking ER [25, 26]. Fur-
thermore, exposure to physiological concentrations of E2 or
4-OHE in MCF-10F cells resulted in a loss of heterozygosity
at common human mammary tumour hot spots. Comparative
genomic hybridisation techniques showed that 1 uM 4-OHE
induced several damages, including DNA gain (8924, 9q34)
and loss at 13g21 [27]. ER-independent effects of oestrogen
were confirmed based on two observations: First, the short
time between the stimulus and downstream signalling activa-
tion and consistent levels of effector expression, and second,
the inability of ER inhibitors to block these actions [14].
In-vivo studies in SCID mice showed that oestradiol-
exposed, non-malignant MCF-10 cells formed serially trans-
plantable tumours. Direct and concrete evidence in support
of this hypothesis was obtained from an experiment with
the ERKO/Wnt-1 model, a transgenic Wnt-1 mouse model
with ER knockout. The mice were subjected to oophorec-
tomy, and oestradiol was administered at physiological
concentrations, which revealed a dose-dependent increase
in breast tumour formation. That study was designed such
that the confounding effects of progesterone and other ovar-
ian factors were minimised. A limitation of that study was
the presence of minimally functional (confirmed by PCR)

ERp. To overcome any leaky expression of ERa, the ER
antagonist fulvestrant was used, which did not have any
effect on tumour incidence. However, the use of letrozole
in combination with a minimally active form of E2 delayed
tumour formation, even in animals with intact ovaries [27,
28]. These studies laid the foundation for the possibility of
oestrogen-induced tumourigenesis beyond the pretext of ER.

Clinical evidence for the ER-independent effects of oes-
trogen came from the fact that in patients with BRCA I muta-
tion, almost 75% of whom were ER —, bilateral oophorec-
tomy reduced the BC risk by 53% [29, 30]. Additionally,
post-menopausal hormone therapy increased the risk of both
ER + and ER —disease [27, 31]. More recently, growing
experimental data suggests ER-independent, immunomodu-
latory, DNA damaging effect of selective oestrogen receptor
modulators (SERMs) like tamoxifen and raloxifene in triple
negative BC (TNBC).

Oestrogen metabolites play a vital role
in tumourigenesis

17a-Oestradiol (17a-E2) is a weak oestrogen produced in
the ovarian follicles that is converted to E1 and further to E2.
17a-E2 was shown to induce VEGFA mRNA expression in a
dose- and time-dependent manner via the PI3K/AKT signal-
ling pathway, independent of ER [32]. 4-OHE was found to
be tumourigenic in hamster kidney [33]. Repeated exposure
to 4-OHE induced ROS production, malignant transforma-
tion of MCF10A cells, and growth in nude mice via PI3K/
AKT signalling, leading to the overexpression of cell cycle
genes cdc2, PRC1, and PCNA and the transcription factor
NRF-1 [34]. In addition, 4-OHE induced the invasion of
human breast epithelial cells (MCF10F) [35]. The enzyme
involved in the formation of 4-OHE, cytochrome P4501B1
(CYP1B1), showed significant activity in the extrahepatic
targets of oestrogen, including the breast, where it was
upregulated in tumours compared to normal breast. Poly-
morphism in CYPIBI at position 432 was observed in BC
and endometrial cancer populations [21, 36].

In-vitro studies revealed that both 2-OHE and 2-MeOHE
had a negligible affinity to the ER. In MCF-7 cells, 2-OHE
significantly enhanced cell growth and protein synthesis in
the G2/M phase of the cell cycle compared with E2. How-
ever, 2-MeOHE showed cytostatic activity by inhibiting
DNA synthesis and mitosis [37]. In cultured endothelial
cells, fulvestrant did not alter the dose-dependent inhibition
of endothelin-1 synthesis and MAPK activity by 2-MeOHE,
indicating an ER-independent mechanism [38]. In-vitro
studies using the osteosarcoma (OS) model yielded simi-
lar results, and 2-MeOHE was shown to induce time- and
dose-dependent apoptosis without considerable changes
in normal osteoblasts or decreased resorption in the bone
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tumour microenvironment. Here, ER-independent action was
confirmed in three experiments: (a) only a negligible effect
on cell survival was observed with E2, 2-OHE, and oestrone;
(b) 2-MeOHE exerted similar effects irrespective of the ER
status of the cell; and (c) addition of ICI182780 did not sig-
nificantly alter the anti-proliferative effect [39—41]. This was
accompanied by an increase in interferon (IFN) expression
in OS cells. 2-MeOHE also increased the phosphorylation of
elF-2a, a downstream effector of IFN-mediated anti-prolifer-
ative effects. The analysis of clinical samples also indicated
decreased phosphorylation in the tumour compared with
that in normal OS tissues, without significant differences
in elF-2a levels [42]. The specificity of 2-MeOHE for OS
cells was later demonstrated in-vivo, providing insights into
its therapeutic potential [2, 43]. More recently, the mecha-
nism of 2-MeOHE action was reported to be via a decrease
in Bcl-2 and VEGF expression and increase in caspase-3
expression, leading to G2/M cell cycle arrest and prema-
ture apoptosis [44]. In the bone marrow microenvironment,
2-MeOHE also decreased the expression of cytokines that
mediate tumour growth, survival, and angiogenesis [45,
46]. Mechanistically, in-vitro and in-vivo studies have dem-
onstrated macrophage stimulatory protein-1 receptor, a
receptor tyrosine kinase, as a target for 2-MeOHE [47]. In
summary, unlike other E2 metabolites, 2-MeOHE plays a
pronounced tumour-suppressive role by inhibiting cell pro-
liferation and promoting apoptosis (Table 1).

Table 1 Tumor suppressive functions of 2-MeOHE in different cancers

Oestrogens and their genotoxic metabolites
impair the cellular redox state

Evidence for the production of genotoxic metabolites via
the oxidative metabolism of endogenous and synthetic
oestrogens originated in the late 90 s. Oestrogen can act
as an endogenous chemical carcinogen, with its oxidative
metabolites forming adducts with DNA, which may result
in tumour initiation [20]. An imbalance in oestrogen metab-
olism that leads to oxidative damage can be attributed to
various factors. Overexpression of aromatase leads to exces-
sive synthesis of E2, increased production of 4-OHE, loss
or decreased function of COMT, low levels of inactivation
of the oestrogen quinone pathway and GSH, and/or low lev-
els of quinone oxidoreductase and/or CYP reductase [56].
For instance, BRCA1/BARDI1 transcriptionally controls the
P450 subsets of genes, namely, CYPIAI and CYP3A4. Thus,
alterations in the expression of either of these proteins may
contribute to tumourigenesis [57]. Oestrogen-induced DNA
damage can be of three types: generation of free radicals,
formation of oestrogen (or its metabolites)—DNA adducts,
and endogenous DNA modifications [58].

The oxidation of catechol oestrogens to semiquinones and
o-quinones concomitantly produces superoxide anions and
hydroxyl radicals, and redox cascades lead to DNA, pro-
tein, and lipid damage (Fig. 2). One-electron oxidation of
E2 generates reactive phenoxyl radical intermediate, further
giving rise to glutathione thiyl, NAD® radical, and H,0,.
Accumulation of H,0, leads to DNA base lesions and affects
redox-sensitive transcription factors such as NRF2 and
NF-«B, which are key players of inflammatory responses
[59]. Oestrogen-induced proliferation and activation of

SI. No Cancer Model Mechanism References
1 T lymphoblastic leukemia CEM cells p21 (1) p53 and BCI-2 (|) [48]
2 Ovarian cancer BG1, HeyC2, TOV112D Catalytic activation of protein kinase C6  [49]
3 SKOV-3 cells Not studied [50]
4 Endometrial cancer Ishikawa cells F-spondin signaling [51]
5 Prostate cancer PC-3 cells BCI2 (|) Bax (1) [52]
6 PC-3 cells ROS production (1) [53]

E-Cadherin (1)

N-Cadherin and vimentin ()

Cyclin D1 and B-catenin (])
7 Chronic myeloid leukemia K562 and KCL22 cells, BALB/C nude ROS production (1) [54]

mice Mitochondrial membrane potential (|)

miR223 (1)

PI3K/AKT ()
8 Non-small cell lung cancer (NSCLC) 2D and 3D culture of A549 cells Inhibition of acyl-protein thioesterases [55]

1 and thus enhanced cellular protein
S-palmitoylation

(1) upregulation and (|) downregulation.
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Fig.2 Oestrogen metabolites and its association with cancer

macrophages also produce ROS and modify the function of
polymorphonuclear leukocytes, resulting in the formation of
hypochlorites (OCI") [7].

Redox cycling of 2-OHE simultaneously accumulates
ROS in MCF-10A cells, activating the IxB kinase signal-
ling and thus, anchorage-independent growth [60]. Simi-
larly, this process was found to produce H,0, and OH" in
MCF-7 and MDA-MB-231 cells, leading to oxidative DNA
modification expressed by 8—oxo—7,8—dihydroxy—2'—deoxy-
guanosine [61]. O-Methylation of 2-OHE by COMT to form
2-MeOHE protected BC cells from catechol oestrogen-
induced oxidative DNA damage (formation of 8-hydroxy-
2'-deoxyguanosine) [19]. Catechol oestrogens and quinones,
in the presence of lactoperoxidase, tyrosinase, or prostaglan-
din H synthase, react with DNA to form stable depurinated
adducts, which act as endogenous initiators of breast tumo-
rigenesis [61]. Oestrogen-3,4-quinones react with adenine
and guanine in DNA to form depurinated 4-OHE-1-N3
adenine and 4-OHE-1-N7 guanine adducts, respectively
[18, 62]. When hamsters were consistently treated with oes-
trogen, DNA adducts containing endogenous electrophiles
were observed in the renal cortex. Furthermore, in that
study, when the animals were treated simultaneously with
tamoxifen, DNA damage blocking was unsuccessful [58].
Although the authors were unable to conclude that tamox-
ifen fails to counteract oestrogen-induced damage, this can
now be postulated as an ER-independent mechanism.

An oestrogen metabolite-induced redox imbalance has
also been implicated in tumourigenesis in oestrogen-inde-
pendent organs. The role of oestrogen in the development
of thyroid cancer was evaluated as the prevalence of thy-
roid cancer was 3—4 times higher in women than in men
[20]. Follicular thyroid cells produce thyroid hormones
via iodination of thyroglobulin [63]. In-vivo studies have
revealed higher exposure to oxidative stress in the thyroid
glands of female rats owing to increased ROS production
and decreased ROS degradation [64]. Further experimen-
tal evidence suggests an imbalance in E2 metabolism, as
detected by a higher ratio of depurinated oestrogen-DNA
adducts in the urine of women with thyroid cancer [65].
Thus, it can be concluded that an imbalance in oestrogen
metabolism impairs the cellular redox balance, contributing
to tumourigenesis.

Effects of oestrogen on mitochondria

Mitochondria are the powerhouse of the cell that derive
energy for the cells from metabolic fuels. This is achieved
through oxidative phosphorylation, in which electrons travel
through a series of carrier complexes to the final acceptor,
O,, which is reduced to water. Electron transfer is accom-
panied by the expulsion of protons across the inner mito-
chondrial membrane, which creates a potential difference

@ Springer



9502

Molecular Biology Reports (2023) 50:9497-9509

across the membrane. The change in free energy upon re-
entry of protons into the mitochondrial matrix is coupled
with ATP synthesis [66]. Lipid-rich mitochondria have been
described to act as a “sink” for the highly lipophilic oestro-
gen. Moreover, the two main enzymes of oestrogen anabo-
lism, 3-BHSD and aromatase, were found to be localised in
the mitochondria in ovarian tumour epithelial cells. [67].
E2, through anchorage and integrin-dependent signalling,
was found to induce ROS, especially H,O, in the perinu-
clear mitochondria. This ROS induction was accompanied
by enhanced cell motility; phosphorylation of c-Jun and
CREB; and binding of the oxidant-sensitive transcription
factors AP-1, CREB, and NRF1 [67]. Functionally, it also
modified G1 to S transition and some of the early G1 genes
through an ER-independent, non-genomic signalling path-
way [68]. These findings provide a novel perspective on the
role of E2-induced changes in mitochondria and their impact
on cell cycle regulation.

The treatment of human spermatozoa with endogenous
E2 and xenoestrogens genistein and bisphenol A alters the
mitochondrial membrane potential and increases O,* lev-
els [69]. In isolated rat liver mitochondria, E2 reduces ROS
generation, consequently protecting mitochondrial integrity
and preventing the release of cytochrome c, thereby inhib-
iting apoptosis [70]. In ovariectomised mice, E2 directly
modulated and protected the mitochondrial functions in
the absence of ERa [71]. In-vitro BC study showed that E2
induced the expression of ATG3 and Beclinl and reduced
the expression of p53, leading to mitochondrial damage by
autophagy and cellular senescence [72]. Another in-vivo
study on cardiovascular disease showed that E2 adminis-
tration induced E2-mediated autophagy which is related to
the Rab9-dependent autophagy pathway [73]. In-vivo study
using porcine oocytes found E2 to enhance autophagy,
reducing ROS levels and apoptosis activity promoting effi-
cacy of the development of porcine oocytes [74]. Exogenous
E2 protected mitochondrial functions in cardiomyocytes of
ovariectomized rats having insulin resistance [75]. Meno-
pausal women with reduced E2 levels lead to adiposity and
reduced insulin sensitivity and diabetes.

In summary, these studies demonstrate that E2 plays an
important role in the regulation of mitochondrial membrane
potential, ROS production, autophagy, and apoptosis. The
mechanism of E2-mediated regulation of mitochondrial
function is yet to be fully elucidated.

Membrane-bound receptor of E2 in cancer

Among the ER family, ERa is expressed abundantly in tis-
sues due to its critical role in cellular processes. ERa dys-
regulation has been reported in many cancers, including
breast [76], ovary [77], and uterus [78]. Apart from ERa and
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ERp, the G-protein coupled receptor superfamilies are also
known to exert important effects of oestrogen. While ERs
are intracellularly localised to the mitochondria, GPER1 or
GPR30 are plasma membrane-bound receptors that activate
signalling cascades via G-proteins. GPER1 is a 375-amino
acid transmembrane receptor that binds to E2 and mediates
non-genomic oestrogen responses [79]. E2-bound GPER1
phosphorylates ERK1/2 via EGFR, cAMP, Ca**, and PKC
activation. GPERI is expressed in normal breast mammary
cells (MCF10A) and is considerably downregulated in dedi-
fferentiated BC cells. Additionally, GPER1 was found to
reduce cell viability but favoured the migration of metastatic
BC cells [80]. This could be due to the different downstream
signalling pathways in the two phenotypes and requires fur-
ther characterisation. Two independent studies confirmed
this pattern of expression in clinical tumour samples, with
all normal breast epithelia showing positive immunoreac-
tivity for GPER1, whereas in tumours, its expression var-
ied. Crosstalk between GPER1 and CXCR1 was found to
be involved in the migration and invasion of BC cells [81].
In tumours, GPER1 expression correlated with histologi-
cal grade, ER negativity, HER2 positivity, tumour size, and
metastasis [82, 83]. Direct in-vivo evidence for the prolif-
erative role of GPER1 was obtained using a mouse model.
GPERI1 knockout mice were crossed with the transgenic
mammary tumourigenesis model, MMTV-PyMT. Interest-
ingly, the initial tumour development process was similar in
wild-type and GPER1 deficient mice. After a few weeks, the
GPERI null mice showed smaller tumours, lower prolifera-
tion, lower grade, and lesser metastasis [84] GPER1 was
reported to have the potential to function as a prognostic
marker in various cancers [85]. Plasma membrane-bound
GPERI1 expression is a negative prognostic factor in ER +,
tamoxifen-treated, and high-risk BC [86, 87].

Anti-oestrogens tamoxifen and fulvestrant, natural com-
pounds hydroxytyrosol and oleuropein, phytoestrogen
coumestrol, and endocrine disruptor bisphenol A bind to and
act as non-selective agonists of GPER1 [88]. The selectivity
of receptors and cross-reactivity of ligands depend on the
effective ligand concentration [89]. E2 and genistein were
reported to protect fibroblasts and keratinocytes from ROS-
induced damage by activating GPER1 [90]. Genistein pro-
moted the proliferation of thyroid squamous cell carcinoma
SW579 cells via GPER1 activation [91]. Chlorobisphenol A,
an oestrogenic compound, was found to induce cell prolif-
eration in neuronal cells in-vitro via both ERo and GPER1
pathways [92]. C—C motif chemokine ligand 18 (CCL18),
a cytokine overexpressed in tumours, was also shown to
bind to GPER1 [93]. GPER1 antagonists such as G-15 [94],
G-36 [95], and C4PY (meso-(p-acetamidophenyl)-calix[4]
pyrrole) and GPER1 agonists such as 1311-fulvestrant [96]
and 5408-0877 [97] are among the GPER1 modulating com-
pounds identified previously (Table 2).
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Table 2 Different modulators of GPER1 from literature
Compound Agonist/Antagonist Model Cellular effects References
Lupeol Antagonist In-silico - [98]
Quercetin Antagonist In-vitro, BM cells | AKT phosphorylation [99]

| NF-kB activation
Bisphenol S Agonist Murine hypothalamic cell lines 1 Agrp expression [100]
17B-aminoestrogens Agonist MCF7 and SIHA cells | c-fos phosphorylation [101]
Synthetic compounds SKO  Agonist In-silico and in-vitro | Cell proliferation [102]

and SKOP

(1) increase, (|) decrease, and BM Bone marrow.

In osteoblasts, E2 inhibits autophagy and apoptosis via
the GPER1/AKT axis [103]. Evidence shows lower mortal-
ity rates in women with colorectal cancer (CRC), which may
be due to the role of oestrogen. While ERf is downregulated
in CRC, public datasets on CRC suggest that the overexpres-
sion of GPER1 can selectively rescue tumourigenic effects
via the Wnt/p-catenin pathway [104]. Increased expression
of GPER1 was observed in gastric cancer and reported to
be associated with EMT and poor prognosis [105, 106]. In
NSCLC A549 cells, GPERI1 agonist decreased the prolif-
eration and enhanced the apoptotic activity by modulating
the redox enzymes of the cell [107]. Histological analysis
of NSCLC tissues revealed that higher nuclear localisation
of GPERI correlated with poor recurrence-free and overall
survival [108]. In papillary thyroid cancer, GPER1 has been
implicated in tumourigenesis and is a potential therapeutic
target [109]. GPERI1 is overexpressed in the cell membrane
and cytoplasm of uterine cervical adenocarcinoma in situ
and adenocarcinoma, unlike the strong nuclear expression of
GPERI1 in normal tissue. GPER 1-positive patients have poor
overall survival [110]. In leiomyosarcoma cells, insulin was
found to increase the levels of GPER1 mRNA and protein
via the PRKCD/MAPK1/c-Fos/AP axis [87]. GPER1 was
reported to be overexpressed in prostate cancer-associated
fibroblasts and to regulate its interaction with tumour-asso-
ciated macrophages, which have the potential to regulate
the tumour microenvironment [111]. In glioblastoma, pre-
menopausal women with high GPER1 levels showed better
prognosis [112]; however, there is a need to understand the
complex signalling pathways that occur parallelly inducing
the genomic and non-genomic effects of GPER1 signalling.

Oestrogen signaling via GPER1 has been studied in sev-
eral non-cancer models [113, 114]. Mechanistically, these
studies showed the involvement of necroptosis, ERK sig-
nalling, which are crucial in tumorigenesis as well. In-vitro
studies also showed the protective role of Genistein/E2 on
mitochondria via GPER1 pathway in non-alcoholic fatty
liver disease in postmenopausal women and mice muscle
cells [115]. GPERI1 also partially mediates genistein stimu-
lation and improves glucose tolerance in-vivo [116]. In-vivo

studies showed that E2 protects the mitochondrial functions
of muscle cells. Estrogen-supplemented postmenopausal
women and ovariectomized mice restored complex I func-
tion in muscle and liver cells [117]. In both cancer and
other diseases, estrogen signaling via GPER1 confirmed to
have protective effects over mitochondria functions. How-
ever, more research on the mechanism of GPER1 pathway
on mitochondria will help to identify novel therapeutic
approaches. Further studies are required to shed light on the
relationship and balance between ER and GPER1 activities.
The role of GPER1 in TNBC might be of clinical signifi-
cance, that requires experimental evidence.

Therapeutic significance of ER-independent
oestrogen signalling

ER-independent oestrogen signalling provides a plausible
explanation for resistance to ER antagonist therapies, such
as RET signalling mediated Raloxifene resistance demon-
strated in-vitro [118]. A recent study demonstrated novel
analogues of Tamoxifen, showing potential toxicity against
TNBC cell lines MDA-MB-231 and MDA-MB-468 [119].
With the emerging success of drug repurposing, off-target
effects of these ER modulators are being explored for their
roles in other diseases [120]. 2-MeOHE sensitises BC cells
to taxane treatment by centrosome de-clustering [121].
Apart from cell growth arrest and apoptosis, 2-MeOHE
also demonstrated the potential to overcome drug resist-
ance in multiple myeloma (MM). Similarly, in OS cells, it
inhibited mitochondrial biogenesis via PPARY, coactivator
la, and cytochrome c oxidase I. It was also proved to be a
potent inhibitor of succinate dehydrogenase complex subunit
A and sirtuin 3 [122]. In-vitro, MM models of melphalan
(LR-5), doxorubicin (Dox-40 and Dox-6), and dexametha-
sone (MM.1R) resistance were shown to undergo apoptosis
upon treatment with 2-MeOHE. Its therapeutic potential was
evaluated in clinical trials involving patients with hormone-
refractory prostate cancer and reported to be a well-tolerated
drug, with non-linear pharmacokinetics and suboptimal
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plasma levels. Despite its poor availability for oral adminis-
tration, it showed some anti-cancer activity at 1200 mg/day
[123]. In prostate cancer, the administration of 2-MeOHE
in combination with eugenol showed better efficacy, thus
reducing the therapeutic concentration and adverse effects
(1). 2-MeOHE was effective against melanoma in-vitro
and in-vivo and acted synergistically with PD-1 blockade
immunotherapy [124]. Synergistic treatment with 2-MeOHE
and erlotinib induced apoptosis in hepatocellular cancer
(HCC) cells and inhibited the stemness of erlotinib-resistant
hypoxic cells [125]. To improve the efficacy of 2-MeOHE,
polymeric micelles were used for delivery, which increased
the cellular uptake and enhanced the anti-tumour activity
in-vitro [126]. Similarly, the micellar administration of
2-MeOHE showed a beneficial effect in lung cancer cells
by modulating hypoxia, cell cycle, and apoptosis [126, 127].
Liposomal delivery of 2-MeOHE nanoparticles was effec-
tive in the treatment of uterine leiomyoma in-vivo using
patient-derived xenografts. There was an almost two-fold
difference in the tumour size, proliferation, and apoptosis
[128]. There is a need to conduct rigorous clinical trials to
establish 2-MeOHE as a therapeutic agent in conjunction
with existing therapies.

An in-vitro study showed that overexpression of ERa36
and GPERI1 can affect responsiveness to tamoxifen and pro-
mote tumour progression, thereby not supporting this treat-
ment in ER +BC [129]. E2-mediated GPR30 activation was
reported to induce the mTOR signalling pathway, promoting
p62 phosphorylation which, in turn, increased ESR1 expres-
sion. Targeting this signalling pathway to decrease ESR1
expression holds therapeutic potential in oestrogen-sensitive
cells [130]. The antidepressant drug fluoxetine was found
to exert oestrogen-like actions through GPER1 activation,
leading to the activation of PI3/AKT and ERK signalling
cascades [131]. The n-butanol extract of Huaier was found
to inhibit gastric cancer proliferation, invasion, and metas-
tasis in-vitro by inhibiting GPER1-mediated PI3/AKT sig-
nalling [105]. siRNA-mediated knockdown of GPER1 sup-
pressed the proliferation, invasion, and migration of gastric
cancer cells by attenuating PI3/AKT-mediated EMT [106].
The GPER agonist G1 altered the mitochondrial membrane
potential, DNA damage, and apoptosis in mantle cell lym-
phoma (MCL), thereby confirming the potential of G1 in
combination with ibrutinib as a candidate therapy for MCL
[132]. Targeting GPERI1 is a promising approach for modu-
lating cisplatin resistance in gastric cancer. In-vitro GPER1
knockdown increased sensitivity to cisplatin and induced
changes in EMT [133]. Cepharanthine hydrochloride was
reported to induce mitophagy by binding to GPER1 in HCC
primary cells, cell lines, and mouse xenograft models [134].
The GPER1 agonist G1 showed a potential anti-tumour
effect in glioblastoma in-vivo [112]. However, there are few
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data from mechanistic studies on targeting GPER1 and suf-
ficient clinical evidence to prove its specificity to GPERI1.

In summary, the expression of ER and GPER1 was
reported to be independent in BC, and both receptors
showed distinct binding affinities to various oestrogen
metabolites [135]. In addition, most ER antagonists serve
as GPERI agonists; hence, treatment modalities require a
deep understanding of these pathways, especially in BC
[135]. GPER1/EGEFR signalling plays an important role in
increasing tamoxifen resistance in ER-positive BC [136].
Increased expression of GPER1 and GPER1-EGFR medi-
ated signalling play a major role in TNBC progression [137,
138] modulating the GPER1 signalling pathway could be an
effective approach in the treatment of both hormone-positive
cancer and TNBC. Recent advances in research have pro-
vided other options such as proteolysis-targeting chimeras
(PROTAC :S) to target specific proteins of interest. Hence,
GPERI holds potential as a therapeutic target in cancer, and
the modulation of its expression can complement existing
anti-oestrogen therapies and help manage drug resistance in
oestrogen-driven cancers.

Conclusion

Almost 70% of breast tumours are ER +, and endocrine
therapies with selective ER modulators (tamoxifen) or
downregulators (fulvestrant) are a common treatment
modality for such subtypes. Approximately 25% of tamox-
ifen-treated patients present with disease recurrence 5 years
post-therapy. Several mechanisms, including MAPK- and
AKT-induced downregulation of ER and epigenetic modi-
fications, have been implicated in tamoxifen resistance. Fur-
thermore, 20-30% of ER + patients develop either de-novo
or acquired resistance to tamoxifen. As described previously,
ER-independent actions may represent a mode of resistance
to anti-ER therapy. Furthermore, modulating the oestrogen
metabolism imbalance leading to free radical-mediated DNA
damage, addressing the therapeutic potential of oestrogen-
mitochondrial interactions, and targeting GPER1 offer novel
treatment strategies, especially for TNBC.
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