
Vol.:(0123456789)1 3

Molecular Biology Reports (2023) 50:6557–6568 
https://doi.org/10.1007/s11033-023-08592-1

ORIGINAL ARTICLE

Effects of honokiol protects against chronic kidney disease via BNIP3/
NIX and FUNDC1‑mediated mitophagy and AMPK pathways

Xian Wei1 · Yuzhi Wang2 · Yunlan Lao2 · Jiali Weng2 · Ruyu Deng3 · Shunmin Li1 · Jiandong Lu1 · Shudong Yang1 · 
Xinhui Liu1 

Received: 5 January 2023 / Accepted: 13 June 2023 / Published online: 20 June 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
Background Chronic kidney disease (CKD) is a serious health threat worldwide. Defective mitophagy has been reported 
to induce mitochondrial dysfunction, which is closely associated with CKD pathogenesis. Honokiol (HKL) is a bioactive 
component of Magnolia officinalis that has multiple efficacies. Our study aimed to investigate the effect of HKL on a CKD 
rat model and explore the possible mechanisms of mitophagy mediated by Bcl-2 interacting protein 3 and BNIP3-like (NIX) 
(also known as the BNIP3/NIX pathway) and FUN14 domain-containing 1 (the FUNDC1 pathway) and the role of the AMP-
activated protein kinase (AMPK) pathway.
Methods A CKD rat model was established by feeding the animals dietary adenine (0.75% w/w, 3 weeks). Simultaneously, 
the treatment group was given HKL (5 mg/kg/day, 4 weeks) by gavage. Renal function was assessed by measuring serum 
creatinine (Scr) and blood urea nitrogen (BUN) levels. Pathological changes were analyzed by periodic acid-Schiff (PAS) 
and Masson’s trichrome staining. Protein expression was evaluated by Western blotting and immunohistochemistry.
Results HKL treatment ameliorated the decline in renal function and reduced tubular lesions and interstitial fibrosis in CKD 
rats. Accordingly, the renal fibrosis markers Col-IV and α-SMA were decreased by HKL. Moreover, HKL suppressed the 
upregulation of the proapoptotic proteins Bad and Bax and Cleaved caspase-3 expression in CKD rats. Furthermore, HKL 
suppressed BNIP3, NIX and FUNDC1 expression, leading to the reduction of excessive mitophagy in CKD rats. Additionally, 
AMPK was activated by adenine, and HKL reversed this change and significantly decreased the level of activated AMPK 
(phosphorylated AMPK, P-AMPK).
Conclusion HKL exerted a renoprotective effect on CKD rats, which was possibly associated with BNIP3/NIX and FUNDC1-
mediated mitophagy and the AMPK pathway.
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PINK1  Phosphatase with tensin homolog (PTEN)-
induced kinase 1

RASIs  Renin-angiotensin system inhibitors
Scr  Serum creatinine
TCM  Traditional Chinese medicine

Introduction

Chronic kidney disease (CKD) has been acknowledged 
as a “silent killer” due to the low rate of early diagnosis, 
high prevalence, costly health care costs and low cure rate. 
Almost 9.1% of adults worldwide suffer from CKD [1], and 
the number of cases in Asia increased from 202.4 to 441.2 
million between 1990 and 2019 [2]. Nearly 5.4 million 
patients are projected to receive renal replacement therapy 
by 2030 [3]. The global death toll due to CKD increased by 
98%, the disability-adjusted life years (DALYs) increased 
by 62% from 1990 to 2016 [1, 4], and CKD is predicted to 
become the 5th leading cause of death by 2040 [5]. Cur-
rently, available treatments with renin-angiotensin system 
inhibitors (RASIs) fail to prevent end-stage renal disease 
(ESRD). Therefore, deeper insight and further examination 
of efficient strategies have become pressing needs.

HKL  (C18H18O2) is a small-molecular polyphenol derived 
from Magnolia officinalis with multiple biological properties 
[6]. Magnolia officinalis has been widely used as a classic 
herbal (named “Houpo”) in traditional Chinese medicine 
for over two thousand years [7]. Accumulating researches 
discovered various pharmacological effects of HKL includ-
ing anti-inflammatory [8], anti-cancer [9], antioxidant [10] 
and antiarrhythmic [11] in diverse disorders [6]. Moreover, 
accumulating evidence indicates that HKL plays a protective 
role in mitochondrial function by regulating mitochondrial 
dynamics, activating Sirtuin 3 (a mitochondrial deacetylase) 
and modulating mitophagy [10, 12, 13]. Thus, HKL was 
shown to have renoprotective effects on cisplatin-induced 
acute kidney injury (AKI) [14] and renal ischemia‒reperfu-
sion (I/R) injury animal models [15]. However, the mecha-
nisms and effects of HKL on CKD remain unclear.

The kidney is a highly metabolic and energy-demanding 
organ that is rich in mitochondria. Emerging evidence indi-
cates that defective mitophagy correlates with renal diseases 
[16]. Mitophagy, which is also known as mitochondrial 
autophagy, is the selective removal of nonfunctional and 
damaged mitochondria from cells. This type of autophagy 
affects mitochondrial number, quality control and function 
and cellular homeostasis, favoring adaptation in response 
to external challenges [17]. However, under stress or injury, 
defective mitophagy triggers mitochondrial dysfunction, giv-
ing rise to the accumulation of degraded organelles, organ-
ismal damage and subsequent pathological disorders [18]. 
Previous studies revealed that mitophagy is mainly regulated 

by the Bcl-2 interacting protein 3 (BNIP3)/BNIP3-like 
(BNIP3L, also named NIX) pathway, FUN14 domain con-
taining 1 (FUNDC1) pathway, and phosphatase with tensin 
homolog (PTEN)-induced kinase 1 (PINK1)/Parkin pathway 
[19]. Accumulating evidence indicates that BNIP3/NIX and 
FUNDC1-mediated mitophagy participate in cell apoptosis 
and the inflammatory response, which are closely associated 
with cancer [20], neurodegenerative diseases [21] and car-
diovascular diseases [22]. In the kidney, abnormal BNIP3/
NIX and FUNDC1-related mitophagy were demonstrated to 
be linked with renal apoptosis, inflammation and fibrosis in 
diabetic nephropathy [23] and I/R-AKI [24]. Furthermore, 
recent studies have shown that activation of the AMP-acti-
vated protein kinase (AMPK) pathway, which is the energy 
metabolism conductor, plays a vital role in mitophagy acti-
vation in multiple disorders [25, 26]. However, the role of 
BNIP3/NIX and FUNDC1-mediated mitophagy and the 
AMPK pathway in CKD progression remains to be further 
explored.

In the present study, we explored the effects of HKL on 
CKD and investigated the underlying mechanisms regard-
ing BNIP3/NIX and FUNDC1-mediated mitophagy and 
the AMPK pathway by using an adenine-induced CKD rat 
model.

Materials and methods

Chemicals and antibodies

HKL (HY-N0003) was purchased from MCE (MedChemEx-
press, NJ, USA). The primary antibodies used were as fol-
lows: BNIP3 (1:500; Cell Signaling Technology, no. 3769), 
BNIP3/Nix (1:500; Cell Signaling Technology, no. 12396), 
FUNDC1 (1:1000; Cell Signaling Technology, no. 49240), 
Bax (1:1000; Abcam, no. 32503), Bad (1:1000; Abcam, no. 
32445), Caspase-3 (1:2000; Abcam, no. 184787), Cleaved 
caspase-3 (1:250; Cell Signaling Technology, no. 9664), 
P-AMPKα (Thr172) (1:1000; Cell Signaling Technology, 
no. 2535), AMPKα (1:1000; Cell Signaling Technology, 
no. 2532), and glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH, 1:5000; Proteintech, no. 60004-1-lg). The main 
reagents used in this study included Signal Stain Boost 
Detection Reagent (Cell Signaling Technology, no. 2532), 
antigen retrieval buffer (Abcam, no. 93678), a signal stain 
diaminobenzidine hydrochloride (DAB) substrate kit (Cell 
Signaling Technology, no. 8059), and ECL chemilumines-
cence reagent (Millipore, MA, USA).

Animal models

Eight-week-old male Sprague‒Dawley (SD) rats (n = 18) 
weighing 220–260  g were obtained from Guangdong 
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Medical Laboratory Animal Center (Foshan, China). All 
animals were housed under a 12 h/12 h light–dark cycle with 
steady temperature (24 ± 1 °C) and humidity (55 ± 10%) and 
had free access to water and food. After 1 week of adap-
tive feeding, the rats were randomly distributed into three 
groups: the control group (n = 6), the CKD model group 
(n = 6), and the HKL treatment group with CKD (n = 6). 
The rat model of CKD was established by feeding the ani-
mals adenine (Sigma-Aldrich, Mo, USA) in a 0.75% w/w 
adenine-based diet for 3 weeks [27]. Rats in the treatment 
group received a 5 mg/kg/d dose of HKL by gavage for 
4 weeks with concurrent adenine-based feeding [28, 29]. 
After 28 days, the rats were anesthetized, blood samples 
were collected via the abdominal aorta, and the rats were 
euthanized by cervical dislocation with minimum suffering. 
The kidneys were isolated and prepared for the subsequent 
Western blotting and histological analysis.

Biochemical analysis

The levels of blood urea nitrogen (BUN) and serum creati-
nine (Scr) were analyzed using a creatinine serum detection 
kit (SKT-217; StressMarq Biosciences, British Columbia, 
Canada) and BUN detection kit (SKT-213; StressMarq Bio-
sciences, British Columbia, Canada) according to the manu-
facturer’s instructions.

Histological analysis

The kidney tissues were collected, fixed in 4% paraformal-
dehyde (overnight, 4 °C), dehydrated in a graded series of 
ethanol and embedded in paraffin. The paraffin-embedded 
sections (4 μm thick) were sliced and stained with periodic 
acid-Schiff (PAS) and Masson’s trichrome for general histol-
ogy. The tubular injury score was evaluated by PAS staining 
based on tubular dilation, tubular epithelial cell atrophy and 
shedding. The analysis standard was as follows: 0 = no tubu-
lar injury; 1 =  < 10%; 2 = 10–25%; 3 = 26–50%; 4 = 51–75%; 
and 5 =  > 75% tubular injury [30]. The collagen volume 
fraction was used to assess renal tubulointerstitial fibrosis 
by Masson staining using FIJI/ImageJ software (National 
Institutes of Health, USA). A total of 3 random microscopic 
fields (200 ×) in each sample in each group were selected for 
quantitative analysis in a blinded manner. The calculation 
method was as follows: collagen volume fraction = collagen 
area/total area × 100% [31].

Immunohistochemistry

The paraffin-embedded kidney sections used for immunohis-
tochemistry were placed in antigen retrieval solution (4 h, 
room temperature, RT). Then, the sections were incubated 
in 3% hydrogen peroxide solution (10 min, RT) and blocked 

with goat serum (1 h, 37 °C). The primary antibodies were 
added dropwise and incubated (overnight, 4 °C), and the 
sections were washed with Tris-buffered saline with 0.1% 
Tween 20 (TBST) (3 × 5 min/wash). Then, the sections were 
immersed in signal stain boost detection reagent (30 min, 
RT) and detected with DAB. The percentage of the DAB-
labeled area was calculated and presented as the relative 
expression of the primary antibodies. Three microscopic 
fields (200 ×) in each sample and 3 rats in each group were 
examined by ImageJ software (National Institutes of Health, 
USA) in accordance with the protocol [32, 33].

Western blot analysis

The extracted kidney cortex tissues were homogenized in 
lysis buffer and then centrifuged at 12,000 rpm (10 min, 
4 °C). The supernatant concentrations were determined by 
a Bradford protein detection assay, and then standards with 
an equal amount of 4 × SDS sample buffer were denatured 
(10 min, 100 °C). Then, the processed sample proteins were 
separated on 10–15% SDS‒PAGE gels and transferred to 
nitrocellulose membranes (Millipore, MA, USA). The mem-
branes were then blocked with 5% nonfat milk dissolved in 
TBST buffer (1 h, RT). Next, the primary antibodies were 
added to the blocked membranes in TBST and incubated 
(overnight, 4 °C). After primary antibody incubation, the 
membranes were washed with TBST (3 × 10 min/wash) and 
then incubated with horseradish peroxidase-conjugated IgG 
secondary antibodies (Life Technologies, CA, USA) (1 h, 
RT). Finally, the membranes were visualized and analyzed 
by a ChemiDoc MP Imaging System (Bio-Rad Laboratories, 
CA, USA).

Statistical analysis

The data were calculated by GraphPad Prism (GraphPad 
software 7.0, USA) and are presented as the mean ± SEM for 
graphical manifestation. Tukey’s multiple comparisons test 
and ANOVA were used for statistical analysis, and P < 0.05 
was considered statistically significant.

Results

Effects of HKL on renal function in CKD rats

Renal function in the groups is shown in Fig. 1. Serum Scr 
and BUN levels were elevated after adenine-induced kidney 
injury in all CKD rats. Compared with those in the CKD 
group, the levels of Scr and BUN were significantly reduced 
by HKL treatment. These results verified the establishment 
of the CKD model in rats. In addition, HKL treatment 
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effectively suppressed the decline in renal function, as evi-
denced by the reduced Scr and BUN levels.

Effects of HKL on renal pathological injury

Tubulointerstitial injury is a pathological feature of renal 
injury in many types of CKD [35] and is characterized by 
tubulointerstitial atrophy, tubulointerstitial collapse and 
interstitial fibrosis [33]. As shown in Fig. 2a, c, PAS stain-
ing showed extensive tubular collapse, tubular cell shedding 
and tubular expansion in the CKD group. The Masson stain-
ing showed remarkable collagen deposition and interstitial 
fibrosis in the CKD group (Fig. 2b, d). HKL significantly 
decreased tubular atrophy, collagen deposition and intersti-
tial fibrosis compared with those in the CKD group.

Effects of HKL on renal fibrosis in CKD rats

Enhanced expression of Col-IV and α-SMA are considered 
to be key features of renal tubulointerstitial fibrosis dur-
ing CKD progression. We measured Col-IV and α-SMA 
expression levels in the groups by immunohistochemistry. 
As shown in Fig. 3a, b, the expression level of Col-IV was 
markedly increased in the CKD group compared with the 
control group, and HKL reduced this increase compared 
with that in the CKD group. As shown in Fig. 3a, c, the 
expression of α-SMA increased after adenine-induced CKD 
induction and was suppressed by HKL treatment. These 
results indicated the antifibrotic effects of HKL treatment.

Effects of HKL on renal apoptosis in CKD rats

The apoptosis-related proteins Bad, Bax and Cleaved cas-
pase-3 have been reported to be linked with BNIP3/NIX 
and FUNDC1-mediated mitophagy [20, 34]. As shown in 
Fig. 4a–g, compared with those in the control group, the 
expression levels of Bad and Bax were markedly upregulated 
in the CKD group, similar to the change in the expression 
levels of Caspase-3, Cleaved caspase-3 and Cleaved cas-
pase-3/Caspase-3. In addition, this effect was reversed by 
HKL treatment, which significantly decreased the expres-
sion levels of Bad, Bax, Cleaved caspase-3 and Cleaved cas-
pase-3/Caspase-3. These data indicated the inhibitory effects 
of HKL on renal apoptosis in CKD rats.

Effects of HKL on renal mitophagy in CKD rats

The BNIP3/NIX and FUNDC1 signaling pathways control 
receptor-mediated mitophagy. To further examine mitophagy 
in CKD and the effects of HKL treatment, the expression 
levels of BNIP3, NIX and FUNDC1 were assessed by 
Western blotting (Fig. 5a–d) and immunohistochemistry 
(Fig. 5e–h). The Western blot results showed that BNIP3 
and NIX protein levels were prominently increased in the 
CKD group (Fig. 5a–c), similar to the change in FUNDC1 
expression levels (Fig. 5a, d). Moreover, HKL treatment 
significantly reduced BNIP3, NIX, and FUNDC1 expres-
sion to varying degrees. Consistent results were verified via 
IHC analysis (Fig. 5e–h). These results indicated that an 
increase in BNIP3/NIX and FUNDC1-mediated mitophagy 

Fig. 1  Effects of HKL on renal function in CKD rats. a Serum Scr 
levels in the control, CKD and HKL treatment group (n = 6 rats/
group). Compared with the control group, the level of Scr was 
severely elevated by adenine-induced kidney injury in CKD rats and 
significantly reduced by HKL treatment. b The BUN levels in all 

groups (n = 6 rats/group). HKL treatment depressed the BUN levels 
of CKD rats. Data are presented as means ± SEM (****P < 0.0001 
compared with the control group; #P < 0.05, ####P < 0.0001 compared 
with the CKD group)
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participated in CKD progression and that HKL inhibited 
excessive mitophagy in CKD rats.

Effects of HKL on AMPK in CKD rats

Recent studies have demonstrated that activated AMPK 
(phosphorylated AMPK, P-AMPK) is a modulator of 
BNIP3/NIX-mediated mitophagy [35]. Western blot 

analysis demonstrated a significant increase in P-AMPK 
induced by adenine in CKD rats (Fig. 6a, b). In addition, 
consistent results were observed by IHC staining (Fig. 6c, 
d). Moreover, compared to that in the CKD group, 
P-AMPK expression was notably decreased by HKL 
treatment, and IHC staining showed consistent results. 
These results demonstrated that the AMPK pathway was 

Fig. 2  Effects of HKL on renal pathological injury. a Representa-
tive renal histology by PAS staining in all groups. Remarkable tubu-
lar cells shedding, tubulo-atrophy, tubulo-collapse were showed in 
the CKD group, and relieved by HKL treatment. b Renal histology 
by Masson staining in all groups. Distinctly collagen deposition and 
interstitial fibrosis were captured in the CKD group, and reduced in 
the HKL group. Magnification = × 200, bars = 100 μm. c, d Quantita-
tive analysis of the tubular injury score and collagen volume fraction 

in each group (n = 6 rats/group). Tubular injury score and collagen 
volume fraction were severely up-regulated in CKD rats compared 
with the control group, respectively. HKL treatment reduced 
the up-regulated tubular injury score and collagen volume frac-
tion of CKD rats, respectively. Data are presented as means ± SEM 
(****P < 0.0001 compared with the control group; ####P < 0.0001 
compared with the CKD group)
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associated with adenine-induced CKD and that HKL sig-
nificantly reduced AMPK activation in CKD rats.

Discussion

In this study, we demonstrated the renoprotective effect of 
HKL, which improved renal function, ameliorated patho-
logic injury and reduced renal fibrosis in CKD rats. The 
underlying mechanism might be associated with the inhibi-
tory effects of HKL on excessive mitophagy and apoptosis 

via BNIP/NIX- and FUNDC1-mediated mitophagy and the 
AMPK signaling pathway.

HKL has exhibited renoprotective properties in renal dis-
ease studies. In a renal ischemia/reperfusion (I/R)-injury rat 
model, Yu et al. found that HKL relieved renal injury by 
reducing oxidative stress, inducible nitric-oxide synthase, 
and inflammation and enhancing catalase and superoxide 
dismutase levels [36]. Another study indicated that HKL 
protected sepsis-induced mouse survival and relieved acute 
renal injury by means of its anti-inflammatory and antioxida-
tive effects [37]. In the present study, HKL protected renal 

Fig. 3  Effects of HKL on renal fibrosis in CKD rats. a Representa-
tive Immunohistochemical images of Col-IV and α-SMA staining in 
all groups. Magnification = × 200, bars = 50  μm. b, c Quantification 
of Col-IV and α-SMA in each group (n = 3 rats/group). Treatment 
with HKL significantly reduced the Col-IV and α-SMA expression in 

CKD rats, which were markedly increased by adenine induced kidney 
injury compared with the control group, respectively. Data are pre-
sented as means ± SEM (****P < 0.0001 compared with the control 
group; #P < 0.05, ###P < 0.001 compared with the CKD group)
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Fig. 4  Effects of HKL on renal apoptosis in CKD rats. a Repre-
sentative Western blot pictures of Bad, Bax, Caspase-3 and Cleaved 
caspase-3. b–g Quantitative analysis of the Bad, Bax, Caspase-3, 
Cleaved caspase-3, Caspase-3/Cleaved caspase-3 and Cleaved cas-
pase-3/Caspase-3 expression levels in each group, GAPDH, Cleaved 
caspase-3 and Caspase-3 were used as respective loading control 
(n = 4–6 rats/group). Assessment of Bad, Bax, Caspase-3, Cleaved 
caspase-3 and Cleaved caspase-3/Caspase-3 expression levels were 

severely enhanced, while Caspase-3/Cleaved caspase-3 was sig-
nificantly reduced in CKD rats compared with the control group, 
respectively. HKL treatment could reduce the up-regulated Bad, 
Bax, Cleaved caspase-3 and Cleaved caspase-3/Caspase-3 expres-
sion levels in varying degrees. Data are presented as means ± SEM 
(**P < 0.01, ***P < 0.001, ****P < 0.0001 compared with the control 
group; #P < 0.05, ##P < 0.01, ###P < 0.001 compared with the CKD 
group)
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function in CKD rats and remarkably suppressed excessive 
Scr and BUN levels. In addition, renal pathological injury, 
including tubular collapse, tubular atrophy, and renal fibro-
sis, in CKD rats was ameliorated by HKL treatment. These 

results demonstrated that HKL could protect against renal 
injury in CKD rats.

Mitophagy is a major modulator of mitochondrial quality 
control by opportunely degrading and eliminating damaged 
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mitochondria to maintain mitochondrial number and func-
tion and cellular homeostasis [16]. Under oxidative stress, 
hypoxia and aging conditions, defective mitophagy is acti-
vated, leading to cellular membrane destruction, abnormal 
organelles and enhanced apoptosis [17]. Defected mitophagy 
was shown to be a double-edged sword (including deficient 
and excessive forms) and involved in various disorders, 
including cancer [20], neurodegenerative diseases [21] 
and cardiovascular diseases [22]. Mitophagy is generally 
regulated by mitophagy receptors, which are mediated by 
ubiquitin-independent mold (also known as direct mold) 
and ubiquitin-dependent mold. The outer mitochondrial 
membrane (OMM)-localized receptors BNIP3, NIX (a 
homolog of BNIP3) and FUNDC1 compose the ubiquitin-
independent mitophagy mold. The PINK1/Parkin pathway 
mainly forms the ubiquitin-dependent mitophagy mold [18, 
19]. Based on our previous work, we found that BNIP3/
NIX and FUNDC1-mediated mitophagy were more associ-
ated with the adenine-induced CKD model in rats than the 
PINK1/Parkin pathway (data not shown). Initially, due to 
its proapoptotic activity, BNIP3/NIX-mediated mitophagy 
was shown to participate in metabolic disorders in cancer 
mechanism studies [20]. BNIP3 and NIX are activated by 
hypoxic induction in human tumor cell lines [38], while 
BNIP3 silencing [39] or NIX knockdown [40] promotes 
tumor growth. Conversely, in the field of heart disease, 
high levels of BNIP3 and NIX expression increased cardiac 
myocyte apoptosis, which caused ischemic cardiomyopa-
thy [22] and hypertrophic cardiomyopathy [41]. The pro-
tein FUNDC1 was discovered later and is associated with 
hypoxia-induced mitophagy [42], and it has been verified 
that silencing the FUNDC1 gene decreased the pathologic 
progression of chronic obstructive pulmonary disease [43]. 
Excessive BNIP3-related mitophagy also promotes neuronal 
death in chronic cerebral hypoperfusion [44], and BNIP3 
might be a promising target for Huntington’s disease therapy 
[45]. Although the underlying mechanism in various dis-
eases remains unclear, the potential role of BNIP3/NIX and 

FUNDC1-mediated mitophagy in chronic diseases demands 
further research. In the present study, we found that BNIP3, 
NIX and FUNDC1 protein levels were upregulated by ade-
nine in CKD rats. Accordingly, the levels of the proapop-
totic proteins Bax and Bad were increased, and there was 
excessive mitophagy in joint renal injury, which is consist-
ent with previous reports [22]. Inhibiting BNIP3/NIX and 
FUNDC1-related mitophagy could protect against defective 
mitochondrial dynamics and function in diabetic nephropa-
thy [23, 46]. In a cisplatin-induced kidney injury rat model, 
Li et al. demonstrated that BNIP3/NIX-related mitophagy 
was activated and associated with mitochondrial fission and 
tubular epithelial cell apoptosis [47]. Thus, mitophagy plays 
a complex role in various disease models, and how BNIP3/
NIX and FUNDC1-related mitophagy affects CKD remains 
to be further researched.

AMPK acts as a pivotal energy sensor and modulator of 
cellular bioenergy metabolism. Numerous studies have indi-
cated that AMPK plays a crucial role in sustaining energy 
homeostasis, mitochondrial function, cellular apoptosis, 
and autophagy [48]. P-AMPKα, which is phosphorylated 
at Thr172, serves as the domain for AMPK activation [49]. 
Recent evidence has indicated that activated AMPK is a 
major modulator of mitophagy. Li et al. demonstrated that 
BNIP3 transcription and mitophagy are enhanced by AMPK 
activation and hypoxia-inducible factor 1 in endothelial cells 
[50]. In addition, Mao et al. found that mitophagy was regu-
lated by AMPK activation and enhanced FUNDC1 expres-
sion in many cells [51]. A recent study by Liang et al. high-
lighted the crosstalk between phosphorylated BNIP3 and the 
AMPK pathway, indicating that the AMPK-BNIP3 interac-
tion activated mitophagy and reduced mitochondria-depend-
ent apoptosis in virus-infected insect vectors [35]. Consistent 
with these studies, we demonstrated that P-AMPK levels 
were elevated, which was accompanied by BNIP/NIX and 
FUNDC1 pathway enhancement in adenine-induced CKD 
injury. Furthermore, P-AMPK expression was downregu-
lated, and the level of BNIP3/NIX and FUNDC1-related 
mitophagy was decreased by HKL treatment in adenine-
induced CKD rats. However, the mechanism by which HKL 
regulates BNIP3/NIX and FUNDC1-dependent mitophagy 
in CKD requires further examination.

Conclusion

In conclusion, the present study demonstrated that HKL 
exerted renoprotective effects against renal function 
decline, tubular injury and fibrosis to varying degrees in an 
adenine-induced CKD rat model. The mechanism might be 
associated with the reduction in excessive BNIP3/NIX and 
FUNDC1-related mitophagy and the inhibition of AMPK 
activation. Further investigation of the effect of HKL on 

Fig. 5  Effects of HKL on renal mitophagy in CKD rats. a Represent-
ative Western blot images of BNIP3, NIX and FUNDC1. b–d Quan-
titative analysis of the BNIP3, NIX and FUNDC1 protein expression 
in each group standardized to GAPDH content (n = 5–6 rats/group). 
The expression of BNIP3, NIX and FUNDC1 were all markedly up-
regulated in CKD rats. HKL treatment reversed the overexpression 
trend and down-regulated the BNIP3, NIX and FUNDC1 expres-
sion to varying extents. e IHC staining images of BNIP3, NIX and 
FUNDC1 in different groups. Magnification = × 200, bars = 50  μm. 
f–h Quantification of BNIP3, NIX and FUNDC1 expression in all 
groups (n = 3 rats/group). The BNIP3, NIX and FUNDC1 expression 
levels were all significantly raised compared with the control group, 
respectively. HKL treatment markedly reduced the BNIP3, NIX and 
FUNDC1 overexpression in variable ranges. Data are presented as 
means ± SEM (**P < 0.01, ***P < 0.001, ****P < 0.0001 compared 
with the control group; #P < 0.05, ###P < 0.001, ####P < 0.0001 com-
pared with the CKD group)

◂
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mitophagy and energy metabolism would be worthwhile 
in future CKD studies.
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