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Abstract
Background  Soil salinity has been affecting wheat production worldwide over past few decades. Evaluation of wheat geno-
types for salinity tolerance at germination and vegetative growth level is crucial. Marker assisted selection is a technique 
used extensively for choosing salt-tolerant genotypes from breeding populations to introduce novel genes.
Methods and materials  The current study's main goal was to discover salt-stress resistant genes; genetic divergence and 
genome-wide connection by using recently designed candidate gene-based simple-sequence-repeat markers (cg-SSRs). The 
phenotypic connection of morphological features during the germination growth stage i.e., germination period, root length/
weight and shoot length/weight, and vegetative growth stages i.e., root length/weight and shoot length/weight were tested 
in a group of 50 wheat genotypes. Significant difference was observed in germination rate, root length and weight among 
control and saline treatments.
Conclusion  Total 30 SSR markers were utilized to test salinity resistance genes in wheat genotypes. Three (10%) of which 
were monomorphic, one (3.34%) showed no result, and the other 26 (86%) were polymorphic. Using 30 polymorphic markers 
discovered total 37 alleles. The polymorphic information content (PIC), quantifies each SSR locus capacity to discriminate 
between wheat, varied from 0.00 to 0.38 with an average of 0.19. Association analysis revealed that 26 primers were associ-
ated with morphological features, 03 with root length and the remaining 23 with germination. Utilizing morphological data, 
stress tolerance index (STI) was designed concluding that Auqab-2000, Margala-99 and Ufaq showed better resistance against 
salinity among other wheat genotypes. Cluster analysis demonstrated that wheat genotypes have vast genetic variability.
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Introduction

Wheat is an important cereal grain being harvested glob-
ally that is a dietary staple everywhere in the world also 
serving as key ingredient in a range of processed goods 
popular in urban life [9, 28]. The global amount of wheat 
produced was around 765.41 million metric tons in the crop 
year 2019–2020. The average annual wheat production of 
Pakistan is 45.6 million tons being one of the ten highest 
wheat-producing countries, compared to a target of 48 mil-
lion tons, with 45 million tons consumed annually. Wheat 
production is being impacted by salt conditions all over the 
world resulted by global warming. High-yielding crop types 
have a high capacity for nutrient absorption, resulting in soil 
depletion of micro and macronutrients. As a result, nutrient 
supplementation by chemical or biological means is required 
to maintain and restore soil fertility. Soil salinity is pos-
ing a serious threat to global food productivity, with both 
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developing and industrialized countries facing comparable 
basic issues in farming crops under saline circumstances 
[26, 32]. According to estimates, quarter of the world's land 
under irrigation is now saline. Soil salinity is a severe con-
cern in Pakistani agriculture; more than 6.8 million hectares 
of land has salinity levels that exceed crop tolerance limits. 
The main cause of this scenario is ground and canal irri-
gation water, as more than 70% of tube wells pump salty 
water and canal irrigation adds salt to the land with each 
application. Due to increased salt content in soil, enormous 
area of fertile land could not be employed for conventional 
crop cultivation. These issues challenge the entire arid and 
semi-arid region's production system [11]. When roots grow 
in salty soils, they are subjected to osmotic stress, which 
causes a reduction in water potential and, as a result, a loss 
of cell turgor in the roots. Salinity stress has been shown 
to have an impact on photosynthesis, ion regulation, water 
relations, and yield [31]. Plant does not allow salt to rise 
up to the leaves. At the level of the endoderm, the root's 
inner layer, there is a first barrier. This barrier, however, 
can be broken, especially during the root's emerging stages. 
Other processes prevent salt from passing from the roots 
to the leaves, but the genes that control them are mostly 
unknown [4]. High genetic variation is found in wheat for 
salt tolerance, there have been few attempts to investigate 
the genetic and physiological complexity of multi-genic 
salinity-related characteristics [25]. Because of advance-
ments in the fields of statistical genomics and molecular 
markers, quantitative trait loci (QTL) mapping in crop plants 
has become a most used technique. The concept behind QTL 
analysis is to find correlation between and marker genotype 
and phenotype [17]. The detection and selection of desir-
able genes in breeding populations can be done consider-
ably more quickly than traditional breeding, using genomic 
technologies in combination with MAS.SSR markers, also 
known as microsatellites, are PCR-based markers found in 
abundance in animal and plant genomes. The number of 
copies of these repetitions creates difference in individuals 
that causes polymorphism in plants. Locus specific prim-
ers are designed for the use in PCR reactions as the DNA 
sequences bordering these regions are frequently conserved. 
Because of their high level of allelic variation, microsatel-
lite loci are effective genetic markers, which is one of their 
most essential characteristics. Many SSR markers that are 
breeder friendly, have been produced and are now being used 
by breeders in variety of species [35]. Genome data sets 
have been produced due to Advances in genotyping tech-
niques and DNA sequencing that are the sources to develop 
SNP markers and sequence-based simple sequence repeats 
(SSRs), which has hindered progress in MAS for wheat 
until recently [13]. Over last 4 decades, SSRs are the most 
extensively used markers for plant genotyping because of 
their characteristics: extremely informative, co-dominant, 

experimentally replicable multi-allele genetic markers and 
convertible among associated specie [23]. SSRs are proven 
to be particularly beneficial in the creation of plant species’ 
integrated maps when linkage maps are generated with the 
use of full-sib families [15, 27] and for incorporating physi-
cal, genetic, and sequence-based maps [36] offering tool to 
correlate genotypic and phenotypic diversity for breeders 
and geneticists. Current investigation aimed to evaluate 
wheat germplasm against saline conditions phenotypically 
by growing them in sand culture providing artificial salt-
stress and genotypic evaluation has been done using recently 
designed cg-SSR markers using collection of fifty wheat 
accessions including forty-five Pakistani and five Chinese 
cultivars provided by National Agriculture Research Centre, 
Islamabad. Salt responsive cg-SSR markers utilized in this 
research project were designed in 2018 and had not been 
validated before. The study proposes the validation of mark-
ers and their association with the phenotypic traits.

Materials and methods

Plant material and experimental design

A set of 50 Triticum aestivum L. accessions were used for 
two separate experimentations which included 45 local vari-
eties and 5 Chinese wheat varieties, conducted at Nation 
Institute of Genomics and Biotechnology, NARC, Islama-
bad. Experiments followed complete randomized design 
with three replications.

Salt treatments

In present experiment, wheat genotypes were grown in sand 
culture where one set was kept control and one was provided 
with saline conditions, each with three replicates. Tap water 
including Hoagland’s solution was added to sand every other 
day in both sets. Adding a calculated amount of NaCl devel-
oped the saline solution. The salt was dissolved in tap water 
and thoroughly mixed with sand for developing saline soil 
[37]. Plants were allowed to grow for a month. Seeds of 
wheat genotypes were germinated first in Petri dishes and 
rinsed thoroughly with sterilized water. In this experiment, 
wheat genotypes were germinated in a control and saline 
solution {50DeciSiemens per meter (dSm-1)} where 10 
seeds of each genotype were placed in a Petri dish (diameter 
9 cm), kept in the laboratory under normal growing condi-
tions. In the case of salinity stress, the Petri dishes were 
irrigated daily with the required amount of saline solution 
in increments of 3 dSm-1 per day up to the final salinity 
(15 dSm-1). Seeds allowed to grow up to a week and then 
shifted to sand culture. Germination characters were counted 
at 48-h intervals.



5933Molecular Biology Reports (2023) 50:5931–5940	

1 3

Germination characters

Observations of Germination had been taken at 48-h inter-
vals and continued up to 6th day. The germination of a seed 
was when the radicle came out and were > 2 mm long. Rate 
of germination, root length/weight and plumule length/
weight were calculated, formula used for germination rate 
by Krishnasamy and Seshu [19] is as follows:

Germination percentage was calculated using the follow-
ing formula [22].

Seedling growth

Germinated seeds were transferred to sand culture. For a 
week, plants were grown normally with nutrient solution. A 
set of 50 wheat genotypes with three repeats was exposed 
to salt stress, while the other set was retained as control. 
Salt stress was gradually increased, the pH of the water was 
maintained, and EC (electrical conductivity) was measured 
before and after salt stress was applied [29].

Salt tolerance index

Salt tolerance index (STI) was calculated for germina-
tion characters and early seedling growth as described by 
Goudarzi and Pakniyat [14] by the following formula:

DNA extraction and PCR amplification

4–5 young grown leaves from all germplasm groups were 
gathered and stored at 80  °C for DNA extraction. The 
Cetyltrimethyl-ammonium bromide (CTAB) method was 
used to isolate genomic DNA from frozen leaf tissues as 
reported by Gale [24]. For molecular marker analysis, PCR 
was performed in a final volume of 10 µL containing: 2 µL 
genomic DNA (50 ng), 2 µL 5 × PCR6 buffer (Promega, 
Madison, USA), 1 µL dNTPs (0.2 mM for each dNTP), 1 
µL of each primer (10 pM), 0.2 µL MgCl2 (1.5 mM), and 
0.05 µL of Go-Taq DNA polymerase (5 UµL−1) (Promega); 
double distilled sterile water was added to a final volume of 
10 µL. DNA amplification was carried out in a thermocycler 
(Eppendorf Master cycler Gradient, Eppendorf, Hamburg, 

Rate of germination (%)

= (Seeds germinated at 48 h/Seeds germinated at 144 h) × 100

Germination Percentage = (Seeds germinated/Total seeds) × 100

Salt tolerance index

=
(

Variable measured under stress condition

/ Variable measured under normal condition
)

× 100

Germany). PCR amplification cycling profile used is as fol-
lows: 1 cycle (10 min) at 94 °C, 35 cycles (1 min) at 94 °C, 
45 s at 50–60 °C, 1 min at 72 °C of 10 min at 72 °C, standard 
protocol provided by Zhang [37]. Ethidium Bromide-stained 
Agarose gel (1.5–3%) was used to resolve the PCR ampli-
fied products.

Microsatellite loci analysis

Microsatellites were selected based on available information 
with respect to proximity to known quantitative trait loci that 
control wheat quality traits to directly validate the reliability 
of any associations. Thirty SSR markers were chosen from 
the publicly available set published by Singh et al. BMC 
Plant Biology [33]. The presence (1) or absence (0) of an 
allele was used to establish a binary matrix composed of 0 s 
and 1 s. From this matrix, 26/30 loci resulted in polymorphic 
alleles that could be scored as either 0 or 1. Local white and 
Pasban-90 wheat were used as a standard marker.

Statistical analysis

Statistical Analysis System (SAS, 2008) was used to per-
form ANOVA (analysis of variance) using GLM procedure 
for evaluation of effects of salt stress on germination and 
seedling of 50 genotypes. The data collected from DNA 
analysis has been used to create a similarity matrix utilizing 
the Nei (1983) method with the data obtained from 30 DNA 
markers. A Mixed Linear Model (MLM) was constructed 
in PowerMarker v3.25 software to investigate associations 
between quality-related traits and SSR markers.

Results

Germination characters in sand culture

The characters under study i.e., germination rate, plume 
weight/length and root weight/length, showed significant 
observations overall. ANOVA represents the significance 
with P values ranging from 0.0000 to 0.0002 (< 0.005). The 
difference in minimum and maximum observations show 
that salinity has weakens the growth into half. The most 
affected trait is root length.

Pearson correlation coefficient (Table 1) shows the prox-
imity/correlation coefficient matrix of four agronomic traits. 
RW had a negative relationship with GP2D and a positive 
relationship with GP4D, GP6D, and RL. RW was adversely 
connected with PL, while GP2D, GP6D, GP6D, and RL 
were positively correlated. RW and PL were linked, signifi-
cantly. PW was also linked to RW in a substantial way.
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Vegetative characters in sand culture

The characters under study i.e., shoot weight/length and 
root weight/length, showed significant observations over-
all. ANOVA represents the significance with P values rang-
ing from 0.0000 (< 0.005). The difference in minimum and 
maximum observations shows that salinity has weakened 
the growth almost four times. The most affected trait is root 
weight.

Pearson correlation coefficient for pair wise alignment 
was used to investigate correlation among all agronomical 
traits. It demonstrated the relationship between two vari-
ables, exposing the attributes correlation more effectively. 
Table 2 shows the proximity/correlation coefficient matrix of 
four agronomic traits. RW and RL had a weak relationship. 
SL had a positive relationship with RL and RW. RW and SL 
had a strong relationship.

Interrelationship among germination stage 
agronomical traits

PCA analysis, which is based on correlation, is used to 
classify data patterns based on trait relationships. Based 
on eigenvalue and variability, data is currently classified 
into seven principal components (PCs) or factors (Fs). 

Seven factors under observation are GP2D, GP4D, GP6D, 
RL, RW, PL, PW, respectively. The first three PCs, which 
have eigenvalue greater than one, provide more variabil-
ity. These three variables account for 74.5 percent of the 
variance. The cutoff value for selecting PCs for further 
investigation was eigenvalue one. The first 2 factors, F1 
(36%), and F2 (23%), contributed more variability, indi-
cating their relevance in limiting the Scree plot and biplot 
(Fig. 1a, b). The importance of traits and their implications 

Table 1   Pearson's correlation 
among all morphological traits 
at germination stage with 
significance value

a Symbol representing highly significant level
b Significance level, GP2D, germination percentage after 2  days; GP4D, germination percentage after 
4 days; GP6D, germination percentage after 6 days; RL, root length; RW, root weight; SL, shoot length; 
SW, shoot weight

GP2D GP4D GP6D RL RW PL PW

GP2D 1
GP4D 0.642338 1
GP6D 0.556695 0.800381 1
RL 0.626144 0.351929 0.353254 1
RW  − 0.046a 0.124846 0.090235 0.0031b 1
PL 0.628333 0.400911 0.359225 0.739113  − 0.01a 1
PW 0.486656 0.214065 0.209467 0.641002 0.0097b 0.777522 1

Table 2   Pearson's correlation coefficients between vegetative traits in 
wheat accessions

a Symbol representing highly significant level
b Significance level, RL, root length; RW, root weight; SL, shoot 
length; SW, shoot weight

RL RW SL SW

RL 1
RW  − 0.00358a 1
SL 0.280987 0.04693b 1
SW 0.093353 0.138212 0.406624 1

a

b

Fig. 1   a Scree Plot showing principle factors based on cumulative 
variability and eigenvalue of wheat agronomical traits. b Biplot repre-
sentation of correlation among 7 agronomical traits in 50 wheat vari-
eties
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in future breeding programs are revealed by their contribu-
tion to factor variability.

Interrelationship among vegetative stage 
agronomical traits

PCA analysis, which is based on correlation, is used to 
classify data patterns based on trait relationships. Based on 
eigenvalue and variability, data is currently categorized into 
four primary components (PCs) or factors (Fs). Components 
under observation are RL, RW, SL, SW, respectively. With 
an eigenvalue of > 1, the first PC contributes higher vari-
ability. This factor accounts for 56.28 percent of overall vari-
ability. The first factor, F1, contributes the most variability 
(56.28 percent), indicating its relevance in limiting biplot.

The importance of traits and their implications in future 
breeding programs are revealed by their contribution to fac-
tor variability.

Scree plot based on cumulative variability and eigen-
value, reveal four principal components and their contribu-
tion (Fig. 2a, b). The first principal component to touch the 
curve Line had the most impact on genotype distribution 
based on agronomic traits. The remained three compo-
nents with eigenvalue of 1 contributed a small amount 
of variability, accounting for 43.72 percent of the total 
variability.

Salt tolerance index

Wheat genotypes have been classified as ST: salt tolerant, 
HST: Highly salt tolerant, MST: moderate salt tolerant, HSS: 
highly salt sensitive, SS: salt sensitive (Table 3).

Genetic diversity assessment and SSR variation

Genetic diversity research was conducted on all wheat lines 
using 30 widely used DNA marker reported by Singh et. al 
[33]. Three of the thirty markers were monomorphic, one had 
no result, and the other 26 were polymorphic. Using 30 poly-
morphic markers discovered total 37 alleles. Other than six 
primers, each marker yields a single allele. SSR13TaNAC47 
had three alleles, SSR25TaPP2C1, SSR109TaGAPC1, SSR-
111TaSOS1, SSR115TaMYB72, and SSR98TaSST had 
two alleles. The alleles ranged in size from 50 to 400 base 
pairs. The frequency of the main allele ranged from 52 per-
cent (SSR13TaNAC47) to 100 percent (SSR13TaNAC47, 
SSR25TaPP2C1, SSR75F3H1, SSR39Bl-85). On the other 
hand, gene diversity ranged from 0.00 (SSR25TaPP2C1, 

Salt tolerance evaluation of wheat genotypes under study has been done using formula: salt tolerance index

= (Variable measured under stress condition/Variable measured under normal condition) × 100

SSR75F3H1, SSR39Bl-85) to 0.50 (SSR75F3H1, 
SSR39Bl-85, SSR13TaNAC47). The polymorphism informa-
tion content (PIC), which measures how well each SSR locus 
can distinguish different wheat varieties, ranged between 0.00 
and 0.38, with average value of 0.19.

Genetic relationship and cluster analysis

The data collected from DNA analysis has been used to 
create a similarity matrix utilizing the Nei (1983) method 
with the data obtained from 30 DNA markers. The resulted 
matrix revealed significant amount of genetic relatedness 
among the 50 genotypes, demonstrating a mean genetic 
similarity. The genetic similarities between the genotypes 
in the paired combinations ranged from 0.02 to 0.57.

The dendrogram was created for 50 genotypes with 30 
SSR markers using clustering based on UPGMA analysis, 
as shown in (Fig. 3). Dendrogram analysis separated wheat 
genotypes in 3 major groups: Group A, B, C, and D. Each 

a

b

Fig. 2   a Scree Plot showing principle factors based on cumulative var-
iability and eigenvalue of wheat agronomical traits. b Biplot represen-
tation of correlation of 4 agronomical traits with 50 wheat genotypes
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group has further two subgroups, group A contains A-1 and 
A-2, group B has B-1 and B-2, and group C has C-1 and C-2. 
On the base of DNA markers, the maximum genetic distance 
observed in the group C-2. This group contained 19 geno-
types. It is further divided in two sub-clusters. Genotype 
21, 28 and 38 were the most diverged genotypes in whole 
experiment. Group B contained 18 genotypes with Nei value 
of 0.37. Cluster A with lowest diversity contained rest of 7 
genotypes.

Marker‑trait association for morpho‑physiological 
traits

TASSEL software was used to estimate marker-trait rela-
tionships using information about lineage of wheat cultivars 
used and phenotypic data. Based on relatedness relation-
ship and population structure (Q-matrix), the association 
analysis and identification of SSR markers linked with the 
salinity related attributes in wheat population under study 
(K-matrix), was conducted by utilizing a general linear 
model (GLM). The findings revealed that 26 primers are 
associated with morphological features, three of which are 
associated with root length and the remaining 23 with ger-
mination (Table 4).

Discussion

The development of quantitative and qualitative genetic fea-
tures has always been the main interest of breeders using 
traditional breeding methods based on phenotypic evaluation 
and selection until recent advances in molecular technology 

Table 3   Salt tolerance evaluation of wheat genotypes under study

ST, salt tolerant; HST, highly salt tolerant; MST, moderate salt-toler-
ant; HSS, highly salt sensitive; SS, salt sensitive

Genotypes STTI (VS) STTI (GS) STI Salt toler-
ance level

Zincol-2016 0.51 0.71 61 ST
Local white 0.74 0.68 71 ST
Ahsan-2016 0.53 0.67 60 ST
Gold-2016 0.56 0.78 67 ST
Johar-2016 0.67 0.57 62 ST
Pakhtunkhwa-2015 0.63 0.53 58 MST
Pakistan-2013 0.59 0.79 69 ST
Pirsabak-2013 0.49 0.83 66 ST
Shahkar-2013 0.53 0.83 68 ST
Galaxy-2013 0.67 0.81 74 ST
NARC-2011 0.67 0.89 78 ST
AAS-2011 0.53 0.74 63 ST
DHARAB-2011 0.51 0.5 50 MST
PUNJAB-2011 0.72 0.6 66 ST
Millet-2011 0.4 0.61 50 MST
NARC-2009 0.53 0.67 60 ST
Pirsabak-2008 0.59 0.79 69 ST
MEIRAJ-2008 0.67 0.61 64 ST
F-ABAD-2008 0.57 0.59 58 MST
FAREED-2006 0.62 0.81 71 ST
SEHER-2006 0.65 0.81 73 ST
CHAKWAL-50 0.66 0.97 81 HST
ATTA HABIB 0.79 1 89 HST
BARSAT 0.73 1.01 87 HST
WAFAQ-2001 0.61 0.9 75 ST
PIRSABAK-2005 0.47 0.92 69 ST
AS-2002 0.44 0.96 70 ST
AUQAB-2000 0.67 1.13 90 HST
MARGALA-99 0.61 1.2 90 HST
SULEMAN-96 0.64 1.08 86 HST
M.H-97 0.55 1.12 83 HST
BAKHTAWAR-94 0.6 1.09 84 HST
INQILAB-91 0.5 0.32 41 MST
KHYBER-87 0.69 0.93 81 HST
UFAQ 0.74 1.11 92 HST
PASBAN-90 0.66 1.01 83 HST
PAROULA 0.64 1.03 83 HST
PASTOR 0.61 0.62 61 ST
WL-711 0.62 0.64 63 ST
PAK-81 0.65 1.02 83 HST
UJALA 0.53 1.03 78 ST
TAT​ARA​ 0.59 0.67 63 ST
BAHTOOR 0.59 0.77 68 ST
PIRSABAK-2004 0.58 0.51 54 MST
BHAKKAR 0.57 0.49 53 MST
K4565-F5 0.46 0.85 65 ST
K4565-F4 0.51 0.77 64 ST
K4565-18Y4-5 0.5 0.35 42 MST
K4565-18Y4-51 0.35 – 35 SS
K4565-18Y2-3954 0.54 – 54 MST

Fig. 3   Diversion of whole wheat population shown in cluster analysis
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and genetics [7]. Association mapping, on the other hand, is 
promising methodology to identify and dissect complicated 
features [8]. In comparison with conventional QTL mapping, 
the key advantages include reduced research time, improved 
mapping resolution, and increased allele count [37].

The development of molecular markers technology during 
the last century has made it possible to analyze direct statis-
tical connections between phenotypic features in populations 
and genetic markers, a field called “association genetics” 
[20]. Relevant genetic markers’ availability has improved 
and made it possible to link variation in complex traits to 
genomic regions containing these markers. The association 

mapping method was initially effectively used to dissect 
alleles at loci involved in human disease susceptibility [34].

The technique is being used to specify markers and inher-
ited genes that are relevant to variety of traits in variety of 
plant species, including potato [21], barley [18], rice [1] and 
wheat [6]. By accounting for population structure and kin-
ship, new computational algorithms provide more accuracy 
in recognition of marker–trait relationships in populations 
of complex-pedigree. Additionally, marker resolution con be 
determined by linkage disequilibrium (LD) in given popu-
lation. Gene cloning of required genes will be made easier 
with these methods [5].

Because of high level polymorphism at marker loci, using 
SSRs to analyze diversity and population structure yields 
better results than using other marker types [10].

The first step in revealing the genetic diversity favored by 
genotypes is to morphologically characterize germplasm [3]. 
The degree of genetic diversity in a crop's breeding program 
is largely dictated by it [2].

The current study's primary goal was to investigate wheat 
germplasm for phenotypic alterations under saline stress 
conditions, as well as genetic diversity and similarity.

A total of 50 wheat genotypes were gathered and 7 
morphological traits at the germination growth stage and 
4 morphological traits at the vegetative growth stage were 
examined.

The vast variance shown by genotyped for Germination 
data, root/shoot length, root/shoot weight can be explained 
by the mean value of morphological features.

Analysis of variance for days to germination data, root/
shoot length, root/shoot weight revealed a highly signifi-
cant variation at (P 0.01) significance level. Results indicate 
difference in phenotype and growth pattern of stress and 
control genotypes. An effective screening method and reli-
able trait for salt tolerance at germination growth stage and 
vegetative growth stage, STI, is defined as ratio of values for 
salt (NaCl) affected plant to values for control. The equation 
for the calculation of STI is:

Five levels of salt tolerance are described as: salt sensitive 
(SS), highly salt sensitive (HSS), salt tolerant (ST), highly 
salt tolerant (HST), and moderately salt tolerant (MST). 
Results show that 13 out of 50 genotypes under study are 
highly tolerant while one genotype is salt sensitive remain-
ing all are moderately or less tolerant.

With data from 30 DNA markers, data from DNA study 
has been used to construct a similarity index using Nei 
(1983) approach. The resulting matrix revealed a significant 
level of genetic relatedness among the 50 genotypes, dem-
onstrating a mean genetic similarity. The genetic similarities 

STI =
Mean value under salt stress

Mean value under control
× 100

Table 4   Marker trait association of wheat genotypes

Sr. no. Trait ~ Marker P-value

1 GP2D ~ SSR85TaAFP-A 2.38E−18
2 GP2D ~ SSR13TaNAC47 200 bp 3.50E−13
3 GP4D ~ SSR85TaAFP-A 1.45E−10
4 GP2D ~ SSR121TaSrg6 140 bp 3.51E−09
5 GP4D ~ SSR1TaSRG 1.32E−07
6 GP2D ~ SSR1TaSRG 3.17E−07
7 GP2D ~ SSR126TaClpB2 2.91E−06
8 GP2D ~ SSR127TaClpB2 4.97E−06
9 GP2D ~ SSR40TaAOC1 2.70E−05
10 GP2D ~ SSR98TaSST 175 bp 4.09E−05
11 GP6D ~ SSR1TaSRG 0.000105
12 GP2D ~ SSR111TaSOS1 200 bp 0.00017
13 GP4D ~ SSR13TaNAC47 185 bp 0.000247
14 GP4D ~ SSR39BI-85 0.000391
15 GP2D ~ SSR101TaACO1 0.000916
16 GP2D ~ SSR136TaSP 0.001286
17 GP4D ~ SSR95TaABL1 0.004081
18 GP2D ~ SSR130TaClpB5 0.005205
19 GP4D ~ SSR101TaACO1 0.00521
20 GP4D ~ SSR13TaNAC47 200 bp 0.007723
21 Root length ~ SSR12TaNAC47 0.009137
22 GP6D ~ SSR39BI-85 0.01153
23 GP4D ~ SSR132TaCRY1a 0.014796
24 GP4D ~ SSR111TaSOS1 100 bp 0.015419
25 GP4D ~ SSR121TaSrg6 140 bp 0.015419
26 Root length ~ SSR79Tagpd1 0.020351
27 GP2D ~ SSR115TaMYB72 150 bp 0.02259
28 Root length ~ SSR109TaGAPC1 300 bp 0.025136
29 GP6D ~ SSR115TaMYB72 50 bp 0.030888
30 GP4D ~ SSR139TaWD40D 0.031545
31 Root length ~ SSR13TaNAC47 185 bp 0.031614
32 GP2D ~ SSR13TaNAC47 400 bp 0.033652
33 GP2D ~ SSR139TaWD40D 0.034141
34 GP4D ~ SSR115TaMYB72 50 bp 0.036456
35 GP4D ~ SSR44TaSOS1 0.048914
36 GP4D ~ SSR89TaOBF1b 0.048914
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between the genotypes in the paired combinations ranged 
from 0.02 to 0.57.

Cluster analysis is a useful tool for identifying homogene-
ous plant groups. The current study split whole Lines into 
four groups based on their Nei values, which ranged from 
0.02 to 0.57. The genetic connection of different agricultural 
characteristics offers the possibility of improving economic 
qualities [30]. Understanding the genetic linkage between 
various characteristics is critical for the creation of varie-
ties with a genetic attribute that ultimately enhance crop 
acceptance.

UPGMA analysis-based clustering was used to construct 
a dendrogram for 50 genotypes along with 30 SSR primers, 
as shown in (Fig. 3). Dendrogram analysis separated wheat 
Lines in 3 major groups: Group A, B, C, D. Each group has 
further two subgroups, group A contains subgroups A-1 and 
A-2, group B has B-1 and B-2, and group C has C-1 and 
C-2. On the base of DNA markers, the maximum genetic 
distance observed in the group C-2. This group contained 19 
Lines. It is further divided in 2 sub-clusters. Line 21, 28 and 
38 were most diverged Lines in whole experiment. Group 
B contained 18 lines with Nei value of 0.37. Cluster A with 
lowest diversity contained rest 7 lines.

The difference and similarity between two variances can 
be measured by mean of correlation coefficient [12]. The 
study of relationships between diverse morphological traits 
is essential for cultivar development in plant breeding. With-
out a thorough grasp of character relationships in complex 
biological organisms, genetic improvement could not be car-
ried out accurately. Significant (P = 0.01) correlation coef-
ficient was also found between relative values of most of the 
attributes. Because of the link between shoot length and root 
weight, shoot length should be used as a selection criterion 
for increasing salt stress tolerance in crop.

The SSR markers identification, associated to phenotypic 
features of wheat implicated in salt stress resistance was 
the study's second goal. Based on relatedness relationship, 
the association analysis has been conducted using software 
“TASSEL” to find the microsatellite markers linked with 
salinity related attributes in structured wheat population. 
The findings revealed that 26 primers are associated with 
morphological features, three of which are associated with 
root length and the remaining 23 with germination (Table 4).

Conclusion

The current study's overall aim was to validate cg-SSR 
markers created from salt responsive genes for their poten-
tial to identify salt tolerant wheat genotypes. A genetic 
diversity research was conducted on all wheat lines using 
30 widely used DNA markers. Three of the thirty markers 
were monomorphic, one showed no result, and the other 26 
were polymorphic (Fig. 4a, b). As a result, 26 of 30 mark-
ers provided results that were mentioned in the literature 
[33]. Total 37 alleles have been discovered utilizing 30 
polymorphic primers. Other than six primers, each marker 
yields a single allele. Three alleles were found in SSR-
13TaNAC47, two alleles were found in SSR25TaPP2C1, 
SSR109TaGAPC1, SSR111TaSOS1, SSR115TaMYB72 
and SSR98TaSST. The size of the alleles ranged from 50 to 
400 bp. The major allele frequency varied from 52 (SSR-
13TaNAC47) to 100% (SSR25TaPP2C1, SSR75F3H1, 
SSR39Bl-85). Gene diversity on the other end, varied from 
0.00 (SSR25TaPP2C1, SSR75F3H1, SSR39Bl-85) to 0.50 
(SSR13TaNAC47). The polymorphic information content 
(PIC), which quantifies each SSR locus's capacity to dis-
criminate between wheat, varied from 0.00 to 0.38 with 

Fig. 4   a Polymorphism 
revealed by SSR109TaGAPC1 
maker in wheat varieties; L: 
ladder (100 bp), lane 19–36 
Triticum aestivum L. cultivars. 
b Monomorphism revealed by 
SSR76TaRab7 maker in wheat 
varieties; L: ladder (100 bp), 
DNA Marker; lanes 37–50 Triti-
cum aestivum L. cultivars
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an average of 0.19. The findings of this study would fur-
ther promote testing of these techniques in diverse genetic 
organizations, like how they were employed for wheat.
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