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Evidence indicates that interactions between tumor cells 
and stromal cells contribute to tumor initiation and pro-
gression. In this process, the role of chemokines and their 
receptors is highlighted, which can serve as a bridge for 
tumor-stromal cell communication, creating a permissive 
microenvironment for tumor growth and metastasis [4], 
sometimes facilitating tumor dissemination in each of the 
events of the process, including adherence of tumor cells 
to the endothelium, extravasation into blood vessels, meta-
static colonization, angiogenesis, proliferation and protec-
tion against host response through activation of cell survival 
pathways [5, 6].

Bowel cancer encompasses tumors that start in the part of 
the large intestine: colon, rectum and anus. It is also known 
as colon and rectum or colorectal cancer (CRC). This cancer 
is the third most common cancer type worldwide; in 2020, 
almost 2 million cases were diagnosed. It is the second most 
common cause of cancer death, leading to almost 1 million 
deaths per year [7]. Although environmental and genetic 
factors play an important role in the pathogenesis of CRC, 
research suggests the involvement of chemokines and their 
receptors in the development of colon cancer [8, 9].

Binding of the C-X-C motif chemokine 12 (CXCL12) 
with its C-X-C motif chemokine receptor 4 (CXCR4) has 
been associated with several types of malignant neoplasms 
[10–13]. Studies have demonstrated increased expression of 

Introduction

Cancer is characterized by unregulated proliferation of host 
cells, arising from alterations in cell physiology, such as: 
sufficiency in relation to growth factors, insensitivity to 
growth inhibitors, evasion of apoptosis and the immune sys-
tem, dysregulation of energy metabolism, genomic instabil-
ity, phenotypic plasticity, epigenetic reprogramming, tissue 
invasion and development of metastases [1, 2]. Although the 
tumor cell represents the main focus in the development of a 
neoplasm, it is important to consider that the tumor mass is 
not composed only of neoplastic cells, but of a set of tumor 
cells, mesenchymal cells and components of the vascular 
and immune system, which contribute substantially to carci-
nogenesis, tumor progression and metastasis of transformed 
cells [3].
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Abstract
Migration of metastatic tumor cells is similar to the traffic of leukocytes and has been reported that can be guided by che-
mokines and their receptors, through the circulation to distant organs. The chemokine CXCL12 and its receptor CXCR4 
play an essential role in hematopoietic stem cell homing and the activation of this axis supports malignant events. Binding 
of CXCL12 to CXCR4 activates signal transduction pathways, with broad effects on chemotaxis, cell proliferation, migra-
tion and gene expression. Thus, this axis serves as a bridge for tumor-stromal cell communication, creating a permissive 
microenvironment for tumor development, survival, angiogenesis and metastasis. Evidence suggests that this axis may 
be involved in the colorectal cancer (CRC) carcinogenesis. Therefore, we review emerging data and correlations between 
CXCL12/CXCR4 axis in CRC, the implications for cancer progression and possible therapeutic strategies that exploit 
this system.

Keywords  Chemokines · Chemokine receptors · Colorectal cancer · CXCL12 · CXCR4

Received: 19 January 2023 / Accepted: 19 April 2023 / Published online: 23 May 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Involvement of CXCL12/CXCR4 axis in colorectal cancer: a mini-review

Mayara Bocchi1  · Nathália de Sousa Pereira1  · Karen Brajão de Oliveira1,2  · Marla Karine Amarante1

1 3

http://orcid.org/0000-0001-6609-7683
http://orcid.org/0000-0001-7292-9861
http://orcid.org/0000-0001-9666-6963
http://orcid.org/0000-0001-8218-8518
http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-023-08479-1&domain=pdf&date_stamp=2023-5-11


Molecular Biology Reports (2023) 50:6233–6239

CXCR4 during CRC malignancy [14, 15]. However, despite 
contributing to tumor development and maintenance, the 
signaling mechanism through CXCR4 may be clinically 
relevant for CRC patients and represents a potential target 
for disease-directed therapy [16, 17].

Chemokines and their receptors

Chemokines are a large family of structurally homologous 
cytokines responsible for inducing chemotaxis, through 
binding to a receptor. They are divided into subfamilies 
according to the number and position of cysteine residues 
in the N-terminal portion: C, CC, CXC, and CX3C, where 
C represents the cysteine molecule and X or X3, refer to 
the number of variable amino acid residues separating these 
cysteines [18].

Produced by different cell types, both constitutively and 
after induction stimuli, chemokines exert their effects in an 
autocrine or paracrine manner, acting via G protein-coupled 
receptors [19]. In addition to its chemotactic activity, stimu-
lating the migration of immune, endothelial, mesenchymal 
stem and malignant epithelial cells [20], chemokines have 
other functions, such as participating in embryonic devel-
opment, acting in hematopoiesis, angiogenesis, lymphocyte 
development, cell maturation and directing the movement 
of mononuclear cells through the blood [21].

Chemokines are also gaining scientific prominence 
because of their crucial roles in diseases development and 
pathological processes, such as inflammation, autoimmune 
and infectious diseases, like in human immunodeficiency 
virus (HIV) infection and in cancer [5, 6] They are consid-
ered key mediators for tumor growth, angiogenesis, metas-
tases and cellular recruitment for the composition of the 
tumor microenvironment [20].

Chemokines mediate their functions in target cells 
through their receptors, which are composed of transmem-
brane G protein-coupled receptors. In general, they are 320 
to 380 amino acids in length and show significant sequence 
homology. In addition, receptors have an N-terminal por-
tion on the outside of the cell surface, 3 intracellular loops, 
3 extracellular loops and a C-terminal portion in the cyto-
plasm [22]. The binding of chemokines to their ligands 
triggers conformational alterations in the receptor that cul-
minate in the activation of the G protein. In this way, the 
subunits of this protein dissociate, leading to the activation 
of several signal transduction pathways [19, 21].

Receptors are classified as CC, CXC, CX3C, or XC 
according to the subfamily of their ligands, followed by the 
letter R (receptor) and a number that reflects the order of 
their discovery [22]. Furthermore, the receptors are divided 
into two groups: G-protein-coupled chemokine receptors, 
which act in several signal transduction pathways, and 

atypical chemokine receptors, that appear to remove che-
mokines and contribute to the control of inflammation in a 
G protein-independent manner [16].

The CXCL12/CXCR4 axis

Among the chemokines, we can highlight the role of 
CXCL12 in tumor progression and metastasis. Its gene, 
CXCL12, is located at position 10q11.1 and was first cloned 
into a bone marrow-derived cell line and later identified 
as pre-B cell growth stimulating factor (PBSF) [23]. Also 
called stromal cell-derived factor 1 (SDF-1), this chemokine 
is constitutively produced in the bone marrow by imma-
ture osteoblasts and endothelial cells, as well as by epithe-
lial cells in various organs, such as the lung, liver, adrenal 
glands and lymph nodes [24].

CXCL12 has six isoforms (CXCL12 α to φ) derived 
from alternative splicing, with CXCL12α and CXCL12β 
being the most widely studied subtypes. The α isoform is 
increased in tissue damage but is rapidly degraded in the 
blood. In addition, it is the main form secreted by bone mar-
row cells and endothelial cells, found in almost all organs. 
The β isoform is more resistant to degradation, stimulates 
angiogenesis and is present in highly vascularized organs 
such as liver, spleen and kidney [16].

Literature data suggest that CXCL12 acts as a modu-
lator of cell growth and survival by binding to its recep-
tor, CXCR4, playing a key role in the homing of stem and 
hematopoietic progenitor cells. The gene encoding CXCR4 
is located on chromosome 2q2 and is expressed in dendritic 
cells, naive T cells, natural killer cells and monocytes [25]. 
In addition, the production of this chemokine in the initial 
stage of the disease aids in the process of angiogenesis and 
in the growth of tumor cells, while in more advanced stages, 
production decreases in order to avoid the recruitment of 
cytotoxic lymphocytes and increases the metastatic potential 
of tumor cells [26], being implicated in the spread of malig-
nant tumors from the primary site, transendothelial migra-
tion of tumor cellsand homing of precursor tumor cells [27]. 
The expression of CXCR4 in malignant cells indicates that 
the CXCL12/CXCR4 axis can influence tumor biology and 
play a key role in directing metastasis of CXCR4 + tumor 
cells towards organs that express CXCL12 [28].

The CXCL12/CXCR4 interaction was believed to be 
unique, until the description of another receptor, CXCR7, 
with a strong affinity for CXCL12 [29]. CXCR7 is part of 
the G protein-coupled cell surface receptor family and is also 
associated with tumor cell survival, migration, adhesion, 
angiogenesis and metastasis [25]. CXCR7-mediated acti-
vation of intracellular signals remains controversial since, 
unlike typical chemokine receptors, CXCR7 does not acti-
vate heterotrimeric G proteins [16]. The CXCR7 sequence 

1 3

6234



Molecular Biology Reports (2023) 50:6233–6239

presents a small modification and when bound to CXCL12, 
there is no increase in intracellular Ca2+ release, an essential 
step in the recruitment and activation of G proteins [30]. 
The CXCR7 receptor is reported to be highly expressed in 
many tumors and tumor-associated blood vessels, including 
cancers of the liver, colon, pancreas, prostate and lungs [16, 
31–33]. In CRC, its role in tumorigenesis probably occurs 
by means of histone demethylation, through the formation 
of heterodimers with CXCR4 [34]. Furthermore, overex-
pression of CXCR7 is significantly correlated with the pres-
ence of distant metastasis, advanced TNM stage, reduced 
overall survival and disease-free survival in patients with 
CRC [35].

Actuation of the CXCL12/CXCR4 axis in the CRC

The CXCL12 chemokine acts in cancer biology by two main 
mechanisms. The first is related to direct autocrine effects, 
through the activation of signaling pathways that promote 
tumor cell growth, metastasis and angiogenesis. The sec-
ond occurs through indirect effects, where high levels of 
CXCL12 in tumors attract CXCR4+ inflammatory, vascular 
and stromal cells to the tumor mass. This favorable micro-
environment supports tumor growth through the secretion of 
growth factors, cytokines, chemokines and pro-angiogenic 
factors, so an indirect effect is that CXCR4+ tumor cells can 
be recruited to CXCL12-rich mesenchymal stromal niches 
to initiate metastasis [4], which can be seen in CRC [28]. 
Overall, a high CXCR4 expression is clearly associated 
with an advanced stage of the tumor, an increased risk of 
recurrence and distant metastases and poor overall survival 

of CRC [13], with an increased risk of death and progres-
sion in patients (Figure 1) [17].

The CXCL12/CXCR4 axis can be regulated by epi-
genetic, transcriptional and post-transcriptional factors. 
Regulation of CXCL12/CXCR4 expression by promoter 
hypermethylation is common in cancer and studies show 
that the CXCL12 gene modulates metastatic potential, 
where it controls its own regulation in an autocrine loop 
[4]. CRC tumor cells can also undergo DNA hypermeth-
ylation at the CXCL12 promoter, resulting in an imbalance 
in CXCL12/CXCR4 expression. In this way, tumor cells 
that lack CXCL12 expression but maintain overexpression 
of CXCR4 can selectively spread to target organs in which 
CXCL12 is highly secreted [36, 37].

CXCL12 significantly increases several genes associated 
with angiogenesis in tumor cells, such as the IL-6 gene [10]. 
In CRC, IL-6 activates the janus kinase/signal transducer 
and activator of transcription (JAK/STAT3) to promote 
tumor initiation and tumor growth. Thus, the IL-6/STAT3 
pathway activates target genes to protect tumor cells from 
apoptosis, promote angiogenesis and drive tumor cell pro-
liferation, cell cycle progression, invasion and metastasis 
[38].

Studies demonstrate that transcription factors, such as 
NF-κB, Sp1 and C/EBP-β can be activated through mitogen-
activated protein kinase (MAPK) pathways in CRC cells 
[39]. Tung et al. [40] proposed a relationship between this 
signal transduction pathway, the chemokine CXCL12 and 
the expression of intercellular adhesion molecule-1 (ICAM-
1). According to the authors, CXCL12 induces extracellu-
lar signal-regulated kinase (ERK) phosphorylation, c-Jun 
N-terminal kinase (JNK) and p38, which consequently acti-
vates NF-κB, Sp1 and C/EBP-β, leading to their binding to 
the respective sites on the ICAM-1 promoter, thus resulting 
in the transcriptional activation of ICAM-1, facilitating the 
adhesion of cancer cells to the vascular endothelium and 
later the promotion of metastases.

The increase in NF-κB mediated by the activation of the 
MAPK pathway can also occur by stimulation of an external 
factor, such as visfatin, an adipokine produced by adipose 
tissue. Huang et al. [41] suggest that visfatin induces the 
expression of CXCL12 through the activation of β1 inte-
grin, the ERK and p38 intracellular signaling cascades, 
and the NF-κB transcription factors and activator protein 
1 (AP-1), thus contributing to the progression of CRC. In 
addition, lipopolysaccharides (LPS), normally produced by 
the microbiota, also use NF-κB signaling to induce CXCR4 
expression in tumor cells, promoting epithelial-mesenchy-
mal transition (EMT) and metastasis in the CRC [39, 42].

A study by Hu et al. [43] demonstrated a cross-relation-
ship between the CXCL12/CXCR4 and Wnt/β-catenin axis 
in the CRC, where the CXCR4 receptor could aid in disease 

Fig. 1  The tumor microenvironment in CRC. The tumor microenvi-
ronment includes both the cellular componentssurrounding the tumor 
mass such as immune cells, fibroblasts and epithelial cells and the ace-
cellular components including the extracellular matrix and blood ves-
sels. Cancer cells release molecules (CXCL12) that modulate the TME 
and contribute to cancer growth through immune evasion, metastatic 
niche formation, neoangiogenesisamong other functions that contrib-
ute to the hallmarks of cancer. “Created with BioRender.com.”
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and CXCL12 that can be used in the treatment of various 
types of tumors, including CRC [16, 47].

The first therapy targeted at CXCR4 was AMD3100 
(Plerixafor), which acts as an antagonist by binding to the 
CXCR4 receptor, preventing the conformational change 
necessary to activate intracellular kinases [48]. In addition, 
its mechanism of action may be related to the mobiliza-
tion of CD34+ hematopoietic progenitor cells (HPCs), an 
increase in circulating neutrophils, lymphocytes and mono-
cytes, a reduction in myeloid-derived suppressor cells and 
increased infiltration of cytotoxic T cells into tumors [47]. 
Because of these functions, its use was cleared by the Food 
and Drug Administration (FDA) in 2008 to mobilize HPCs 
cells for autologous transplantation in patients with non-
Hodgkin lymphoma and multiple myeloma [49].

Recent studies have shown that AMD3100 can inhibit 
tumor growth and metastasis, in addition to acting as a potent 
immunomodulator to enhance antitumor immune responses 
and prevent the development of a multifaceted immuno-
suppressive intratumoral microenvironment [50]. Fearon, 
Janowitz [51] showed that infusion of AMD3100 in patients 
with CRC for only 1 week induced intratumoral immune 
responses that involved multiple mediators and cells of 
both innate and adaptive immune responses. According to 
the authors, inhibition of CXCR4 by AMD3100 in patients 
with CRC allowed their pre-existing anticancer immune 
responses to overcome intratumoral immunosuppression 
mediated by CXCL12, through increased expression of 
genes whose products mediate cytotoxicity by CD8+ T cells, 
that correlate with decreased expression of genes character-
istic of tumor cells. Biasci et al. [52] also demonstrate that 
continuous administration of AMD3100 promotes an inte-
grated immune response in metastatic lesions of patients 
with CRC.

Another drug under clinical study is LY2510924, which 
also acts as a potent and selective antagonist of CXCR4 
[53]. LY2510924 showed dose-dependent inhibition of 
tumor growth in human xenograft models developed with 
non-Hodgkin’s lymphoma, renal cell carcinoma, lung can-
cer cells and CRC expressing functional CXCR4. Further-
more, its mechanism of action involves the inhibition of the 
CXCL12/CXCR4 interaction, with consequent blocking of 
signaling [54]. In addition, several clinical studies show that 
the administration of LY2510924 was associated with a sig-
nificant increase in CD34+ HSCs and leukocytes in circula-
tion [55, 56].

The CXCL12 chemokine has also been studied as a 
possible therapeutic target in different types of tumors, 
including CRC. CXCL12 acts as a communication bridge 
between tumor cells and their environment and may confer 
resistance to checkpoint inhibitors by excluding T cells in 
preclinical models. Studies show that the use of molecules 

progression, invasion and the EMT through the activation 
of this signaling pathway. Constitutive activation of the 
Wnt/β-catenin pathway in CRC can occur through aberrant 
secretion of Wnt factors or a mutation in the adenomatous 
polyposis coli (APC) gene [44].

Activation of CXCL12 indirectly exerts anti-apoptotic 
effects on tumor cells. The CXCL12/CXCR4 axis activates 
serine-threonine kinase (AKT) and ERK, leading to the 
accumulation of NF-κB. Accumulation of this transcrip-
tion factor can suppress apoptotic signaling. In addition, 
CXCL12 can suppress tumor cell apoptosis by inducing 
the MAPK-ERK and PI3K pathways, which inactivate the 
pro-apoptotic protein Bcl-2-associated cell death agonist 
(BAD), leading to upregulation of the anti-apoptotic gene 
Bcl-2 [25, 45].

A hypoxic tumor microenvironment also favors tumor 
progression during carcinogenesis through upregulation 
of CXCR4 expression in tumor cells by hypoxia-induc-
ible factor 1 (HIF-1), a heterodimeric transcription factor 
that responds to tissue oxygen concentrations. Thus, in 
hypoxic regions of expanding tumors, CXCR4 levels can be 
increased to facilitate tumor survival and invasion [14, 46].

Figure 2 presents the main mechanisms of action of the 
CXCL12/CXCR4 axis in the CRC.

Therapeutic strategies targeting the CXCL12/CXCR4 
axis in CRC

This axis is directly involved in the progression of cancer, 
which, therefore, have an important role in the signaling net-
work, attracting great interest on the part of researchers in 
exploring therapeutic measures for this target. Thus, studies 
are seeking inhibitory or antagonist molecules of CXCR4 

Fig. 2  CXCL12/CXCR4 signaling pathway. Bcl-2– anti-apoptotic 
gene; EMT – Epithelial-to-mesenchymal transition; MAPK – mito-
gen-activated protein kinase; ERK – extracellular signal-regulated 
kinase; PI3K – phosphatidylinositol-3-kinase; AKT - serine-threonine 
kinase; JAK/STAT – Janus kinase /signal transducer and activator of 
transcription; IL-6 – interleukin 6; ICAM-1 – Intercellular Adhesion 
Molecule 1; NF-κB – nuclear factor kappa B; LPS – Lipopolysaccha-
ride; HIF-1 – hypoxia-inducible factor 1
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development of new research involving genome editing 
technologies may also represent a future strategy, allowing 
a more effective therapeutic targeting against the disease.
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