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problems [1, 2]. Scientific researchers are committed to 
developing sustainable production processes towards effi-
cient synthesis of green chemicals, and significant progress 
has been achieved on traditional heterotrophic microorgan-
isms, which use organic carbon sources as the energy source 
to power the synthesis of NADPH and ATP, leading to 
increased chemical synthesis costs. Recently, the increasing 
concentration of carbon dioxide in the atmosphere has led to 
global warming and ocean acidification [3], and sequestra-
tion by photosynthetic microorganisms that converts atmo-
spheric CO2 into valuable chemical products has attracted 
extensive attention due to the fact that CO2 is a cheap, abun-
dant and sustainable carbon source and photosynthesis of 
microorganisms will help to reduce the accumulation of 
CO2 in the environment. Among the various photosynthetic 
microorganisms, microalgae have become a research focus 
due to their strong environmental adaptability and abundant 
metabolic diversity and have been applied in many fields, 
including renewable energy, pharmaceutical industry, envi-
ronmental monitoring, food industry, biotechnology, animal 
feed and environmental purification (Fig. 1). Adhering to the 
advantage of microalgae’s natural carbon fixation capacity 
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Abstract
Cyanobacteria are an ancient group of photoautotrophic prokaryotes, and play an essential role in the global carbon cycle. 
They are also model organisms for studying photosynthesis and circadian regulation, and metabolic engineering and 
synthetic biology strategies grants light-driven biotechnological applications to cyanobacteria, especially for engineering 
cyanobacteria cells to achieve an efficient light-driven system for synthesizing any product of interest from renewable 
feedstocks. However, lower yield limits the potential of industrial application of cyanobacterial synthetic biology, and 
some key limitations must be overcome to realize the full biotechnological potential of these versatile microorganisms. 
Although genetic engineering toolkits for cyanobacteria have made some progress, the tools available still lag behind 
conventional heterotrophic microorganism. Consequently, this study describes the current situations and limitations of 
genetic engineering in cyanobacteria, and further improvements are proposed to improve the output of targeted products. 
We believe that cyanobacteria-mediated light-driven platforms towards efficient synthesis of green chemicals could unlock 
a bright future by developing the tools for strain manipulation and novel chassis organisms with excellent performance for 
biotechnological applications, which could also accelerate the advancement of bio-manufacturing industries.
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may help achieve the goal of “carbon neutrality and carbon 
emission peak”.

As an important component of microalgae, cyanobacteria 
are an ancient group of photoautotrophic prokaryotes, and 
play an essential role in the global carbon cycle [4]. Com-
pared with traditional higher plants and eukaryotic algae, 
cyanobacteria have the following advantages: (I) High 
energy conversion efficiency. Cyanobacteria can convert up 
to 9.0% of solar energy into biomass, while the solar energy 
conversion efficiency of higher plants is only 0.5-3.0%. (II) 
High carbon sequestration ability. Cyanobacteria can use 
bicarbonate to efficiently capture CO2 in the environment 
through its unique carbon concentration mechanism, fur-
ther improving the utilization rate of CO2 by cyanobacteria. 
(III) Simple nutritional demands and rapid growth rate. The 
growth of cyanobacteria only requires sunlight, water, car-
bon dioxide and trace element compounds, and the simple 
nutritional demands and photosynthetic structure enable 
them to grow at a faster rate. In addition, cyanobacteria 
could be discovered in different niches, providing algae 
strains with unique stress resistance. (IV) Independency of 
fertile land. Cyanobacteria can be cultured in flasks at the 
laboratory scale or grown in bioreactors or runway ponds 
at outdoor scales, which could avoid competition with 
food crops for arable land. (V) Tractable genetics. Simple 
genomic information and convenient genetic manipulation 
of cyanobacterial cells pave the way for targeted regulation 

of intracellular metabolic flow through metabolic engineer-
ing. Consequently, cyanobacteria have served as an impor-
tant model organism for studying photosynthesis and are of 
considerable interest for applications in light-driven bio-
technological applications.

Although cyanobacteria own the above advantages, 
especially high carbon fixation ability, they lack the origi-
nal materials for the efficient synthesis of valuable chemi-
cal compounds. To date, the current studies focus on 
photosynthesis and circadian regulation in non-modified 
cyanobacteria [5–7], and there are still several challenges 
in producing non-natural chemicals whose biosynthetic 
routes have not been identified in wild-type cyanobacterial 
strains. Metabolic engineering and synthetic biology have 
attracted extensive attention to redesign and reconstruct the 
metabolic pathway of model algae, by which the designated 
DNA fragments can be assembled for the production of 
commodity chemicals widely used in medical, health care 
and cosmetics. To date, many de novo synthesis metabolic 
pathways have been explored to synthesize different kinds 
of valuable chemical products in model freshwater cyano-
bacteria with the drawback of lower yield [8, 9]. There are 
still only a few examples of having produced highly effec-
tive photosynthetic chemicals with titers of more than 1 g/L. 
For instance, the highest production titer of ethanol was 
reported in Synechocystis sp. PCC6803 (PCC6803) with a 
titer of 5.5 g/L [10], and photosynthetic 2,3-butanediol and 
isobutyraldehyde production have achieved titers of 2.4 g/L 
and 1.1  g/L, respectively [3, 11]. Consequently, genetic 
engineering should be used to improve the photosynthetic 
titers of chemicals [8, 12], and some key limitations must 
be overcome to realize the full biotechnological potential of 
these versatile microorganisms.

Genetic manipulation tools for precise gene 
expression control is lacking

Cyanobacteria lack genetic manipulation tools for precise 
gene expression control, making it difficult to reach the 
theoretical yield and limiting the industrialization process 
of algae. Efficient expressions of heterologous genes play 
a key role in synthesizing biological products in cyanobac-
teria (Fig. 2A). A previous study proved that the expression 
ability of heterogenic genes is far less than that of endog-
enous genes, and its highest expression level only accounts 
for about 3% of the total soluble protein in cells [13], which 
significantly limits the application potential of cyanobacte-
ria in the production of chemical products. Thus, there is an 
urgency to develop a series of genetic toolboxes that could 
precisely regulate gene expression in cyanobacteria to over-
come the challenges mentioned above.

Fig. 1  Microalgae have attracted much attention due to their strong 
environmental adaptability and abundant metabolic diversity, and have 
been applied in many fields, including renewable energy, pharmaceuti-
cal industry, environmental monitoring, food industry, biotechnology, 
animal feed and environmental purification
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The expression of heterologous genes was mainly reg-
ulated by transcription and translation, while the former 
played an important role in prokaryotes [14]. In general, the 
transcription rates were controlled by changing the strength 
and accessibility of promoters [15]. Previous studies have 
shown that mutagenesis-based constitutive promoter library 
and inducible promoter system have been successfully 
established in Escherichia coli and Saccharomyces cerevi-
siae [16–18]. However, after testing the promoter elements 
from E. coli and S. cerevisiae in cyanobacteria cells, it was 
found that they did not obtain the desired results, and even 
the opposite results would appear. For example, the Ptrc1O 
promoter derived from E. coli displayed high efficiency in 
PCC6803, which was 3-fold higher than the endogenous 
PrbcL promoter. Nevertheless, the other promoters derived 
from E. coli, such as Plac, Ptet and λPR, showed low efficiency 
in PCC6803 [19], and the reason for this phenomenon was 
that the composition of RNA polymerase in cyanobacteria 

was significantly different from that of non-photosynthetic 
bacteria [20].

At present, a series of natural promoters have been exca-
vated from essential genes and highly expressed genes 
in cyanobacteria, which are mainly involved in the fixa-
tion of carbon dioxide (PrbcL, Pcmp and Psbt), photosystem 
I (PpsaA and PpsaD), photosystem II (PpsbA1 and PpsbA2), and 
phycocyanin synthesis (Pcpc) [21, 22]. Besides, a natural 
nickel-induced promoter PnrsB was also successfully used to 
express the phage cleavage gene in PCC6803 [23]. Mean-
while, several groups have made great strides in develop-
ing a range of inducible promoter systems in PCC6803 and 
Synechococcus sp. PCC 7942 (PCC7942), including photo-
responsive promoters, IPTG-responsive promoters, nutri-
ents-responsive promoters, and metal-responsive promoters 
[24–27]. Despite some progresses achieved, many problems 
remain. For example, the strength of the same promoter 
showed different performances between different cyanobac-
terial strains [28]. Consequently, it is urgent to design and 

Fig. 2  Genetic engineering tools of cyanobacteria towards efficient 
synthesis of green chemicals. (A) A library of synthetic parts such 
as promoter and RBS could be designed and characterized for tune-

ability of heterologous gene in cyanobacteria. (B) Schematic draw-
ing of genome editing in cyanobacteria via the traditional homologous 
recombination mediated cloning vector or self-replicating plasmids
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subculture of transgenic lines. It was reported that gene 
copy numbers positively influenced the overall expression 
of a heterologous protein in several endogenous plasmids, 
which is crucial for optimum chassis with high production 
performance. For example, Nozzi et al. (2017) explored inte-
grating the heterologous pathway of 2,3-butanediol into the 
chromosome and endogenous plasmid pAQ1 of PCC7002, 
and the results showed that the titer of 2,3-butanediol in 
the transgenic strain with an integrative expression on the 
endogenous plasmid was higher, demonstrating the superi-
ority of heterologous gene expression via endogenous plas-
mid [35]. However, the long growth cycle and multi-copy 
genome provides a longer period to obtain transgenic strain 
with the complete segregation for each copy, which slows 
down the efficiency of genetic manipulation in cyanobac-
teria. To overcome this challenge, CRISPR-based tech-
nology, a promising genome editing tool, has been used. 
CRISPR-based genome editing technology has been widely 
applied in various cyanobacteria strains [36, 37]. However, 
the major challenge for CRISPR system application was 
off-target effects, which could influence the genome edit-
ing efficiency [38]. In perspective, CRISPR-based genome 
editing is a promising strategy in the field of cyanobacterial 
genetics due to its potential to solve existing difficulties.

Furthermore, introducing heterologous genes into cyano-
bacteria cells with the help of self-replicating plasmids over-
came the limitations in homologous recombination, such as 
low segregation efficiency and difficult integration of large 
inserted fragments into the genome. Meanwhile, the expres-
sion intensity of heterologous genes derived from self-rep-
licating plasmids was usually higher than that derived from 
chromosomes [39]. Currently, self-replicating plasmids can 
be classified into two types, broad host-range plasmid [40] 
and cryptic plasmid [41], and have been designed to con-
duct a rapid functional study of novel genes or metabolic 
pathways [42]. Meanwhile, broad host-range plasmids were 
widely used to efficiently express heterologous genes in 
cyanobacteria. For instance, Miao et al. (2017) constructed 
a series of self-replicating plasmids derived from the broad 
host-range vector pEEK2 to express the synthesis route of 
isobutanol in PCC6803 [43]. The hydrocarbon biosynthetic 
pathway was also constructed via the broad-host-range vec-
tor pVZ321 in PCC7002 [44]. However, the plasmid stabil-
ity remained to be considered when using self-replicating 
plasmids. Up to now, the self-replicating plasmids used in 
cyanobacteria were located on the RSF1010-derived plas-
mids, and the copy number of these plasmids was slightly 
higher than that of the chromosome in Synechocystis [45]. 
However, RSF1010-derived plasmids tended to be slowly 
eliminated from cells, and antibiotic-based selection pres-
sure should be used to maintain the functions of these plas-
mids. Huang et al. (2010) constructed the broad host-range 

excavate more promoter elements to promote the applica-
tion potential of the cyanobacteria expression system.

In addition, the regulation of gene expression at the trans-
lational level remained comparatively essential. The ribo-
some binding site (RBS) is a small nucleotide sequence, and 
the Shine-Dalgarno (SD) sequence in RBS could interact 
with 16 S rRNA via complementary pairing. Different RBS 
sequences have different affinities with ribosomes, and the 
speed of RNA translation could be controlled by changing 
the adaptability of the RBS sequence. Presently, the screen-
ing of different RBS sequences has shown great insights in 
PCC6803 and Synechococcus sp. PCC7002 (PCC7002) [29, 
30], however, the same RBS sequence expressed in differ-
ent strains had different translation initiation rates [20]. In 
addition to the SD sequences, an appropriately sized spacer 
region between the SD sequences and start codon also sig-
nificantly affected the activity of RBS [31], and thermo-
dynamic models were also used to predict the translation 
efficiency of the given RBS sequence in different organisms 
[32]. Until now, only few RBS sequences have been char-
acterized in cyanobacteria, and an RBS library should be 
constructed to improve the translation efficiency of heter-
ologous genes in cyanobacteria.

The genome editing of cyanobacteria is 
simple, the cycle is relatively slow

Although the genome editing of cyanobacteria is simple, 
the cycle is relatively slow (Fig. 2B). An optimum chassis 
for synthetic biology applications should satisfy the follow-
ing requirements. On the one hand, the complete genome 
annotation of the chassis should be obtained. On the other 
hand, the chassis should allow for genome editing with 
simplicity and high efficiency. To date, more than 40 cya-
nobacteria genomes have been sequenced, and the inherent 
advantages of cyanobacteria should be combined to further 
develop synthetic biology tools, which could be applied to 
the genome editing of cyanobacteria with important theo-
retical value and potential applications [22]. Furthermore, 
the neutral sites on chromosomes and the endogenous plas-
mids are often used as target sites to express the heterolo-
gous genes in cyanobacteria [33, 34]. The common method 
to edit the cyanobacteria genome by natural transformation 
and homologous recombination in cyanobacteria genetic 
engineering is time-consuming (multiple antibiotic screen-
ing), an inefficient method (complete segregation in multi-
copy plasmid), and may sometimes cause the loss of foreign 
genes.

The integrative expression on chromosomes could 
increase the genetic stability of heterologous genes com-
pared to free plasmids, which is conducive to the long-term 
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dynamic metabolic regulation could also be applied to redi-
rect the carbon flux to low-flux pathways to improve the 
output of targeted products. By developing the tools for 
strain manipulation and novel chassis organisms with excel-
lent performance for biotechnological applications, cyano-
bacteria-mediated light-driven platforms towards efficient 
synthesis of green chemicals could unlock a bright future, 
which could also accelerate the advancement of bio-manu-
facturing industries.
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