
ORIGINAL ARTICLE

Molecular Biology Reports (2023) 50:4133–4144
https://doi.org/10.1007/s11033-023-08340-5

Curtis, P. quadrangularis L., P. nitida Kunth, P. cincinnata 
Mast and P. setacea DC, are cultivated but have less impor-
tance and economic significance [5]. Brazilian production 
was approximately 593 thousand tons in 2019, in an area 
of 41 thousand hectares, with average yield around 13 
t.ha− 1.year− 1 in Brazilian orchards [4] and cultivation for 
usually two cycles. This yield is considered low when com-
pared to the potential of improved cultivars, over 30 t.ha− 1 
[6, 7].

Passiflora edulis is an allogamous plant, diploid with 
2n = 2x = 18 [8]. The flowers are hermaphrodite type and 
solitary, located in the leaf axils. Fertilization in sour pas-
sion fruit occurs exclusively by cross-fertilization due to 
the occurrence of genetic self-incompatibility [9, 10]. Self-
incompatibility plays an important role in the breeding of 
passion fruit and in other species in which it occurs, since 
it influences the obtaining of lines for hybrid production, 
and in the direction of cross between parents of interest. In 

Introduction

Sour passion fruit (Passiflora edulis Sims) stands out as the 
most important among the several species of the Passiflora 
genus [1, 2]. Brazil is considered the largest producer and 
consumer of this fruit in the world, and most orchards are 
planted with P. edulis [3, 4]. Other species, such as P. alata 
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Abstract
Background  Genetic variability is the most important parameter in plant breeding based on selection. There is a need for 
morpho-agronomic and molecular characterization of Passiflora species, to exploit their genetic resources more efficiently. 
No study has yet been carried out to compare half-sib and full-sib families in relation to the magnitude of the genetic vari-
ability obtained in them, and then to elucidate the advantages or disadvantages of each one.
Methods and results  In the present study, SSR markers were used to evaluate the genetic structure and diversity of half-sib 
and full-sib progenies of sour passion fruit. Two full-sib progenies (PSA and PSB), and a half-sib progeny (PHS), together 
with their parents, were genotyped with a set of eight pairs of SSR markers. Discriminant Analysis of Principal Components 
(DAPC) and Structure software were used to study the genetic structure of the progenies. The results indicate that the half-sib 
progeny has lower genetic variability, although it has higher allele richness. By the AMOVA most of the genetic variability 
was found within the progenies. Three groups were clearly observed in the DAPC analysis, while two hypothetical groups 
(k = 2) were observed in the Bayesian approach. The PSB progeny showed a high genetic mixture between the PSA and PHS 
progenies.
Conclusion  Lower genetic variability is found in half-sib progenies. The results obtained here allow us to suppose that the 
selection within full-sib progenies will possibly provide better estimates of genetic variance in sour passion fruit breeding 
programs, since they provide greater genetic diversity.
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addition, the cultivars must exhibit enough variability for 
the alleles of self-incompatibility to ensure satisfactory 
fruiting [11].

Genetic breeding has great importance for advances in 
the crop in Brazil, with the availability of new cultivars. 
Over the last few years, the objective of sour passion fruit 
breeding programs has been to develop genotypes with 
higher yield and fruit quality [12, 13], resistance/tolerance 
to abiotic stress [14] and, mainly, to biotic factors, since 
diseases like fusariosis [15] and viral diseases [16, 17], or 
pests like Tetranychus mexicanus [18], stand out as the main 
constraints in sour passion fruit production in Brazil. How-
ever, some breeding programs of sour passion fruit have 
also sought to develop genotypes for other purposes, such 
as ornamentation and extraction of chemical compounds, 
mainly of pharmaceutical interest, exploring other species 
of Passiflora [7, 19, 20].

Knowledge of genetic structure and diversity and their 
behavior in populations of any species is essential not only 
for breeding studies, but also for conservation, maintenance, 
and effective use of available genetic resources [21, 22]. 
Studying genetic diversity in a population allows exploring 
heterotic effects to obtain superior hybrids. In addition to 
other important studies, such as genomic selection, genome-
wide association, and molecular marker-assisted selection 
[23]. Genetic diversity studies have been considered impor-
tant for the breeder, as they make it possible to understand 
the variations in the population and outline selection strate-
gies, to maximize genetic gains in characteristics of interest 
[24].

Genetic divergence between genotypes, especially for 
morphoagronomic traits, allows selection or genetic recom-
bination to generate improved cultivars [25]. In passion 
fruit, the use of half-sib progenies is common, mainly due to 
the ease of obtaining [26–28]. In general, the capitalization 
of additive genetic variance within half-sib progenies is less 
than the capitalization of additive genetic variance within 
full-sib progenies, since in full-sib progenies both parents 
are known [29, 30]. In addition, no study has yet been car-
ried out to compare half-sib families with full-sib families in 
relation to the magnitude of the genetic variability obtained 
in each type of progeny, and then elucidate the advantages 
or disadvantages of each one. Half-sib progenies of apples 
showed higher estimates of heritability than full-sib prog-
enies for a range of morphological traits [31]. In Foenicu-
lum vulgare, full-sib progenies exhibited higher estimates 
of genotypic and phenotypic coefficients of variation and 
recorded maximum genetic gain for most of the traits evalu-
ated [32]. Differences in heritability and genetic variation 
coefficients between full-sib and half-sib progenies were 
also reported for eucalypt species [33].

There is a need for morpho-agronomic and molecular 
characterization of Passiflora species, in terms of pre-breed-
ing, to more efficiently exploit their genetic resources, as 
reported in some studies [34, 35]. Molecular markers con-
sist of an important and efficient tool in the genetic char-
acterization of plant accessions and populations, including 
sour passion fruit [36, 37]. Among the various molecular 
markers used in the characterization of plants, microsatel-
lites (SSR – Simple Sequence Repeat) stand out due to their 
high reproducibility and resolution, as well as the poly-
morphism, codominance and multiallelic nature [38, 39]. A 
range of SSR markers are available for passion fruit and 
allow important studies to be conducted on molecular char-
acterization, in terms of conservation and improvement [20, 
40, 41].

In the present study, we used SSR markers to character-
ize the genetic structure and diversity of full-sib and half-sib 
progenies of sour passion fruit, compare these two proge-
nies in relation to the magnitude of the genetic variability 
obtained within each progeny, and then infer about their 
possible influences on the improvement of the crop.

Materials and methods

Genetic material

The study was conducted at the Laboratory of Biotech-
nology and Plant Breeding, located in the Department of 
Agronomy of the Federal University of Viçosa (UFV), 
Viçosa-MG, Brazil (20°45’14”S, 42°52’54”W, and 648.74 
above mean sea level). Two full-sib progenies, obtained from 
controlled cross between contrasting elite parents, and one 
half-sib progeny obtained by open-pollination, belonging to 
the UFV Sour Passion Fruit Breeding Program, were geno-
typed. The parents used to obtain each progeny are shown 
in Table 1. A kinship relationship is observed between the 
female parents (P1) of PSA and PSB progenies (P3).

To obtain the two full-sib progenies, controlled crosses 
were carried out between their respective parents. For the 
half-sib progeny (PHS), a plant in the experimental area 
was marked to constitute the female parent (P5), and eleven 
plants in the surroundings were also marked to constitute 
the possible male parents (P6 to P16 - Table 1). A kinship 
relationship is also observed between the male parent of the 
PSB (P4) progeny and the female parent of PHS progeny 
(P5). The fruits were harvested about 65 days after cross-
ing when they were fully ripe. After harvesting, the fruits 
were processed to collect the seeds, which were then sown 
to give rise to the progenies. Thirty-six genotypes from 
each full-sib progeny and 45 genotypes from the half-sib 
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progeny were genotyped (Table 1). The seedling stage was 
conducted in a greenhouse.

Genomic DNA extraction

For DNA extraction, fully expanded young leaves were col-
lected from each plant (parental and progeny genotypes). 
DNA extraction was done from 200 mg of macerated plant 
tissue, following the CTAB protocol [42]. The quality and 
concentration of the extracted DNA were checked by read-
ing the absorbance in a microplate spectrophotometer (Mul-
tiskanTM GO), at wavelengths of 230, 260, and 280 nm.

Microsatellite marker genotyping

The polymorphic primers between the parental genotypes 
were chosen from an initial set of 27 random SSR markers 

developed by Oliveira [40] and Cerqueira-Silva et al. [20] 
for P. edulis (Table 2). These primers were selected based 
on their quality of amplification, polymorphism, and PIC 
observed in previous works conducted in the Sour Passion 
Fruit Breeding program at UFV by Cordeiro et al. [43] and 
Araújo (2018) (not published).

The amplification was carried out using a reaction mix of 
20 µL containing 40 ng of DNA, 1X buffer (500 mM of KCl; 
100 mM of Tris-HCl pH 8.4; 1% Triton X-100), 1.5 mM 
of MgCl2, 0.25 µM of each dNTP, 0.3 µM of each primer, 
and 0.6 U of Taq DNA polymerase (Phoneutria). The PCR 
reaction was performed in a Veriti® thermal cycler (Applied 
Biosystems), under the following condition: denaturation 
at 94 ºC for 4 min, followed by 10 touchdown cycles with 
denaturation at 94 ºC for 40s, annealing temperature at 61 
ºC for 40s, with 0.5 ºC decrease per cycle, and extension at 
72 ºC for 50s. Then, 28 additional cycles were performed 

Markers Primer sequence Motive Expected 
fragment 
size (pb)

mPe-UNICAMP02 F
R

TCGAGTGAGATTGGCAGTG
TTGGCTTCGAGGAGAAGAA

165–178

PE07 F
R

TGCTCATTGATGGTGCTTG
TCGTCTCTTCTCCTCCTTCA

(GA)23 138

PE08 F
R

CCGGATACCCACGCATTA
TCTAATGAGCGGAGGAAAGC

(GTTGTG)4 282

PE12 F
R

CGTAATATTGTTTGGGCACT
ATCATGGGCGAACTCATTT

(TG)8 150

PE18 F
R

CCGTGAACCAACCATTTCTC
TTGCAGCACAAACAAGTCAA

(TG)9 220

PE24 F
R

TCAAACTGAACTCGTAAAGG
GTGCTGGGAGACTGATGTT

(CA)15 294

PE27 F
R

TTGCTCATTGCACTCATCCT
GCAGACATTTCCTGGAGCA

(GT)7 139

PE42 F
R

GTCACTTCATTCTTCCTTTCC
TTAGCCCACTCAAACACAA

(GT)8 216

Table 2  Sequence of polymor-
phic microsatellite primers for 
P. edulis used in the genotypic 
characterization of progenies, 
with their respective motives and 
expected allele size

 

Progenies Parents Code Total of genotyped accessions
Progeny of full-sib A (PSA) ♀ P1 4115/4–4 36

♂ P2 4715/2–2
Progeny of full-sib B (PSB) ♀ P3 4215/1–3 36

♂ P4 4915/1–2
Progeny of half-sib (PHS) ♀ P5 4715/3–5 45

♂ P6 SC 1–3
P7 GA 1–3
P8 GA 3–3
P9 4315/4–4
P10 4315/4 − 3
P11 4315/4 − 2
P12 SC 1–2
P13 4815/2–5
P14 4615/4–4
P15 SC 1–4
P16 4915/4–4

Table 1  List of the parents 
crossed to originate the full-sib 
progenies (PSA and PSB) and the 
half-sib progeny (PHS).

* ♂ and ♀ male and female 
parents, respectively, to obtain 
the respective progeny
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Results

Polymorphism and heterozygosity of the progenies

Of the 27 SSR markers tested, eight showed polymorphisms 
in the parent genotypes, allowing the genetic characteriza-
tion of the progenies. The number of alleles per locus varied 
from 2 to 3, and a total of 18 different alleles were found, 
resulting in an average of 2.25 alleles per locus (Table 3). 
In the PSA and PSB progenies, a maximum of two alleles 
per locus was observed. In the PHS progeny, greater allele 
diversity was detected, where the primers PE08 and PE24 
showed up to three alleles per locus. In addition, for the 
primers PE08, PE24, and PE27, private alleles were identi-
fied in the PHS progeny.

Six of the eight polymorphic markers selected showed 
loci in heterozygosis in PSA and PSB progenies. In the 
PHS progeny, all markers used were heterozygous, differ-
ing from PSA and PSB, which showed some homozygous 
loci (Table 3). However, in PHS loci with heterozygous fre-
quency lower than 0.1 was obtained (PE12, PE27, and PE42 
loci), which was not observed in PSA and PSB, in which 
all polymorphic markers showed heterozygous frequency 
higher than 0.3. The maximum values of heterozygosis 
observed were 0.53, 0.63, and 0.63 in PSA, PSB, and PHS 
progenies, respectively. The mean heterozygosity of the 
full-sib progenies was higher than that of the half-sib prog-
eny (0.33, 0.40, and 0.26 in PSA, PSB, and PHS, respec-
tively) (Table  3). The gene diversity (He) was in a range 
of 0.30–0.5 in PSA, 0.36–0.5 in PSB, and 0.04-56 in PHS 
progenies. For some markers, like PE08 in PSB, and PE02, 
PE07, and PE27 in PHS progeny, the expected heterozygos-
ity was higher than the observed heterozygosity (Ho). How-
ever, the expected heterozygosity average was lower than 
the observed heterozygosity average for all the progenies 
(0.29, 0.32, and 0.25, in PSA, PSB, and PHS, respectively). 
Although the greatest allelic diversity is observed in PHS, 
this progeny has the lowest expected and observed hetero-
zygosity (0.25 and 0.26, respectively).

The PIC values for most markers were maximum or 
close to the maximum in the three progenies, with values 
obtained in the heterozygous locus varying from 0.26 to 
0.37 in the PSA progeny, 0.30 to 0.37 in the PSB progeny, 
and 0.05 to 0.42 in the PHS progeny, being considered mod-
erately informative in all progenies [55]. The loci PE24 
and PE27 in PSA and the loci PE18 and PE27 in PSB were 
monomorphic.

Structure and genetic differentiation of progenies

A clear genetic structure between the progenies is observed 
using the DAPC, where the PHS progeny is genetically 

with denaturation at 94 ºC for 1  min, annealing at 58 ºC 
for 1  min and extension at 72 ºC for 1  min, followed by 
final extension at 72 ºC for 7 min. The amplified fragments 
were separated by 6% denaturing polyacrylamide gel elec-
trophoresis at 60 watts, 1750 volts and 60 mA for 2 h. The 
amplification products were stained with 2% silver nitrate.

Statistical analysis

For each progeny, the allele frequencies for all loci, pri-
vate alleles, observed (Ho) and expected (He) heterozygos-
ity, and polymorphic information content (PIC) observed 
and estimated for each marker were calculated. Then, the 
genetic structure of the progenies was analyzed through a 
discriminant analysis of principal components (DAPC) and 
a Bayesian approach. DAPC was performed using the Ade-
genet package [44]. Additionally, the results of the Principal 
Component Analysis (PCA) were plotted separately using 
the Factoextra package [45]. Both analyses were performed 
in the R software [46]. For the Bayesian approach, the Struc-
ture software [47] was used to define a value of K groups 
that best represented the three progenies. The analysis was 
based on a mixture model, considering the allelic frequency 
of the progeny correlated, and with a priori information of 
the actual number of groups. The number of groups tested 
was 1 to 6, with 250.000 burn-in runs, followed by 750.000 
MCMC (Monte Carlo Markov Chain) repetitions. For each 
group, 20 iterations were performed. The selection of the 
best value of K was carried out using the criterion of Δk 
proposed by Evanno et al. [48], calculated by the Structure 
Harvester software [49]. The validation of the genetic varia-
tion between and within the progenies was performed by 
the hierarchical analysis of molecular variance (AMOVA) 
of Excoffier [50], in the Genes software [51], and the sig-
nificance of the variance components (ØST) was tested by 
1000 permutations.

The genetic diversity of progeny was studied from a 
multivariate distance matrix between individuals, gener-
ated considering the complement of the Nei similarity coef-
ficient, using the Poppr package [52] of the R software [46]. 
From the distance matrix, the hierarchical cluster analysis 
of the progenies was performed, using the unweighted pair-
group method with arithmetic mean (UPGMA) to study 
the behavior of genetic diversity. The cut-off points were 
determined according to the criterion of Mojena [53], con-
sidering the constant k = 1.25 as the stop criteria to define 
the best number of clusters as suggested by Milligan and 
Cooper [54]. The results were plotted using the Factoextra 
package [45] of the R software [46].
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(Table 4). Despite the lower percentage of variation among 
the progenies, it is observed that the degree of genetic dif-
ferentiation is moderate to low (0.31).

Inter and intra-progeny diversity

There was a considerable difference of diversity within 
the full-sib and half-sib progenies. High proximity was 
observed between the genotypes of PHS progeny. Besides 
the formation of eight groups, approximately, corroborating 
the results observed in the PCA analysis. The male paren-
tal genotypes P6, P7, P8, P10 and P15 were grouped sepa-
rately, evidencing the non-participation of these genotypes 
as pollen donors for the formation of the PHS progeny. The 
PHS31 and PHS42 segregating genotypes also clustered and 
curiously exhibited alleles exclusive to the P8 and P10 male 
parental genotypes. Considering that the genotypes P6, P7, 
P8, P10 and P15 and the genotypes PHS31 and PHS42 may 
be influencing the genetic divergence between the other seg-
regating genotypes, these genotypes were removed from the 
dataset and a new analysis was performed. It was observed 
that the remaining individuals were more distributed in 
the new clustering (Fig.  1 – Online Resource 1). Thus, 

closer to the PSB progeny than to PSA (Fig.  1a). By the 
PCA analysis, a low genetic variation can be observed 
within the PHS progeny (Fig. 1b). In this analysis, it is also 
possible to observe very close individuals between the PSA 
and PSB progenies.

In the Bayesian approach, using the criterion of Evanno et 
al. [48], the highest value of ΔK is visualized in K = 2, with 
a subsequent reduction of ΔK as the values of K increase 
(Fig.  2a). In this study, when the progenies’ structures 
were analyzed considering the number of progenies K = 3 
(Fig. 2c), a weak structure and a high percentage of mixture 
were observed, mainly between the PSB and PHS progenies 
(progenies 2 and 3, in Fig. 2b, respectively). When consider-
ing K = 2 (Fig. 2c), a strong structure can be observed. This 
analysis also showed that PSA (progeny 2, Fig. 2b) and PHS 
(progeny 3, Fig. 2b) maintain a more characteristic genetic 
profile. On the other hand, the genotypes of the PSB prog-
eny maintain higher percentage of mixture in their genetic 
profile and can be considered as intermediate between the 
two hypothetical genetic structures considered.

By the AMOVA, approximately 70% of the variation 
is found within, which indicates a high degree of varia-
tion among the individuals that constitute these progenies 

Progenies Locus Alleles/locus A1 A2 A3 He Ho PIC PICmax
PSA PE02 2 0.22 0.78 0 0.35 0.45 0.29 0.38

PE07 2 0 0.47 0.53 0.5 0.42 0.37 0.38
PE08 2 0.53 0 0.47 0.5 0.53 0.37 0.38
PE12 2 0.18 0.82 0 0.3 0.37 0.26 0.38
PE18 2 0.81 0.19 0 0.3 0.38 0.26 0.38
PE24 1 1 0 0 0 0 0 0
PE27 1 0 1 0 0 0 0 0
PE42 2 0.26 0.74 0 0.39 0.53 0.31 0.38
Mean 0.29 0.33 0.23

PSB PE02 2 0.32 0.68 0 0.43 0.63 0.34 0.38
PE07 2 0.43 0.57 0 0.49 0.55 0.37 0.38
PE08 2 0.46 0 0.54 0.5 0.45 0.37 0.38
PE12 2 0.28 0.72 0 0.4 0.55 0.32 0.38
PE18 1 1 0 0 0 0 0 0
PE24 2 0.76 0.24 0 0.36 0.47 0.3 0.38
PE27 1 0 1 0 0 0 0 0
PE42 2 0.28 0.72 0 0.4 0.55 0.32 0.38
Mean 0.32 0.4 0.25

PHS PE02 2 0.46 0.54 0 0.5 0.49 0.37 0.38
PE07 2 0.07 0.93 0 0.13 0.11 0.12 0.38
PE08 3 0.29 0.06 0.65 0.49 0.58 0.42 0.59
PE12 2 0.02 0.98 0 0.04 0.04 0.03 0.38
PE18 2 0.94 0.06 0 0.12 0.12 0.11 0.38
PE24 3 0.54 0.39 0.06 0.55 0.63 0.45 0.59
PE27 2 0.94 0.06 0 0.12 0.05 0.05 0.38
PE42 2 0.04 0.96 0 0.06 0.07 0.07 0.38
Mean 0.25 0.26 0.21
General 
mean

2.25 0.33 0.23

Table 3  Alleles per locus, 
frequency of A1, A2, A3 alleles, 
observed heterozygosity (Ho), 
polymorphic information content 
observed (PIC) and expected 
(PICmax) in PSA, PSB, and PHS 
progenies
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Discussion

The PIC values obtained were moderately informative 
according to Botstein et al. [55]. This can be attributed to the 
low number of alleles per locus found, since for most mark-
ers only two allelic forms were identified, which attributes 
a bi-allelic nature to the markers, restricting the PIC values 
to a maximum of 0.5 [23]. Higher PIC values in the PHS 
progeny are due to higher allelic diversity in this progeny.

The results show a satisfactory level of genetic diversity 
in the progenies studied. The progenies PSB and PHS show 
deficit of heterozygosity for some loci, with most of them 
being in the PHS progeny (PE02, PE07, and PE27 in PHS, 
and PE08 in PSB), where He was higher than Ho. Besides 
that, the expected heterozygosity average was lower than 
the observed heterozygosity average in all the progenies. 
The excess of heterozygosity was also reported by Cordeiro 
et al. [43] in progenies of sour passion fruit, with similar 
results of He and Ho for some loci used. The expected het-
erozygosity (He) gives a very important information about 
the genetic diversity of a population [56].

The number of alleles per locus found (2.25 alleles) can 
be considered low for the species but is corroborated by 
results found in the literature for P. edulis [41, 57]. The low 
number of alleles per locus can be attributed to the degree 
of selection of the accessions, due to the genetic narrowing 
in the population breeding. Lower allelic means have been 
observed in accessions of sour passion fruit with higher 

subsequent analyses were carried out without these geno-
types. It is important to note that, despite the redistribution, 
low genetic diversity continued to be observed within the 
PHS progeny, in which the longest distance observed within 
the PHS progeny was 0.47, and the mean distance between 
the genotypes was 0.2.

On the other hand, in the full-sib progenies, the individu-
als were well distributed in the clustering (Figs. 2 and 3 – 
Online Resource 1). In both progenies, the greatest distance 
between the genotypes within the progenies was 0.57, and 
the mean distance was 0.26. As expected, the parents of both 
progenies were clustered in different groups, and subgroups 
composed only of hybrid individuals were observed (Figs. 2 
and 3 – Online Resource 1).

In the clustering with the three progenies simultaneously 
(Fig. 4), it is possible to visualize the greater diversity of 
hybrid progenies. From the 15 groups formed, only six had 
genotypes belonging to the PHS progeny. More than 50% 
of the PHS progeny genotypes clustered in just one group, 
together with parents P5, P9, P12 and P13. 10 other geno-
types were grouped with their possible parents P11. No pat-
tern of genotypes’ distribution was observed for the hybrid 
progenies, as observed for PHS. The mean distance was 
0.35 between the PSA and PSB progenies, 0.64 between 
PSA and PHS, and 0.38 between PSB and PHS.

Fig. 1  Genetic structure of the 133 sour passion fruit genotypes belong-
ing to the three progenies studied by discriminant analysis of principal 
components (DAPC) (a), and dispersion of the genotypes in the first 

two components of principal component analysis (PCA), delimited by 
ellipses following a t distribution, at a 90% confidence level (b)
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Fig. 2  Genetic structure of the 133 genotypes of sour passion fruit. a. 
Estimation of the probabilities of K, from the method of Evanno et al. 
(2005). b and c. Barplots showing the genetic structure of the three 
progenies studied, using the Structure program, based on the Bayesian 
model of the population structure, with K = 3 (b) and K = 2 (c). Each 

individual of the progeny is divided into the number of hypothetical 
populations, proportionally to their genetic profile, expressed by the 
scale ranging from 0 to 1, shown on the left in the figures. In this fig-
ure, the progenies PSA, PSB, and PHS are represented by numbers 1, 
2, and 3, respectively
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are needed to recovery these alleles, which would avoid the 
reduction of genetic variability in these programs [58].

Genetic structure and progeny relationships

The reduced degree of progeny differentiation is due the 
high degree of selection for specific traits in breeding pro-
grams, which reduces the genetic basis of breeding popula-
tions [23]. In addition to these factors, sour passion fruit is 
an allogamous plant, and therefore a greater gene flow is 
expected, which tends to provide a lower degree of structur-
ing, as demonstrated by Ocampo et al. [37]. Another cause 
of reduced degree of differentiation in the present study 
might be the relationship between the parents, especially the 
PSB progeny, which has a kinship relationship with both 
PSA and PHS progenies (data not shown), which may have 
increased the frequency of common alleles between the 

degrees of selection, such as commercial cultivars [20]. In 
contrast, higher allelic diversity has been reported in popu-
lations with lower levels of selection. Cerqueira-Silva et al. 
[6] reported an allele mean of 5.52 alleles per locus when 
studying sour passion fruit accessions from the several Bra-
zilian States and some foreign accessions from Portugal and 
Venezuela. Likewise, Ocampo et al. [37] detected 6 to 18 
alleles per locus in Colombian accessions of P. edulis. How-
ever, these same authors reported 1.61 and 2.8 alleles per 
locus considering the accessions of specific regions, values 
close to those found in the present study.

Studies show that the genetic variability of cultivated 
germplasm in Brazil is low, and this is a consequence of low 
exploration and lack of collections of wild accessions that 
have not been taken into account in breeding programs. This 
is possibly due to the loss of alleles in the sour passion fruit 
selection processes, so crosses with divergent accessions 

Fig. 3  Clustering of PHS progeny 
accessions obtained by the 
UPGMA cluster method, with 
numbers of groups defined by 
the Mojena (1977) method, using 
k = 1.25. P5: female PHS parent; 
P6 to P16: possible male PHS 
parent; PHS1 to PHS45: segre-
gating PHS progeny genotypes

 

Source of variation GL SQ QM Estimated variance % P-value
Within 2 9.95 4.97 0.109 30.96 0.001
Between 130 31.58 0.24 0.24 69.04 0.001
Total 132 41.53 0.35 100
Fixation index (ØST) 0.31

Table 4  Analysis of molecular 
variance (AMOVA), comparing 
the percentage of the variance 
between and within the studied 
progenies

 

1 3

4140



Molecular Biology Reports (2023) 50:4133–4144

occurrence of correlated crosses, and that possibly the low 
participation of the parents would be the most likely reason. 
Another factor that may alter mating patterns in sour pas-
sion fruit is flower pollination, which is entomophilous type 
done by wasps [60]. The behavior of the wasps in the field, 
associated with the number of pollinators in the area, can 
increase mating between close plants [61].

Correlated crosses lead to a higher proportion of siblings 
in a population, and consequently lead to an increase in the 
coancestry coefficient within the progeny [62]. Cordeiro et 
al. [43] demonstrated that half-sib progeny obtained from 
one fruit is not sufficient to genetically represent the origi-
nal population, so larger samples are required. In this study, 
alleles unique to P8 and P10 male parents were observed 
only in PHS31 and PHS42 genotypes from PHS progeny, 
which shows the low representation of these alleles in the 
progeny, which would possibly be better represented in 
larger samples.

In breeding programs, the evaluation of progeny with 
high genetic diversity, as well as the presence of favorable 
alleles, is fundamental to obtain greater gains [63]. Half-sib 
progenies have advantages such as easy obtaining, lower 

progenies. The results obtained by the Bayesian approach 
are especially important since, in addition to the genetic 
structure, they made it possible to identify kinship relation-
ships between the progenies. Despite kinship, in sour pas-
sion fruit, the lowest degree of differentiation in breeding 
accessions has been attributed to the high percentage of 
common alleles [58]. Less genetic variation between prog-
enies, like the results obtained here, has also been observed 
in wheat [23].

Genetic diversity and implications for breeding

The low genetic diversity observed within the PHS progeny 
and the restricted crosses with some male parents allow us 
to suppose the occurrence of correlated crosses in the for-
mation of open-pollination progenies in sour passion fruit. 
Crosses between related individuals and a low number of 
male parents associated with the process of pollination can 
be the causes of correlated cross [59]. In the present study, 
we observed a negative inbreeding coefficient in the PHS 
progeny (f = -0.04, data not shown), allowing us to infer 
that crosses between relatives would not be the cause of the 

Fig. 4  Cluster analysis of the 
133 genotypes belonging to 
the progenies studied, obtained 
by UPGMA, with numbers of 
groups defined from the method 
of Mojena (1977), using k = 1.25. 
PSA1 to PSA36: segregating 
genotypes of the PSA progeny; 
P1 and P2: Female and male 
parents of the PSA progeny, 
respectively; PSB1 to PSB36: 
segregating genotypes of the PSB 
progeny; P3 and P4: Female and 
male parents of the PSB progeny, 
respectively; PHS1 to PHS45: 
segregating genotypes of the PHS 
progeny; P5: female parent of 
PHS; P9 to P16: possible male 
parents
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