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Abstract
Purpose  Wheat is an important cereal crop that is cultivated in different parts of the world. The biotic stresses are the major 
concerns in wheat-growing nations and are responsible for production loss globally. The change in climate dynamics makes 
the pathogen more virulent in foothills and tropical regions. There is growing concern about FHB in major wheat-growing 
nations, and until now, there has been no known potential source of resistance identified in wheat germplasm. The plant 
pathogen interaction activates the cascade of pathways, genes, TFs, and resistance genes. Pathogenesis-related genes’ role in 
disease resistance is functionally validated in different plant systems. Similarly, Genomewide association Studies (GWAS) 
and Genomic selection (GS) are promising tools and have led to the discovery of resistance genes, genomic regions, and novel 
markers. Fusarium graminearum produces deoxynivalenol (DON) mycotoxins in wheat kernels, affecting wheat productivity 
globally. Modern technology now allows for detecting and managing DON toxin to reduce the risk to humans and animals. 
This review offers a comprehensive overview of the roles played by GWAS and Genomic selection (GS) in the identification 
of new genes, genetic variants, molecular markers and DON toxin management strategies.
Methods  The review offers a comprehensive and in-depth analysis of the function of Fusarium graminearum virulence fac-
tors in Durum wheat. The role of GWAS and GS for Fusarium Head Blight (FHB) resistance has been well described. This 
paper provides a comprehensive description of the various statistical models that are used in GWAS and GS. In this review, 
we look at how different detection methods have been used to analyze and manage DON toxin exposure.
Results  This review highlights the role of virulent genes in Fusarium disease establishment. The role of genome-based 
selection offers the identification of novel QTLs in resistant wheat germplasm. The role of GWAS and GS selection has 
minimized the use of population development through breeding technology. Here, we also emphasized the function of recent 
technological developments in minimizing the impact of DON toxins and their implications for food safety.
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Introduction

 Wheat (Triticum aestivum L.) is consumed globally as an 
essential commodity and an important component of the 
human diet. Bread wheat being hexaploidy in nature con-
tains three genomes (AABBDD), each derived from three 
different progenitors, such as (AA) derived from Triticum 
urartu, (BB) from an unknown species and (DD) genome 
has been derived from wild grass Aegilops tauschii (DD). 
Durum wheat (Triticum Durum) is an allotetraploid in nature 
and contains (AABB) genome. A wide range of food prod-
ucts, such as macroni, pasta and desserts are derived from 
Durum wheat. The economic significance of Durum wheat 
makes it as an important player to develop resistant cultivars 
for Fusarium Head Blight (FHB) resistance. FHB markers 
and QTLs identified in resistant genotypes of T. aestivum 
is complex to cross with Durum wheat due to the sexual 
incompatibility. Hence it becomes important to identify 
resistant genes and genomic regions in diverse T. durum 
lines and to cross with cultivated varieties. It provides more 
than 20% of nutritional demands for human consumption. 
It is considered a staple crop, and its demand has increased 
globally by 35–40% [1]. Ever increasing world population 
requires more acreage for wheat production [2, 3]. By 2050, 
it is predicted that there will be approximately 10 billion 
people on earth, which will increase the demand for wheat 
production globally. The incidence of fungal diseases in T. 
durum has increased as a result of rising temperatures. The 
rapid evolution of new pathotypes has also been facilitated 
by variations in global temperature. Many fungal infections 
have impeded wheat production, viz., stripe rust, leaf rust, 
spot blotch, powdery mildew, karnal bunt, loose smut and 
Fusarium Head Blight (FHB). Fusarium head blight caused 
by Fusarium graminearum is one of the most economically 
important fungal disease in T. durum.

Wheat production is threatened by F. graminearum, 
which is primarily responsible for FHB, scab, or ear 
blight [4]. Various cultural and agronomic strategies were 
employed to mitigate the disease’s severity, but breeding 
for stable, long-lasting resistant cultivars is the most effec-
tive strategy to manage the illness both before and after 

harvest. [5]. FHB resistance breeding success depends on 
finding resistant germplasm that contains a specific resist-
ance genes and markers with associated traits [6]. Several 
wheat diseases, notably the scab pathogen, have had their 
whole genetic and genomic information disclosed by recent 
developments in high-throughput next-generation sequenc-
ing (NGS). Genome-wide association studies (GWAS) and 
genomic selection (GS) in wheat germplasm have led to the 
identification of potential candidate genes and markers. The 
genes and markers identified through GWAS will be intro-
gressed into susceptible genotypes to increase resistance 
against broad-spectrum fungal pathogens [7]. This article 
uncovers and summarises recent literature on association 
mapping, genome-wide association mapping, and genomic 
selection associated with Fusarium resistance in wheat to 
understand resistance mechanisms using Indian wheat germ-
plasm and its integration into association studies to better 
comprehend disease severity, pathogenesis, toxic effects, 
and sustainable approaches for the generation of resistant 
genotypes.

Pathogenesis and virulence factors of Fusarium 
graminearum

Fusarium graminearum is the most devastating fungal 
pathogen causing FHB in wheat. The pathogen is more 
prevalent in the US, Canada and in Asian countries, caus-
ing maximum yield loss due to the release of the carcino-
gen DON toxin [8]. The fungal-pathogen interaction is 
not fully understood at the molecular level, and there is 
scant knowledge about Fusarium-wheat pathosystems. 
Fungal pathogens secrete effectors into the plant cell, and 
they are recognized by receptors on the cell surface and 
activate effector-triggered immunity [9]. Effector proteins 
have well defined role in pathogenicity and help pathogens 
to evade the host immune system. Similarly, three effector 
proteins (FGSG_01831, FGSG_03599, and FGSG_12160) 
secreted by F. graminearum were involved in the fungal 
infection and bypass the host immune response [10]. 
Pathogens produce effector proteins for use in host cell 
membrane invasion and trafficking into the apoplastic, 

Table 1   List of key F. graminearum effector proteins and their function in the early stages of pathogen invasion and disease development.

Pathogen Effector Proteins/genes Function References

F. graminearum Trichodiene synthase (Tri5) Regulation of the Tri cluster [11]
F. graminearum Tri6 Transcription activation of trichothecene biosynthetic [11]
F. graminearum FgSah1 Fungal development and virulence [12]
F. graminearum CAZymes Plant cell wall degradation (PCWDC) & fungal cell wall modification (FCM) [13]
F. graminearum EIN2 Ethylene signalling [14]
F. graminearum OSP24 Important for infectious growth in the rachis tissues in infected wheat heads [15]
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which triggers effector triggered immunity (ETI) in 
plants that have evolved resistance. (Table 1) summarises 
the known and predicted effector proteins released by F. 
graminearum.

Pathogens have different modes of interactions with 
host plants, and Fusarium is a hemibiotrophic fungal 
pathogen. It establishes itself as a biotroph before switch-
ing to necrotrophy. In the case of resistant genotypes, the 
release of effector molecules initiates the plant immune 
response and subsequently activates the primary defense 
mechanism; however, in susceptible hosts, it hijacks the 
plant’s primary defense response and consequently causes 
disease development [16]. Mycotoxins produced by dif-
ferent fungal pathogens have adverse effects on humans 
as well as animals. Fungal pathogens secrete host-specific 
toxins to strengthen their interaction and establish infec-
tion in host plants. The primary cause of virulence in host 
plants is the release of toxins by fungal pathogens.

Plant defense response and disease outcome

Plants have highly developed defense mechanisms to pre-
vent pathogen entry and defend themselves. Due to the 
absence of adaptive immune responses, the plant immune 

system relies on innate immunity. Plant resistance to a 
wide range of microbial pathogens is largely attributed to 
the innate immune system. The main elements of the plant 
immune system are resistance (R) genes, reactive oxygen 
species (ROS) scavenging enzymes, transcription factors, 
regulatory elements, and pathogenesis related genes (PRs) 
[17]. Expression of jasmonic acid (JA) marker genes in 
response to necrotrophic fungal pathogens is well under-
stood, similarly JA-repressor JAZ genes (Bradi3g23190, 
Bradi4g31240), and the JA biosynthesis lipoxygenase LOX2 
gene Bradi3g39980 were highly upregulated in response to 
FHB in the model plant Brachypodium distachyon [18]. 
The pathogen-associated molecular patterns are activated 
by receptors on the surface of plant cells, which detect the 
signal through a well-organized plant recognition system 
[19]. Plants have R genes in their second line of defense, 
known as effector triggered immunity (ETI), which detects 
signals through effector proteins (Fig. 1). In higher plants, 
pathogen entry leads to the activation of ROS scavenging 
enzymes, i.e. peroxidase (POX) and catalase (CAT). ROS 
production leads to the release of superoxide anion singlet, 
H2O2 and hydroxide radical production. The hypersensitive 
response in plants is usually activated by an oxidative burst 
and protects plants from invading pathogens [20, 21].

Fig. 1   An overview of patho-
gen‒host interaction and its 
outcome. Activation of patho-
gen triggered immunity (PTI) 
and effector triggered immunity 
(ETI). F. graminearum spores 
fall on the kernels of mature 
wheat plants and exude HSTs, 
effector proteins necessary for 
infection establishment, which 
in turn activate a series of genes 
involved in the plant’s defensive 
response (R genes, PRs & Tran-
scription factors)
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Advanced genetic approaches to identify QTLs, SNPs 
and resistance genes for FHB

Association mapping to understand Fusarium graminearum

The high-resolution method of association mapping, which 
is based on the theory of linkage disequilibrium, holds great 
promise for the analysis of complex genetic traits [22]. It 
is a powerful tool to identify agronomic traits’ QTLs and 
allelic information for trait enhancement. The comparison 
is based on the correlation between genotype and phenotype 
and the data collected from the population grown in diverse 
climatic conditions. When compared to close systems, the 
data from open system design experiments offer higher map-
ping resolutions, but it is difficult to foresee where recombi-
nation has taken place. The nature of Fusarium resistance is 
still unclear despite thorough information about the anno-
tated genomes. High-throughput genotyping and advances 
in genome sequencing technology have made association 
studies in complex genomes simple and comprehensive. 
Fhb1 have minor additive effects on phenotypic variation 

by executing GWA studies for Fusarium resistance in winter 
wheat breeding lines. In addition, a sizable panel contain-
ing a winter elite inbred population contained nonsignifi-
cant discern loci with significant effects, in addition to siz-
able genetic variation [23]. Together, the two studies lend 
credence to the hypothesis that many genes exert additive 
effects and contribute to well-recognized QTLs in Fusarium 
resistance.

Genome‑wide association studies (GWAS)

Fusarium head blight (FHB), one of the most destruc-
tive fungal disease affecting crop production signifi-
cantly, spreads considerably due to poor cultural farming 
practices and climate influences [24]. GWAS is the most 
promising approach to identify novel QTLs and poten-
tial candidate genes governing specific traits in different 
plant systems. The use of chemical fungicides has dete-
riorated the soil texture and affected normal microbial 
flora; hence, it is important to use modern breeding tech-
niques to identify resistant germplasm from the available 

Fig. 2   Fusarium graminearum grown on PDA media and spores were 
visualized under 40× compound microscope, production of Deoxyni-
valenol (DON) toxin and its harmful effects on human beings. Simi-
larly, Fusarium Head Blight control measures by using chemical fun-

gicides (Prosaro and Caramba) and utilization of available germplasm 
in the national gene banks for GWAS and GS studies to identify 
resistant lines and to further evaluate by developing KASP markers
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core sets (Fig. 2). In Wheat, GWAS have been used for 
various useful agronomic traits, including yield [25, 26, 
27], seed quality, milling, baking properties [162829] 
flag leaves, head emergence [30], pre- and postharvest 
yields (CHECK) [31] and pathogen resistance [32, 33, 
34, 35]. Among the various array of pathosystems, one of 
the highly emerging and devastating pathosystems is FHB 
caused by F. graminearum. It was studied using associa-
tion genetics approach in wheat [36] as well as in barley, 
rye, triticale, and oat [34]. An experimental delineation 
was used to ascertain associations between genetic vari-
ants and corresponding traits in defined samples from the 
population [37, 38]. The predominant objective of such 
studies is to understand the biology of plant disease under 
the presumption that a superior interpretation will lead 
to prevention of the disease cycle and pathogenesis [39, 
40]. It has also been flourishingly accomplished for more 
finely delineating the relative role of regulatory genes 
under the environmental influence for assisting risk pre-
diction. However, the connection of GWAS to biology is 
not direct because an association with a genomic locus 
or genetic variant is not directly explanatory with respect 
to the functional target gene or the regulatory mecha-
nism through which the concerned variant is associated 
with corresponding phenotypic differences [41, 42, 43]. 
However, as reviewed herein, new types of data gener-
ated from analytical methods integrated with advanced 
molecular technologies have provided opportunities to 
bridge the knowledge gap from sequence to consequence.

Resistance toward Fusarium in Durum wheat is a quan-
titative trait and is governed by different QTLs identi-
fied in and mapped to 21 chromosomes (Table 2). QTLS 
identified through GWAS studies are distributed evenly 
among different chromosomes (Fig. 3). With the shift 
in the era of genomics, advancement from conventional 
linkage mapping to genome-wide association studies has 
enlightened the molecular aspect of host pathosystems 
with greater capability and high determination for iden-
tifying and classifying favorable genetic loci culpable for 
the desired traits in an economic and evanescent way [44]. 
To overcome the bottlenecks of conventional breeding, 
next-generation sequencing (NGS) supportive genomic 
tools were used for enhanced breeding efficiency for 
disease resistance against rapidly evolving pathogens. 
The main advantage of NGS techniques employed for 
pathosystem studies is that they utilize target-enrichment 
sequencing (TES), whole-exome sequencing, genotyp-
ing-by-sequencing (GBS) and diversity array technol-
ogy (DArT) to generate a tremendous number of single 
nucleotide polymorphisms (SNPs) in inexpensive ways.

Genome-wide association analysis (GWAS) was per-
formed to identify genomic variants that were statisti-
cally associated with markers or traits of interest. Diverse 

population collections were genotyped and phenotype 
followed by associating them using various statistical 
models. (Fig. 4). By eliminating the false discovery rate 
(FDR), the frequency usage of economical, abundant and 
authentic genotyping markers, viz., SNPs, is extensively 
employed in crop genetic studies [70, 71]. It comprehends 
in-depth analysis of genetic variants present all through 
the genomes of diverse ultimately individuals for decod-
ing of individual genotype–phenotype relations. It also 
provides an exhaustive perception of numerous constrain-
ing associations for perplexing traits aligned with disease 
resistance in various crop plants, including wheat, rye and 
barley [72]. Another advantage of GWAS is the explo-
ration of recombination/linkage events that occur erst-
while in unrelated individuals to identify alleles in link-
age disequilibrium [73, 74]. Notably, it basically provides 
candidate gene trait discovery and cross transcriptional 
expression studies.

Statistical models for GWAS

Genome-wide association studies (GWAS) attempt to pre-
dict the association of specific traits (phenotypes) with 
genetic variants (genotypes) by using suitable statistical 
models at the population level. Phenotypic information can 
be obtained by systematically measuring the phenotype 
(that may be any physical and physiological traits) that 
can be influenced by various genetic and environmental 
factors. Individual genotyping is usually performed using 
microarrays for common variations and next-generation 
sequencing technologies such as whole exome sequenc-
ing (WES) or whole genome sequencing (WGS) for rare 
variants. Due to the current trend of reducing the expense 
of next-generation sequencing, it is possible to conduct 
genotyping studies on such a large scale. Resequencing the 
entire genome could uncover almost all genetic variations. 
Genotypic information along with phenotypic data can be 
analyzed to identify genetic markers (SNPs, SSRs, etc.), 
QTLs or candidate genes associated with a particular trait.

The input files for GWAS usually include the geno-
type file, i.e., marker information, and the phenotype file, 
i.e., trait information of different individuals. Following 
the data input, producing reliable GWAS results requires 
meticulous quality control in the beginning itself and the 
use of other auxiliary information in GWAS models, e.g., 
population structure and kinship information.

Testing for associations

Depending on whether the phenotype is continuous (such 
as plant height, grain yield, etc.) or binary (such as the pres-
ence or absence of disease), linear, mixed effect or logistic 
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Fig. 3    A physical map of the quantitative trait loci (QTLs) identified for FHB resistance in Wheat germplasm by GWAS technique, as well as 
their distribution across the various chromosomes
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regression models are typically employed in GWAS to test 
for associations. To account for stratification and eliminate 
confounding effects from demographic characteristics, 
covariates such as age, sex, and ancestry are added, with the 
caveat that this may impair statistical power for binary traits 
in ascertained samples. However, adding an additional indi-
vidual-specific random effect linear or logistic mixed model 
to account for genetic relatedness among individuals might 
improve statistical power for discovery of variants that might 
be associated with a particular trait or disease. Furthermore, 
it is important to remember that genotypes of genetic vari-
ants that are physically close together are not independent 
because they are in linkage disequilibrium; this test depend-
ency should be considered as well while performing GWAS.

The following equation depicts the linear regression 
model for testing the association between a marker and 
the studied trait:

Y ∼ X� + Zs�s + e

e ∼ N
(

0, �2

e
I
)

where Y is a vector of phenotype values, X is a matrix 
assigning records to phenotypes fixed effect, α is a corre-
sponding vector of fixed effects sizes (e.g., the mean, popu-
lation structure effects, and age), Zs is a vector of genotype 
values for all individuals at genetic variations, �2

e
 is the cor-

responding fixed effect size of genetic variants, �s measures 
residual variance and I is an identity matrix.

There are numerous statistical models to find associations 
between marker loci and a variety of traits, ranging from 
simple to highly complex. Accurate decoding of complex 
traits in diverse populations requires more comprehensive 
statistical models that address false positives using the back-
ground information of genotypes. At the same time, the 
number of false negatives due to overcorrection is checked. 
Confounding effects due to population structure and kinship, 
i.e., relationship among individuals is considered by further 
using these covariates in the statistical model. STRU​CTU​
RE [75], PCA [76], and a discriminant analysis of princi-
pal components (DAPC) [77] are methods for determining 
population organization by using the information of genetic 

Fig. 4    A diagrammatic rep-
resentation of genome-wide 
association studies (GWAS) and 
genomic selection (GS), as well 
as the selection of germplasm 
lines and the use of statistical 
models for predicting GEBVs 
values, field-based analysis, and 
genotyping
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markers. Furthermore, false positives aroused due to com-
mon ancestry and family relatedness can be efficiently 
addressed by incorporating a kinship matrix into the statis-
tical model. One of the most often used such methods for 
estimating family relatedness among individuals in a diverse 
population is IBS, i.e., identity-by-state [78].

A typical method for reducing false positives is to use 
population structure (Q) and a kinship matrix (K) as vari-
ables in mixed linear models (LMMs). Since [79] pub-
lished the first MLM of association mapping, several 
MLM-based techniques have been introduced [80]. How-
ever, MLM-based models may result in an increased num-
ber of false negatives, which may lead to the omission of 
certain potentially valuable associations [81]. False nega-
tive associations may arise during multiple comparison 
adjustments for evaluating statistical significance. Multiple 
comparison approaches are available in relation to associa-
tion mapping for determining the significance threshold 
in the literature, of which the false discovery rate (FDR) 
[82] and Bonferroni correction [83] are most commonly 
used for determining the significance threshold. However, 
a very stringent threshold might result in a high rate of 
false negatives. As a result, proper care should be taken 
while selecting statistical models and thresholds, as they 
are crucial steps in detecting true trait-specific markers 
that may be located inside or in high LD with genes that 
govern trait variation while minimizing both false-positive 
and false-negative associations.

These models are all referred to as single-locus models 
because they perform a one-dimensional genome scan by 
examining one marker at a time and then repeating the 
whole procedure for each marker in the dataset. However, 
the true genetic model for complex traits that are governed 
by multiple loci at the same time cannot be completely 
explained by single locus models. Multilocus association 
mapping models have been suggested as a solution to this 
problem since they accept the input from multiple loci 
simultaneously [84].

Some popular models for GWAS include the following:
(1) Analysis of variance (ANOVA).
(2) General linear model (GLM).
(3) GLM with pr incipal component analysis 

(GLM + PCA).
(4) MLM with principal component analysis and 

Kinship matrix for family relatedness estimates 
(GLM + PCA + K) [79].

(5) Compressed MLM (CMLM) [80].
(6) Enriched compressed MLM (ECMLM) [85].
(7) Settlement of the MLM under a progressively exclu-

sive relationship (SUPER) [86].
(8) Multiple loci MLM (MLMM) [87].

(9) Fixed and random model circulating probability uni-
fication (FarmCPU) [81].

Models listed from (1) to (7) are single locus models, 
while (8) and (9) are multi locus models. Furthermore, sin-
gle-locus models, such as the general linear model (GLM) 
and the mixed linear model (MLM), require multiple tests 
that undergo an FDR, Bonferroni correction [88] or other 
matrices for multiple comparison adjustments. The typical 
FDR or Bonferroni correction is often too conservative, 
which results in many important loci associated with the 
target traits being eliminated as they do not satisfy the 
stringent criterion for significance test. Multilocus models 
are better alternatives for GWAS, as they do not require 
such adjustments, and thus more marker‒trait associations 
may be identified. Recently, several new multilocus GWAS 
models, such as multilocus RMLM (mrMLM, [84], fast 
multilocus random-SNP-effect EMMA (FASTmrEMMA, 
[89], and iterative modified-Sure independence screening 
EM-Bayesian LASSO (ISIS EM-BLASSO, [90], and few 
more efficient models have been developed.

Genomic selection (GS), a promising tool 
to recognize Fusarium wheat‑pathosystem

Genomic selection (GS), a form of marker-assisted selec-
tion that was first presented by complete it. [91], uses 
genetic markers that span the entire genome to ensure that 
all loci for quantitative traits are in linkage disequilib-
rium with at least one marker. In this study, an individual’s 
Genomic Estimated Breeding Values (GEBVs) were cal-
culated using genotypic data from every marker in the 
genome. A training population must be created for every 
successful GS programme so that individuals, lines, and 
varieties may be genotyped for genomic markers dispersed 
throughout the whole genome and should be representa-
tive of the entire population. The training individuals are 
further put through comprehensive phenotyping for the 
desired underlying trait. Using phenotype as a response 
and genotype as an independent variable, the informa-
tion about genotype and phenotype is utilized to build an 
appropriate statistical model. Some of the training data 
may also be used to validate the fitted model. GEBVs of 
the individuals of the breeding population (where only 
information of genotyped individuals is available with no 
phenotypic records) are calculated using their genotyped 
information, where the marker effect is estimated from 
the developed model. Ultimately, individuals/line/variety 
from the breeding population can be selected based on 
the superiority of their estimated value of GEBVs. The 
whole process of genomic selection can be better under-
stood through Fig. 4.
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Statistical methods for implementing genomic 
selection

A simple linear model, sometimes also referred to as least 
squares regression or simple least squares regression (OLS), 
is the first step in the GS process of selecting the appropriate 
candidates.

where
Y = n × 1 vector of  observations;  μ   is  the 

mean; � = p × 1 vector of marker effects; � = n × 1 vector 
of random residual effects; X =design matrix of order n × p 
(where each row represents the genotype/individuals/lines 
(n) and column corresponds to marker (p),� ∼ N

(

0, �2

e

)

 
One major problem in linear models using several thou-

sand genome-wide markers is that the number of markers 
(p) exceeds the number of observations (n), i.e., genotype/
individuals/lines, which creates the problem of over param-
eterization (large ‘p’ and small ‘n’ problem (p > > n)). To 
solve the large ‘p’ and small ‘n’ problem, one alternative is 
to use a subset of the significant markers. For this purpose, 
[91] used a modified version of least squares regression. 
However, during this process, we may end up losing some 
crucial marker information. Consequently, utilizing ridge 
regression (RR), a penalised regression-based method, is 
an effective way to address the over parameterization issue 
in linear models [91]. Additionally, it addresses multicol-
linearity issues (i.e., correlated predictors, e.g., SNPs or 
markers). Similar to penalised regression, the least abso-
lute shrinkage and selection operator (LASSO) [92, 93] 
employs the l1 penalised least squares criteria to obtain a 
sparse solution. Most statistical models assume that each 
marker contributes equally to variation, even though this 
is not true for all traits. As a result, it is important to pre-
dict the variation in the markers depending on the genetic 
architecture of the trait. For this purpose, several Bayesian 
models have been proposed where it is assumed that there 
is some prior distribution of marker effects, e.g., Bayes 
A, Bayes B, Bayes Cπ and Bayes Dπ [91, 92, 93, 94]. 
Apart from this, best linear unbiased prediction (BLUP), 
which is based on a mixed-model approach, is one of the 
most commonly used genomic prediction techniques in 
traditional and advanced animal and plant breeding stud-
ies [64 − 60]. However, the performance of the genomic 
prediction models discussed above performs well for traits 
with simple genetic architecture, i.e., additive, but their 
performance becomes very poor in the case of complex 
genetic architectures, i.e., additive, epistatic, and their 
interaction. In such cases, a model-free approach, i.e., 
nonparametric models, is more suitable [95]. A nonpara-
metric statistical model in relation to genomic prediction 

Y = 1nμ + X� + �

has been used, e.g., the NW (Nadaraya-Watson) estimator 
[95], RKHS (Reproductive Kernel Hilbert Space) [96], 
SVM (support vector machine) [97] ANN (Artificial Neu-
ral Network) [95] and RF (Random Forest) [98].

The methods outlined previously in this section are 
based on single-trait genomic selection (STGS), i.e., 
models consider the information of each trait indepen-
dently. However, in such situations, we may lose some 
additional information, e.g., high correlation among the 
traits and pleiotropic effects of genes, if available. In such 
cases, multi-trait genomic selection (MTGS)-based meth-
ods may provide more accurate GEBVs and subsequently 
higher prediction accuracy [99, 100, 101, 102]. Number 
of MTGS-based methods have been studied in relation to 
GS, e.g., MRCE (Multivariate Regression with Covariance 
Estimation) [103], Multivariate mixed model approach 
[104105), Bayesian multitrait model [104], and cGGM 
(conditional Gaussian Graphical Models) [104106]. 
Recently, multi-trait and multi-environment models have 
also been implemented in real and empirical studies and 
have reported higher prediction accuracy [107, 108].

GWAS/GS: implemented to understand Fusarium 
durum pathosystems

The demand for staple food crops will rise tremendously 
with the increasing world population by 2050 [109]. Bread 
wheat (Triticum aestivum) is a major staple crop globally, 
and its ally Durum wheat is the second largest cultivated and 
consumed crop worldwide for its pasta and macaroni [5]. 
The enhancement in Fusarium infestation is likely due to the 
expansion in the conserved tillage practices, use of patho-
gen-susceptible wheat genotypes, and utmost climate change 
in small grain cereals [110]; however, various advances 
in cultural practices have been employed to detect such 
a devastating pathosystems [111] but still uncover resist-
ant genotypes, which is the most effective and sustainable 
approach in crop breeding against such deleterious patho-
gens. Wild germplasm, especially tetraploid wheat, is a rich 
source of deployable resistance genes; however, the complex 
host pathogen system makes it utilizable for crop improve-
ment programs [110]; however, selecting robust resistant 
genotypes from large genetic resources is challenging. The 
pathogen is largely inherited quantitatively and fluctuates 
by host genotype and environment; however, in such cases, 
genomic selection is an advanced tool that provides com-
prehensive prediction accuracy; however, its accuracy for 
genomic selection footprints revolves around large factors, 
such as the genetic architecture of requisitioned traits, the 
number of questioned traits, and the utmost use of significant 
statistical models for concerned traits [110]. It also provides 
genetic breeding value, which acts as a selection marker for 
preferred genotypes with superior resistance.
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Fusarium DON toxin and its management

The genetically complex resistance mechanisms for FHB are 
alarming and need to be tackled with timely consideration of 
wheat growth and utility; furthermore, the genotype vs. envi-
ronment interaction has additive effects on disease severity 
[112]. Fusarium infestations not only reduce grain quantity but 
also quality to a large extent through the secretion and accu-
mulation of toxin, specifically deoxynivalenol (DON), zea-
ralenone (ZEN), HT-2, and T-2, which negatively affect seed 
quality, resulting in a dreadful situation for animal and human 
health [113, 114]. The resistance mechanism of cereal hosts 
against Fusarium has been broadly classified into six catego-
ries based on pathogenesis and disease cycle. Crop residues 
may harbour primary inoculum in the form of perithecia and 
sporodochia (1) initially, type I resistance for initial infection 
by the pathogen/pathotypes; (2) infection followed by spread-
ing to nearby tissues is considered type II resistance (3) type III 
resistance for kernel infection (4) type IV resistance exhibited 
against toxin secretion and its accumulation on kernels, and 
(5) type V displayed for tolerance [115]. Although numerous 
quantitative trait loci (QTL) have been explored against mul-
tiple pathotypes of Fusarium in wheat and other cereal crops 
with different enormities of consequences [74, 75, 76, 77, 78, 
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 
109, 110, 111, 112, 113, 114, 115, 116, 117]. A QTL and its 
effect across multiple environments are thought to be stable, 
indicating greater practical breeding efficiency than minor 
ones. However, in the context of this devastating pathogen, 
only a few notable and stable QTLs have been identified so far. 
One preeminent locus identified as Fhb1, from Chinese wheat 
Wangshuibai and Sumai 3 which was detected on chromo-
some 3BS, is one of the best characterized locus with a major 
additive effect and stable resistance. Fhb1 was reported as a 
pore-forming toxin-like gene (PFT) QTL [117].

Notably, only a few cultivars were found to have moderate 
resistance to immune, suggesting that resistance genes other 
than fhb1 could be present. These were identified in the mid-
dle to lower Yangtze River include Yangmai11, 12, 16, 23 and 
158. These genotypes have been approved to be released and 
become main producing cultivars [118]. In majority of culti-
vars, which belongs to Yangmai series do not carry and trans-
mit the Fhb1 locus to progeny [10], indicating that alternative 
resistance providing elements or cascade may be present in 
these cultivars and could be easily applied to breeding against 
such noxious diseases. Exploration of more Fusarium-resistant 
wheat germplasm for disease-resistant breeding programs, as 
well as their use in generating Fusarium-resistant loci and their 
association with trait discovery, is therefore critical for breed-
ing wheat varieties with robust Fusarium resistance.

Implications in breeding for FHB

Wheat is one the most important cereal crops in the world. 
Wheat covers the maximum agricultural land of the world 
and supplies 20% of nutritional needs to the world popula-
tion. Research efforts on FHB resistance breeding in durum 
wheat is comparatively lower than bread wheat (T. aestivum) 
due to less area of cultivation and production quantity. This 
makes, developing resistant cultivars for FHB is a chal-
lenging task in durum wheat. Screening wild germplasm 
(particularly tetraploid species) and landraces for FHB, 
identification of novel genomic regions/QTLS using high 
throughput techniques (GWAS and GS) and introgression 
in elite backgrounds are the most optimistic approaches in 
FHB breeding.

Conclusion and future directions

This review provides a thorough overview of the current 
status and future developments in FHB management strate-
gies, its etiological agent, and its impact on wheat produc-
tivity through the integration of advanced genomic tools, 
including association mapping, GWAS and GS. Using 
genomic methods, it is possible to identify candidate genes, 
genomic areas, and marker data for a variety of qualitative 
and quantitative features. In addition, developing elite dis-
ease-resistant cultivars requires a better understanding of 
host immune defense against pathogens. Therefore, using 
cutting-edge genomic tools will provide novel information 
about the function of fungal virulence factors and help us 
to understand the interactions between Fusarium and its 
hosts. To meet the future food demands of the expanding 
global population, we anticipate that these tools will further 
assist in the development of elite resistant cultivars with high 
yields. Additionally, FHB DON toxin is a major concern for 
wheat export and cultivation. Early detection and manage-
ment will reduce the risk of contamination because DON is 
a carcinogen and has health-related complications in both 
humans and animals.
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