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Abstract
Background  Nitrogen (N) is an essential macronutrient for plant growth and development as it is an essential constituent of 
biomolecules. Its availability directly impacts crop yield. Increased N application in crop fields has caused environmental and 
health problems, and decreasing nitrogen inputs are in demand to maintain crop production sustainability. Understanding the 
molecular mechanism of N utilization could play a crucial role in improving the nitrogen use efficiency (NUE) of crop plants.
Methods and results  In the present study, the effect of low N supply on plant growth, physio-biochemical, chlorophyll 
fluorescence attributes, yield components, and gene expression analysis were measured at six developmental stages in 
rice cultivars. Two rice cultivars were grown with a supply of optimium (120 kg ha−1) and low N (60 kg ha−1). Cultivar 
Vikramarya excelled Aditya at low N supply, and exhibits enhanced plant growth, physiological efficiency, agronomic effi-
ciency, and improved NUE due to higher N uptake and utilization at low N treatment. Moreover, plant biomass, leaf area, 
and photosynthetic rate were significantly higher in cv. Vikramarya than cv. Aditya at different growth stages, under low 
N treatment. In addition, enzymatic activities in cultivar Vikramarya were higher than cultivar Aditya under low nitrogen, 
indicating its greater potential for N metabolism. Gene expression analysis was carried out for the most important nitrogen 
assimilatory enzymes, such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate 
synthase (GOGAT). Expression levels of these genes at different growth stages were significantly higher in cv. Vikramarya 
compared to cv. Aditya at low N supply. Our findings suggest that improving NUE needs specific revision in N metabolism 
and physiological assimilation.
Conclusion  Overall differences in plant growth, physiological efficiency, biochemical activities, and expression levels of 
N metabolism genes in N-efficient and N-inefficient rice cultivars need a specific adaptation to N metabolism. Regulatory 
genes may separately or in conjunction, enhance the NUE. These results provide a platform for selecting crop cultivars for 
nitrogen utilization efficiency at low N treatment.
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GS	� Glutamine synthetase
GOGAT​	� Glutamate synthase
Ci	� Intercellar CO2 concentration
gs	� Stomatal conductance
Tr	� Transpiration rate
NUE	� Nitrogen use efficiency
NupE	� Nitrogen uptake efficiency
NutE	� Nitrogen utilization efficiency

Introduction

Nearly half of all world’s population depends on rice (Oryza 
sativa L.) for daily nutrition. There is a pressing need to 
increase rice grain production to alleviate world hunger in 
the face of a growing human population and shrinking arable 
land [1]. Increased nitrogen fertilizer has been employed 
to enhance crop yield but causing negative repercussions 
to human health and the ecosystem. Nearly 50–70% of all 
applied N is lost due to leaching, and nitrous oxide emis-
sions from N fertilizer residues harm the atmosphere and 
the agricultural economy [2]. In general, crop plants do not 
efficiently utilize the applied N and use only 30–40% of the 
applied N fertilizer. Enhancing N fertilizer application may 
not produce a proportional enhancement in crop yields [3]. 
Therefore, a significant priority for a sustainable agriculture 
system is the development of crop plants or genotypes with 
high yield and N use efficiency (NUE), as well as a reduction 
in the amount of N applied to the soil and the amount of N 
lost to the environment [4]. This can be done by selecting 
existing cultivars or breeding new cultivars for high N use 
efficiency (NUE) for large-scale cropping systems.

Nitrogen supply has a significant impact on both the 
physiology and growth of plants. The leaves at different 
developmental stages regulate the physiological efficien-
cies of the crop plants [5]. The efficiency of photosystem 
II (PSII) in leaves reflects photosynthetic efficiency, which 
can be measured by in vivo tools [6]. Non-photochemical 
quenching (NPQ) measures the amount of light energy lost 
when more photons than needed are used in photochemical 
reactions during photosynthesis [7]. Photoinhibition occurs 
when nitrogen is scarce for rice plants because of its central 
function in controlling photochemical quantum yield and 
quenching efficiency of PSII [7, 8]. In sugar beet leaves, 
PSII photochemical activity and photosynthesis are nega-
tively impacted by N deficiency, as measured by a decrease 
in maximum efficiency of PSII photochemistry under dark 
adaptation (Fv/Fm) and an increase in photochemical 
quenching (qP) and non-photochemical quenching (qN) [9]. 
In plants, photosynthesis is an essential step for plant growth 
and development, and its efficiency is influenced by N sup-
ply. One part of the absorbed N forms a Rubisco protein, and 
the second is used in other photosynthetic components [10]. 

To overcome the dysfunction of photosynthetic components, 
the remobilization of leaf N content (LNC) plays a vital role 
[11]. Photosystem II (PSII) is the main component of this 
process, which regulates electron transport flow and, thus, 
helps generate assimilatory powers in the form of ATP and 
NADPH [12].

Several studies have demonstrated that N is crucial for the 
regulation of leaf chlorophyll synthesis in crop plants, and 
that there is a strong positive correlation between the amount 
of N available to plants and their chlorophyll content, N 
content in leaves, and their ability to absorb carbon dioxide 
[13]. Consequently, N deficiency causes a decline in pigment 
system and photosynthetic efficiency, impacting carbohy-
drate synthesis and ultimately leading to a decline in bio-
mass production and crop yield [14]. Many plant processes 
are influenced by the N status of plants, including stomatal 
conductance, internal CO2, photochemical efficiency of 
PSII, and biochemical processes [15]. Leaf-soluble protein, 
of which 50% is ribulose 1,5-bisphosphate carboxylase/oxy-
genase (Rubisco), is highly responsive to N availability [16]. 
The energy and carbon skeletons necessary for N assimila-
tion are produced during photosynthesis [17]. N endorses 
photosynthesis-related gene expression [18], while soluble 
sugars stimulate nitrate assimilation-related gene expression. 
This mutual interaction of N is crucial for plant biomass and 
crop yield [19].

Seed yield in relation to N inputs is defined as crop NUE 
[20]. Uptake of N from the soil, N translocation from root 
to shoot, assimilation of N in source organs (e.g., leaves or 
roots), and subsequent distribution (mainly as amino acids) 
to seed sinks are all contributors to efficient use of N for 
seed development [16, 21] making the process inherently 
complex. Moreover, during vegetative growth, plants tem-
porarily store N in leaves and stem as nitrate, amino acids, 
or proteins [22]. Translocation of the stored N to seed sinks, 
used for growth and storage product accumulation, occurs 
during the reproductive stage [23]. N uptake and utilization 
contribute to NUE and rice cultivars from different genetic 
backgrounds differ in N source-sink ratio, and this process 
affects physiological efficiency [24].

Nitrate uptake and assimilation mechanisms have been 
well documented in crop plants. The uptake of nitrate and 
NH4

+ by roots is achieved by specific transporters, including 
low and high-affinity transporters and ammonium transport-
ers. During the vegetative stages, a considerable amount of 
N may be used for the metabolism of the leaf or temporary 
storage. In contrast, in reproductive stages, N mainly func-
tions for the tillering and synthesizing of amino acids for 
grain development [25]. Leaves are the critical sources for 
N (re-)distribution to grains, especially flag leaves, which 
display high longevity concerning their metabolic activities 
and constitute ~ 20% of the total N content [26]. By coor-
dinating the activities of glutamine synthetase (GS) and 
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glutamate synthase/glutamine-2-oxoglutarate aminotrans-
ferase (GOGAT), NH4

+ is integrated into glutamine and 
glutamate, where it can then be used as an N source for the 
synthesis of amino acids [27]. In GS/GOGAT pathway, the 
two key enzymes are involved in N re-assimilation/remo-
bilization and metabolism, as well as the biosynthesis of 
other amino acids, such as, cytosolic asparagine synthetase 
(AS) and mitochondrial NADH-glutamate dehydrogenase 
(GDH). The AS enzyme catalyses the conversion of glu-
tamine to asparagine, which is a phloem transport form of N 
and a source of N for the biosynthesis of other amino acids 
in sink tissue [28]. Further, the key enzymes involved in N 
metabolism are the most important biochemical quality for 
improving NUE [16].

Detailed data analysis for the genetic basis of NUE 
have only been done in a few crop species. These mainly 
addressed root or shoot importance at the seedling or dur-
ing the vegetative stage in a greenhouse or hydroponically 
grown plants [29, 30]. However, plant growth and productiv-
ity under controlled conditions severely differ from the field 
conditions [31]. Furthermore, when a plant is in its vegeta-
tive growth stage, it is primarily concerned with acquiring 
nutrients and storing them in its root and shoot tissues; how-
ever, when it is in its reproductive growth stage, it is primar-
ily concerned with re-allocating resources to its flowers and 
grains, which requires distinct signals, molecular mecha-
nisms, and physiological processes from those involved in 
vegetative growth [32, 33]. We expected that improvements 
in NUE and grain yield in plants would demand multifaceted 
acclimation, particularly in C absorption and N metabolism 
and transportation. It was also hypothesized that due to 
existing genetic variation for NUE, different rice cultivars 
will have different levels of physiological and agronomic 
efficiency. It was further predicted that rice cultivars pos-
sess physiological and agronomic efficiency differences due 
to existing genetic variation for NUE. Two contrasting rice 
cultivars with different growth and physiological efficiency 
were selected and grown in field conditions under optimum 
and low-N treatment conditions. We explored physio-bio-
chemical, agronomic efficiency, and gene expression analy-
sis of the two rice cultivars and identified important molecu-
lar mechanisms in growth stages that led to differences in 
NUE and crop yield under low-N treatment.

Materials and methods

Experimental materials and plant growth conditions

Experiments were conducted in the agriculture field of the 
faculty of agricultural sciences at Aligarh Muslim Univer-
sity, Aligarh, India (latitude 27.35° and 28.10° N, 77.29 and 
78.36° E longitudes) having loamy soil with pH 6.67 in the 

Kharif season (June-October, 2021). Ten rice cultivars (Pan-
vel, Rasi, Nagina-22, Aditya, Pusa-44, Nidhi, Vikramarya, 
CR Dhan-310, CR Dhan-311, and Taipe-309) were procured 
from the Indian Agricultural Research Institute, Pusa, New 
Delhi.

Seeds were sterilized with 0.1% mercuric chloride for 
2–3 min and then washed five times with distilled water. 
Sterilized seeds were sowed in nursery beds, and 25-day-old 
plantlets were transplanted (at 10 × 25 cm spacing and three 
plants/hill were planted) in the prepared field. The plant 
density was 120 plants m−2, and there were 40 hills m−2. 
The field experiment (Supplementary Table S6) was based 
on a split plot design of plot size (2 m × 3 m) with three 
replicates and plots were separated by an alley 1 m wide, 
and the inter-varietal responses of the ten rice varieties were 
studied at the fifth tiller growth stage. The ten rice cultivars 
were screened for physio-morphological, biochemical, and 
chlorophyll fluorescence differences at low N treatments 
[60 kg h−1 i.e., 50% RDN (recommended dose of N)] to 
identify two contrasting cultivars. Rice cv.Vikramarya was 
identified as N-efficient and cv. Aditya as N-inefficient. cv.
Vikramarya is semi-dwarf, long bold grains, white, resist-
ant to GM, RTV, and GLH with an average yield of 50 Q/
ha).  cv. Aditya is semi-dwarf; grains are long bold, resistant 
to bold, tolerant to BS, BLB, RTV, susceptible to GM and 
BPH; with average yield 33–40 Q/ha. These two contrasting 
cultivars were further chosen for stage-specific experiments 
-3rd tiller, 6th tiller, flag leaf, booting, panicle, and milk 
stage under optimum (120 kg h−1 i.e., 100% RDN), and low 
N treatments (50% RDN) for physio-biochemical, growth, 
and gene expression analyses.

During the experiments, the average temperature was 
25–35 °C, the humidity ranged from 52 to 57%, and the 
average photoperiod was 16/8 h (day/night). The average 
precipitation/rainfall was 112 mm to 116 mm during the 
crop seasons. The nutrient concentration of the field soil 
contained 1.02 g N kg−1 soil, 26.52 mg P kg−1 soil, and 
14.27 mg S kg−1 soil.

Treatment details

The nutrient fertilizer was applied according to the recom-
mended dose of N to the soil for rice growing in the study 
area (Supplementary Table S6). Urea was the source of 
applied N fertilizer (46.4% of N). Nitrogen was applied in 
three equal split doses (1/2 at basal, 1/3 at tillering, and 
1/3 at panicle initiation stage). 50% RDN was used for 
the screening of ten rice cultivars with low nitrogen levels 
as per RDN. For stage-specific experiments, low N level 
(50% RDN) and optimum N level (100% RDN) at the rate 
of 60 kg ha−1 and 120 kg ha−1, respectively, were applied 
in the stage-specific experiment. Other essential nutrients  
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like potassium (@40 kg ha−1), phosphorus (@60 kg ha−1), 
and zinc (@25 kg ha−1) were provided in the field during the 
experiments. Weeding was done accordingly at 20–30 days 
of intervals.

Gas exchange, chlorophyll content 
and photochemical efficiency of PSII

Photosynthetic leaf gases attributes and relative leaf green-
ness were measured at the fifth fully expanded turgid leaf 
during the screening experiment, respectively, at low N 
treatment, while as 3rd tiller, sixth tiller, flag leaf, booting, 
panicle, and milk growth stages were used for analysis in a 
stage-specific experiment, respectively, at optimium and low 
N treatment. The photosynthetic gaseous attributes, includ-
ing net photosynthetic rate (Pn), intercellular CO2 concentra-
tion (Ci), stomatal conductance (gs), and transpiration rate 
(Tr) were measured on a clear sunny day (at 9 to 11:30 am) 
morning using Infra-Red Gas Analyzer (CID-340, Photosyn-
thesis system, Bio-Science, USA). The measurements were 
conducted under controlled conditions at ~ 390 ± 5 µmol−1 
atmospheric CO2 concentrations when photosynthetically 
active radiation (PAR) was ~ 800 μmol m−2 s−1. A SPAD 
value represented relative chlorophyll content and was deter-
mined in the intact, fully expanded leaves using a SPAD 
chlorophyll meter (SPAD 502 DL PLUS, Spectrum Tech-
nologies, Kakamigahara, Japan) during morning hours.

A Pulse Amplitude Modulation (Mini-PAM) chlorophyll 
fluorometer was used to measure the chlorophyll fluores-
cence of PSII of rice leaves at different growth stages at 
low and optimium N supply (Heinz Walz, Effeltrich, Ger-
many). Saturation pulse (SP) mode was prioritized over 
heat dissipation to ensure that leaves had at least 30 min to 
fully oxidize the PSII reaction centre before fluorescence 
attributes were taken using leaf clip. Maximum fluores-
cence yield (Fm) was produced after saturating actinic light 
pulse (10,000 µmol m−2 s−1 for 0.6 µs) and minimum fluo-
rescence yield (Fo) was determined using a transmutable 
light (< 0.05 µmol m−2 s−1 for 1.8 µs) prior to SP different 
calculations were used to examine the fluorescence attributes 
in both the light and dark-adapted states such as (i) vari-
able fluorescence (Fv = Fm − Fo) (ii) photochemical quantum 
efficiency of PS-II (Fv/Fm = (Fm − Fo)/Fm) (iii) non- photo-
chemical quenching (NPQ = Fm/Fm′ − 1) and, (iv)  electron 
transport rate (ETR)[8] Other attributes were automatically 
generated with inbuilt formulated calculus by WinCon-
trol-3.29 software:

Chlorophyll fluorescence parameters Symbols

Momentary fluorescence level F
Illuminated minimum fluorescence level Fo′
Illuminated maximum fluorescence level Fm′

Chlorophyll fluorescence parameters Symbols

Maximum photochemical quantum yield Fv/Fm

Effective photochemical quantum yield Y(II)
Relative electron transfer rate ETR
Coefficient of non-photochemical fluorescence quenching qL
Coefficient of photochemical fluorescence quenching qL and qL
Non-photochemical fluorescence quenching NPQ
Quantum yield Non-regulated fluorescence quenching Y(NO)
Quantum yield Non-photochemical fluorescence quench-

ing
Y(NPQ)

Assessment of plant growth, yield, and its 
components

Plant shoot and root length were taken by metric scale from 
base to top in both shoot and root and represented in centim-
eters (cm). The plant biomass was measured after oven dried 
at 65 °C for 72 h and expressed as g plant−1. Using a standard 
method and a correction factor (K), the leaf area was meas-
ured as follows: leaf area (cm2) = K × length (cm) × breath (cm) 
whereas, range of K in rice leaves is 0.67 to 0.80, the value 
0.75, is applicable for all stages of growth with the exception 
of the seedling stage [34].

Yield and its components was determined at the maturity 
stage on the randomly picked plant from the experimental 
field, excluding border plants for a stage-specific experiment. 
The yield components measured were total tillers per hill, 
number of panicles per hill, panicles per meter square, pani-
cle length (cm), and grains per panicle. Grains were sun-dried 
before determining weight, adjusted to 14% moisture content, 
and represented in g 1000-grains−1. Grain yield per meter 
square was calculated and represented in kg m−2.

Assessment of nitrogen use efficiency

NUE, N uptake efficiency (NUpE), and N utilization efficiency 
(NUtE) were calculated according to Moll et al. [20]. NUpE 
was calculated by comparing the quantity of N applied to the 
amount of N found in the aboveground tillers and grains at har-
vest/maturity. NUtE was calculated as the ratio of seed yield 
to total N accumulation in the aboveground tillers, while NUE 
was calculated as the ratio of seed yield to total N application.

Assessment of biochemical characters

Leaf N content and enzymes activity were measured in six 
growth stages of both rice cultivars under optimum and low 
N treatment.
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Analysis of leaf nitrogen content (LNC)

The plant material was rinsed thoroughly with Milli Q water, 
oven-dried at 65 °C for 48 h, then ground to a fine pow-
der. A standard was prepared by using sulfanilic acid over a 
varied range of concentrations, and then 0.25 mg of finely 
ground plant material was analyzed by the Elemental ana-
lyzer (Vario EL III, CHNOS Elementar Analyzer, Germany) 
to measure the N content. The amount of N accumulated 
was measured as N content accumulation per plant and is 
expressed as mg/g dry weight (DW) [35].

Nitrate reductase (NR) activity

NR activity was assessed by the method of Jin et al. [36]. 
Briefly, Leaves from rice plants (500 mg) were frozen in liq-
uid-N2 and transferred in an extraction buffer of 25 mmol/l 
potassium phosphate (pH 7.5). The homogenate was filtered 
and centrifuged for 35 min at 10,000 rpm at 4 °C. The reac-
tion mixture of enzyme extract and 100 µmol/l potassium 
phosphate buffer (pH 6.8) was incubated at 33 °C for 30 min, 
and 1 ml of 1% sulphanilamide was added to halt the reac-
tion. Production of nitrite was estimated at 540 nm with the 
help of a multi-mode microplate reader (Synergy H1, Biotek 
Instruments Inc., Pittsburgh, PA, USA). The enzyme activity 
was expressed in µmol/(g fresh weight (FW) h).

Glutamine synthetase (GS) activity

The GS activity was determined according to Sun et al. 
[37]. Fresh leaves were homogenized in liquid-N with an 
extraction buffer (25 mM Tris-HCl (pH 7.6), 1 mM MgCl2, 
β-mercaptoethanol, and 1 mM DTT). The extract was fil-
tered and then centrifuged 10,000×g for 10 min at 4 °C. The 
enzymatic activity of the extract supernatant was measured. 
Sodium glutamate, MgSO4, l-cysteine, and hydroxylamine 
were added to the enzyme extract along with a reaction 
mixture containing (Tris–HCl buffer (pH 8.0), ATP, and 
sodium glutamate). The reaction was initiated by adding 
hydroxylamine and incubating at 30 °C for 30 min. Using a 
multi-mode microplate reader, glutamyl hydroxamate (GH) 
concentrations were determined at 540 nm (Synergy H1, 
Biotek Instruments Inc., Pittsburgh, PA, USA). The activity 
of GS was determined using a glutamyl hydroxamate stand-
ard curve and expressed as µmol/(g FW h).

Nitrite reductase (NiR) activity

Fresh leave samples (~ 1 g) after fine powdered in liquid 
nitrogen were added to a 3 ml extraction buffer contain-
ing 100 mM sodium phosphate buffer (pH 8.8), 5 mM 
EDTA, and 1 mM cysteine-HCl and were homogenized. 
The homogenate was centrifuged, and the supernatant 

(crude enzyme solution) was used for the NiR analysis. 
In 2 ml reaction volume, (100 µmol Tris–HCl buffer (pH 
7.5), 3 µmol NaNO2, 2 µmol methyl viologen, and enzyme 
extract) were added. In 0.3 ml of freshly 24 µmol sodium 
dithionite, 0.2 M sodium bicarbonate was added to start 
the reaction, and the reaction was run at 30 °C for 20 min. 
The reduced methyl viologen’s blue colour was completely 
removed by vigorously shaking the test tube, after which 
0.1 ml aliquot of the reaction mixture was treated with 
1 ml of (w/v) sulphanilamide (1% in 3 N HCl) and 1 ml of 
(0.02%) (w/v) N-(1-Napthyle)-ethylene-diamine dihydro-
chloride (NEDD). The absorbance of this mixture at 540 nm 
was measured and expressed as µmol NO2

−  g−1 FW h−1.

Glutamate synthase (GOGAT) activity

The extraction buffer containing (100 mM Tris–HCl, pH 7.5, 
0.2 M sucrose, 10 mM KCl, 10 mM MgCl2, 10 mM EDTA, 
and 10 mM β-mercaptoethanol). Fresh leaf samples were 
homogenized in liquid- N2 with the addition of extraction 
buffer filtered and centrifuged at 10,000×g for 10 min at 4 
°C. The standard assay mixture contained 75 µmol Tris–HCl 
buffer, 10  µmol α-ketoglutarate, 15  µmol l-glutamine, 
0.3 µmol NADH, and enzyme extract (in a final volume of 
3 ml). The reaction started when NADH was added, and 
absorbance was measured for 3–4 min at 340 nm at room 
temperature. The activity of an enzyme was measured in 
µmol NADH oxidized g−1 FW h−1.

RNA extraction and quantitative real‑time PCR 
(qRT‑PCR) analysis

Total RNA was extracted from the frozen leaf at different 
growth stages following the manufacturer’s instructions for 
using TRIzol reagent (Invitrogen). DNase1 (Sigma Aldrich, 
India) was used to eliminate any genomic DNA present in 
the extracted RNA. The concentration and purity of RNA 
was assessed using nanodrop spectrophotometer (ND1000). 
Using manufacturer instructions, 1 µg of total RNA was used 
to synthesize cDNA with a Verso cDNA kit (ThermoSci-
entific). Rice N assimilation-related gene sequences were 
obtained from the online database NCBI, and gene-specific 
primers for qRT-PCR were designed using the online IDT 
PrimerQuestTool (https://​www.​idtdna.​com) and analyzed 
by Oligo Analyser (Supplementary Table S1). The second 
stand synthesis was performed using the SYBR Green I 
qPCR Master mix (Thermos) on real-time PCR (light cycler 
480 system (Roche diagnosis).In the light cycler following 
experimental conditions was used initial denaturation pro-
gram (95 °C for 4 min), Amplification and quantification 
program (95 °C for 1 min, 52 °C for 1 min, 72 °C for 1 min 
with a single fluorescence measurement) for 40 cycles, melt-
ing curve program (50–97 °C with a heating rate of 0.1 °C 

https://www.idtdna.com
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per s and a constant fluorescence measurement) to verify 
primer specificity and final a cooling step for 10 min at a 
ramp rate of 1.0–2.2 °C/s. The Rice β-actin gene was used as 
a control to normalize gene expression values. The quantifi-
cation of N assimilation-related genes was measured relative 
to actin using the ΔΔCt method and expressed as 2−ΔΔCt [38].

Statistical analysis

Physio-biochemical, agronomic data obtained from three 
replicates of screening and stage-specific experiments under 
different N treatments were expressed as the mean ± standard 
error (SE). Statistical analysis for screening were analyzed 
by one-way ANOVA and two and three-way ANOVA for 
a stage-specific experiment using Originlab19b software. 
Pearson’s correlation matrix and heatmap was performed 
by R studio (https://​www.​rstud​io.​com/) using the metan 
library, and graphics were accomplished by Originlab19b 
software. The significant differences between N treatments 
of cv.Vikramarya and cv. Aditya are indicated individually 
(p* ≥ 0.05, p** ≥ 0.01, and p*** ≥ 0.001, respectively).

Results

Screening of rice varieties under low nitrogen level

Ten rice cultivars were evaluated to identify two contrast-
ing rice cultivars at low N (N-50% RD) application. The 
growth performance, photosynthetic parameters, chlorophyll 
fluorescence, and biochemical traits were analyzed during 
screening at the fifth tiller stage and showed significant dif-
ference between cultivars (Supplementary Table S2, Fig. 
S1). The plant growth traits, such as plant height, biomass, 
and leaf area, were significant between the rice cultivars. 
The increasing trend of plant growth traits was observed in 
cv.Vikramarya, and a decline in growth performance traits 
was observed in cv. Aditya, respectively [Supplementary 
Fig. S2(A-D)]. The intensity of light significantly affects 
the chlorophyll molecules of rice cultivars, and the response 
of different cultivars to light-saturating intensity fluctu-
ates under low N treatment. The highest Pn (25.11 μ mol 
m−2 s−1), gs (0.353 mol m−2 s−1), Ci (255 μ mol CO2 mol−1), 
and Tr (15.64 mmol m−2 s−1) were observed in Vikramarya 
whereas, the lowest response of Pn (18.68 μ mol m−2 s−1), 
gs (0.316 mol  m−2  s−1), Ci (226 μ mol CO2 mol−1), and 
Tr (12.53 mmol m−2 s−1) were observed in Aditya when 
compared to other cultivars (Supplementary Table S2). 
SPAD represents relative chlorophyll content, which was 
highest (49.55 nmol chl. cm−2) in Vikramarya and lowest 
(43.81 nmol chl. cm−2) in Aditya rice cultivars compared 
to the other ten cultivars (Supplementary Table S3). The 

leaf nitrogen content (LNC) was also significant among 
the ten rice cultivars and observed higher in Vikramarya 
(4.60 mg g−1 DW) followed by Panvel and CR Dhan 310 
(4.44 and 4.32 mg g−1 DW, respectively), and lowest LNC in 
Aditya (3.12 mg g−1 DW) (Supplementary Table S3).

The chlorophyll fluorescence efficiency of PSII showed 
a significant varietal difference in fluorescence attributes. 
The Fv/Fm, ΦPSII, and ETR were highest in Vikramarya, 
followed by Panvel and CR Dhan 310 rice cultivars, whereas 
a decrease in value was observed in cv. Aditya. The NPQ 
was higher in Aditya, Panvel, and CR Dhan 311 but lower 
in Vikramarya and Taipe 309 rice cultivars [Supplementary 
Fig. S3(A-D)]. The coefficient and yield of photochemical 
and non-photochemical quenching of PSII were also dif-
ferent among the rice cultivars (Supplementary Table S4).

Pearson's correlation, cluster, and principle 
component analysis of screening attributes

A Pearson's correlation heatmap displays values of the Pear-
son's correlation analysis, a measure of the linear strength of 
a relationship between two variables. The data obtained from 
the PCA analysis is augmented by the correlation matrix 
heatmap. The results of the correlation analysis between 
each trait of ten rice cultivars grown under low N showed 
that the correlation between traits reached a significant 
or extremely significant level (Fig. 1). Multiple groups of 
variables with strong positive correlations have emerged. 
Leaf N content (p ≥ 0.01) showed a significant positive 
correlation with Pn, shoot length, biomass, gs, Ci, Fv/Fm, 
SPAD (r = 0.9–0.78), chlorophyll content (p ≥ 0.001) shows 
a significant positive correlation with growth attributes, 
leaf nitrogen content (r = 0.94–0.83) and negative corre-
lation with qL (r = − 0.12) and no correlation with qP. A 
strong negative correlation was detected between Tr with 
other gases exchange attributes r = (− 0 to 0.47 to − 0.29), 
growth attributes (r = − 0.41 to − 0.06), SPAD (r = − 0.54), 
LNC (r = − 0.62). Y.NO, F, NPQ, qN, Y.NPQ (p ≥ 0.01 to 
0.001) shows a significant negative correlation with qP and 
qL (r = − 0.98 to − 0.54), respectively.

Principal component analysis was used to figure out 
the relative contribution of the different parameters to the 
total variation of ten rice cultivars. The results of the prin-
cipal component analysis, the principal component were 
extracted and interpreted as different traits contributing to 
PC1 and PC2 during the screening of ten rice cultivars. The 
two principal components extracted based on the Scree plot 
(Fig. 2A) represent a total variance of 70.85%. The PC1 
is the strongest component that contributes 45.30% of the 
total variance. Whereas the PC2 represents 25.55% of the 
total variance respectively. The parameters were catego-
rized into four groups based on the extracted eigenvectors 
represented in the colour circle, which contributed to PC1 

https://www.rstudio.com/
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and PC2 (Fig. 2B and Supplementary Table S5). The dif-
ferent traits in combination with multivariate analysis are 
successfully used to identify the most efficient cultivar (cv. 
Vikramarya) and inefficient cultivar (cv. Aditya) during the 
screening experiment.

During the screening experiment, ten rice cultivars were 
subjected to cluster analysis of observation for trait effi-
ciency. Cluster analysis dendrogram based on similarity 
percentage (Supplementary Fig. S3) shows how the dataset 
of 10 rice cultivars was classified into three groups based on 
full linkage, correlation coefficient distance, and similarity 
level. Cluster 1—with blue colour represents a similarity 
level of 86.03% with an average distance from the centroid 
64.81% (cv. Panvel, cv. Pusa 44, and cv. Vikramarya), cluster 
II—with red colour represents a similarity level of 80.79% 
with an average distance from centroid 99.62% (cv. Aditya 
and cv. Nagina 22), and cluster III—with green colour is 
associated with cultivars (cv. CR Dhan 311, cv. CR Dhan 
310, cv. Taipe 309, cv. Rasi and, cv. Nidhi) respectively.

Reduction in gases exchange and SPAD under low 
nitrogen level

Gas-exchange attributes were calculated at six stages of 
growth in fully expanded leaves in two contrasting culti-
vars at low and optimum-N treatment (Supplementary Fig. 
S5). Pn in both two cultivars showed significant variation 
The degree of decrease of Pn in cv. Vikramarya was lower 
than Aditya, indicating cv. Vikramarya was less affected at 
low N than optimum-level of N at various growth stages, 
respectively. The Pn (p ≥ 0.001) in cv. Vikramarya was 
significantly decreased at the panicle and milk stages by 
12.07% and 14.37%, respectively. In cv. Aditya, the decline 
was observed from the sixth tiller to milk stages by 19.89% 
to 25.09%, respectively, under low N treatment compared to 
optimium N treatment. (Fig. 3A). The gs was decreased sig-
nificantly (p ≥ 0.002) by 10.28% and 13.67% at panicle and 
milk stages, respectively, in cv. Vikramarya, and by 11.67%, 
to 18.44% at flag leaf to milk stages in cv. Aditya, respec-
tively grown under low N supply than the N-100% treated 
plants (Fig. 3B). The significant (p ≥ 0.006) decrease of Ci 
was observed at the panicle (11.19%) and milk (12.36%) 
stages, respectively, in cv. Vikramarya and by 11.37%, 

Fig. 1   Correlations between the 
gas-exchange, chlorophyll fluo-
rescence, biochemical, and plant 
growth traits of the ten rice 
cultivars under the low-N sup-
ply. (+) and (−) correlations are 
displayed in blue and red square 
colours, respectively. It ranges 
from − 1 to + 1, whereby − 1 
represents a negative linear rela-
tionship between variables, + 1 
refers to a positive linear rela-
tionship between variables, and 
0 shows no relationship between 
studied variables. The asterisks 
on the r-value in the figure 
represent the significance value 
***p < 0.001, **p < 0.01, and 
*p < 0.05, respectively. (Color 
figure online)
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13.43%, 16.60%, and 17.53% at flag leaf, booting, panicle, 
and milk stages, respectively, in cv.Aditya under N-50% 
treatment than the N-100% treatment (Fig. 3C). The Tr 
(p ≥ 0.001) declined significantly by 10.13% and 13.00% at 
panicle and milk growth stages under low N treatment in cv. 
Vikramarya and by 10.10% to 18.69% at flag leaf to milk 
stages in cv. Aditya at low N treatment than N-100% treated 
plants (Fig. 3D), respectively.

The SPAD value (chlorophyll content) was measured 
at the six growth stages of rice cultivars Vikramarya and 
Aditya at optimum (N-100%) and low-N level (N-50%). 
The SPAD values showed the relative chlorophyll content 
increased from the third tiller stage to the panicle stage 
in both cultivars under N-100% and N-50% treatment. 
However, there was a significant decrease of SPAD value 

(p ≥ 0.01) by 11.13% and 12.66% in cv. Vikramarya at low N 
treatment. However, in cv. Aditya, a significant reduction of 
leaf greenness was observed from booting to milky growth 
stage by 11.32–20.71% respectively at low N (N-50%) treat-
ment compared to respective cultivars grown at optimum N 
treatment (N-100%) respectively (Fig. 4).

Chlorophyll fluorescence response under low 
nitrogen level

Chlorophyll fluorescence efficiency Fv/Fm, ΦPSII, and ETR 
was reduced in both cultivars grown in low N (N-50%)
treatment than in cultivars grown in optimum N treatment 
(Table 1).In cv. Vikramarya, Fv/Fm was decreased sig-
nificantly (p ≥ 0.001) from booting stage (5.23%), panicle 

Fig. 2   Principle component 
analysis of growth attributes, 
physio-biochemical traits of ten 
rice cultivars under low N level 
A) Scree plot represents Eigen-
value of different attributes and, 
B) Biplot of 10 rice cultivars 
based on the variance in dif-
ferent attributes, a contrasting 
pair of cultivars represented as 
Vikramarya and Aditya
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stage (10.85%) and, milk stage (12.31%). While in cv. Adi-
tya, there was a significant decrease in all growth stages 
by 7.06–18.58% at low nitrogen treatment compared to 
their optimum N treatment. The effective photochemi-
cal efficiency of PSII (ΦPSII) was reduced significantly 
(p ≥ 0.001) in cv. Vikramarya by about 10–11% under 
low N treatment. cv. Aditya followed the same trend 
from flag leaf (11.15%) to the milk stage (21.43%) grown 
under low N treatment than optimum treatment (N-100%), 
respectively. The results of the relative electron trans-
port rate (ETR) also exhibit a similar tendency as ΦPSII 
reduced significantly under low N treatment (N-50%) in 
both contrasting cultivars as compared with optimum N 
treatment(N-100%). The photochemical quenching coef-
ficient (qP) and non-photochemical fluorescence quench-
ing (NPQ) showed varied results under low N treatment 
compared to N-100% in both cultivars (Table 1). The qP 

reduced significantly by 8.03–13.68% in the flag stage to 
the milk stage in cv. Vikramarya. In contrast, the reduc-
tion in cv. Aditya was about 9.77–24.13% from the 6th 
tiller stage to the milk stage under low N level (N-50%) 
compared to the N-100% level. The NPQ increased upto 
20–23% in cv. Vikramarya from panicle to milk stage 
whereas upto 40% increment was shown in cv. Aditya 
under low N level in all stages compared with their opti-
mum treated cultivars, respectively (Table 1).

Effect of low nitrogen level on plant growth traits

Plant growth traits, including root length, shoot length, leaf 
area, and biomass, were measured in both cultivars grown 
in low and optimum N applications (Fig. 5). A significant 
difference in shoot length was observed between rice cul-
tivars showed more plant height in cv. Vikramarya than 

Fig. 3   Changes in gas-exchange response cultivars Vikramarya and 
Aditya at specific growth stages under optimum and low N treat-
ment. Pn = net photosynthetic rate (A), gs = stomatal conductance (B), 
Ci = intercellular CO2 concentration (C), and Tr = transpiration rate 

(D). The data set refers to mean ± SE of each specific growth stage 
under optimum and low N treatment and the significant differences 
at *p < 0.05, **p < 0.01, and ***p < 0.001 between treatments of each 
cultivar represented by asterisks
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Aditya in both low and optimum N treatment. Under low 
N treatment, cv. Aditya showed a significant (p ≥ 0.001) 
decrease in plant height from flag stage (21.55%), booting 
(22.65%), panicle (23.64%), and milk stage (24.88%) than 
a plant grown at optimium level of N. In cv. Vikramarya, a 
significant decrease in plant height was observed at pani-
cle (9.46%) and milk stage (11.45%) at low N level com-
pared to their optimum level of N (Fig. 5A). Root length 
increased as plant growth and showed a significant increase 
in cv. Vikramarya at low N treatment at the flag (15.01%), 
booting (21.47%), panicle (25.55%), and milk stage while 
as in cv. Aditya at panicle (8.86%) and milk stage (10.23%) 
compared to an optimum level (Fig. 5B). Leaf area increased 
upto panicle initiation and showed a significant difference 
in cultivars grown under low N. In Vikramarya, leaf area 
decreased significantly (p ≥ 0.006) at panicle (10.21%), and 
milk stage(9.80%) while as in cv. Aditya at low N, the reduc-
tion in leaf area was observed at flag leaf(13.17%), boot-
ing (15.46%), panicle (13.01%), and milk stage (14.16%) 
compared to optimum treatment (N-100%) (Fig. 5C). The 
biomass was found to vary in both cultivars under low N 
treatment. It showed a significant (p ≥ 0.005) decrease in 
cv. Aditya at the flag (23.72%), booting (21.73%), panicle 
(20.80%), and milk stages (19.83%) and in cv. Vikramarya 
at the panicle (12.42%) and milk stage (12.03%) compared 
to optimum N treatment (Fig. 5D).

Effect of low nitrogen on yield components and N 
use efficiency

The results show agronomic attributes declined in both cv.
Vikramarya and Aditya under low N treatment than the 
plants grown at optimium N treatment (Fig. 6). Panicle 
length declined in cv. Vikramarya and cv. Aditya by 8.07% 
and 18.22%, respectively, under low N treatment (Fig. 6A). 
The number of panicle per hill was declined by 13.65% in cv. 
Vikramarya and 26.22% in cv.Aditya respectively, and pani-
cle per meter square by 14.01% in cv. And 26.22% respec-
tively, under low N treatment than optimium N treated plants 
(Fig. 6B, C). In cv. Aditya shows more declined in grain sets 
in panicles (33.33%) than cv.Vikramarya15.47% under low 
N treatment (Fig. 6D). The 1000 grain weight (p ≥ 0001) 
was significantly decreased in both the cultivars under low 
N treatment, and the decline was more observed in cv.Aditya 
(12.69%) than cv. Vikramarya 9.8% than the grains under 
optimium N treatment (Fig. 6E). The grain yield (p ≥ 0.000) 
under low N treatment declined more in cv.Aditya (52.28%) 
than cv.Vikramarya (35.03%), respectively, than plants 
grown with optimium N treatment (Fig. 6F).

Nitrogen use efficiency showed significant improvement 
for cv. Vikramarya than cv. Aditya under low N treatment. 
Similarly, the NUpE (15.02%) and NUtE (7.58%) (Fig. 6G, 
H) were significantly enhanced in cv. Vikramarya than cv. 
Aditya under low N treatment endorses that cv. Vikramarya 
is more efficient in obtaining, allocating, and use N for grain 
development. Furthermore, the NUE  increased in cv. Vikra-
marya by 16.78% than cv. Aditya under low N treatment 
and showed a significant difference from plants grown under 
optimium N treatment  (Fig. 6I).

Effect of low nitrogen on the activity 
of N‑metabolism enzymes and leaf nitrogen content 
(LNC)

The two contrasting rice cultivars were tested for enzy-
matic activity at low and optimum-N levels at six growing 
stages. The activities of N-assimilation enzymes (NR, NiR, 
GS, and GOGAT) and leaf N content showed significant 
variation at low N treatment compared to optimium treat-
ment (Table 2). For NR activity, a significant decrease was 
observed in cv. Aditya from booting (30.06%), to panicle 
(41.53%), and milk stage (44.94%) grown under low N 
compared to cultivar grown under optimum-N treatment. 
However, in cv. Vikramarya, an increase in activity was 
observed initially at 3rd tiller, 6th tiller, flag stage, and boot-
ing stage and showed slope from booting (12.48%), panicle 
(28.43%), and milk stage (37.70%), respectively, under low 
N than cultivars grown under optimum-N treatment. Like 
NR activity, NiR activity also showed significant differences 
among cultivars at low N treatment. In cv. Aditya, the NiR 

Fig. 4   Chlorophyll content decreases in rice leaves under the low-N 
application. SPAD = chlorophyll content in nmol chl. cm−2. Data set 
refers to mean ± SE of each specific growth stages under optimum 
and low N treatment and the significant differences at *p < 0.05, 
**p < 0.01, and ***p < 0.001 between treatments of each cultivar rep-
resented by asterisks
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activity decreased with increasing growth stages from boot-
ing (13.84%), panicle (17.55%), and milk stage (20.96%). 
However, in cv. Vikramarya, a decrease was observed from 
panicle (17.32%), and milk stage (19.69%) under N-50% 
treatment of N compared to respective optimum N-100% 
treatment. The two cultivars showed a significant difference 
at all growth stages in low N treatment for GS activity. GS 
activity in cv. Aditya showed a significant decrease in flag 
leaf (14.90%), booting (21.47%), panicle (20.71%), and milk 
stage (23.49%) at low N treatment compared to optimium 
treatment. cv. Vikramarya showed a significant decrease 
in GS enzyme activity at panicle (17.44%) and milk stage 
(28.90%) grown at low N treatment compared to N-100% N 
treatment. The GOGAT activity in both cultivars under low 
N treatment initially increased and then decreased with the 
growth stages. In cv. Vikramarya, the decrease in activity 

ranges from the booting stage (21.05%), panicle (25.64%), 
and milk stage (28.16%). Similarly, cv. Aditya also showed 
a significant decrease at booting (27.94%), panicle (36.61%), 
and milk stage (44.78%) compared to respective optimum 
N-100% treatment. Leaf N content in leaves increased in 
both cultivars when the N treatment was optimium. How-
ever, it decreased in low N-treated cultivars as the plant 
matures. Under low N treatment, a significant (p ≥ 0.001) 
decline was found in cv. Aditya at the flag (11.24%), boot-
ing (20.43%), panicle (25.58%), and milk stages (31.52%). 
Similarly, cv. Vikramarya showed a significant decrease of 
LNC in  panicle (10.18%) and milk stages (13.98%) at low N 
treatment, respectively, compared to optimum-N treatment.

Table 1   Fv/Fm, ΦPSII and ETR 
efficiencies, photochemical and 
non-photochemical quenching 
of PS II in  leaves of contrasting 
rice cultivars at different stages 
of growth under optimum and 
low N applications

Data in the table represents mean ± SE of each treatment, and the asterisks denote the significant differ-
ences at *p < 0.05, **p < 0.01, and ***p < 0.001 between treatments of each cultivar

Traits Growth stages cv. Vikramarya cv. Aditya

N-100% N-50% N-100% N-50%

Fv/Fm 3rd tiller 0.798 ± 0.037 0.783 ± 0.043 0.793 ± 0.048 0.737 ± 0.032*
6th tiller 0.811 ± 0.045 0.789 ± 0.029 0.802 ± 0.042 0.722 ± 0.040*
Flag leaf 0.827 ± 0.038 0.797 ± 0.043 0.809 ± 0.046 0.729 ± 0.034*
Booting 0.821 ± 0.037 0.778 ± 0.038* 0.804 ± 0.053 0.671 ± 0.044**
Panicle 0.800 ± 0.032 0.731 ± 0.029* 0.802 ± 0.045 0.663 ± 0.056**
Milk stage 0.82 ± 0.035 0.719 ± 0.048** 0.807 ± 0.053 0.657 ± 0.047***

ΦPSII 3rd tiller 0.686 ± 0.028 0.669 ± 0.028 0.676 ± 0.023 0.659 ± 0.028
6th tiller 0.755 ± 0.026 0.721 ± 0.034 0.735 ± 0.022 0.653 ± 0.022**
Flag leaf 0.764 ± 0.032 0.687 ± 0.043* 0.746 ± 0.028 0.63 ± 0.029***
Booting 0.744 ± 0.047 0.666 ± 0.022* 0.727 ± 0.037 0.609 ± 0.033***
Panicle 0.719 ± 0.044 0.635 ± 0.033* 0.691 ± 0.039 0.577 ± 0.030***
Milk stage 0.678 ± 0.035 0.609 ± 0.028* 0.667 ± 0.026 0.524 ± 0.032***

ETR 3rd tiller 165.09 ± 11.1 161 ± 14.5 162.68 ± 10.1 158.59 ± 12.8
6th tiller 181.69 ± 10.1 173.57 ± 12.2 176.88 ± 12.7 157.15 ± 11*
Flag leaf 183.86 ± 9.7 165.33 ± 11.06* 179.53 ± 10.8 151.61 ± 11.2**
Booting 179.04 ± 11.1 160.27 ± 13.9* 174.95 ± 12.02 146.56 ± 12.6**
Panicle 172.03 ± 11.5 152.81 ± 11.7* 166.29 ± 13.6 138.86 ± 13.5**
Milk stage 163.16 ± 16.00 146.56 ± 13.4* 160.52 ± 15.8 126.1 ± 12***

qP 3rd tiller 0.811 ± 0.025 0.797 ± 0.035 0.804 ± 0.042 0.781 ± 0.029
6th tiller 0.829 ± 0.031 0.816 ± 0.038 0.818 ± 0.038 0.738 ± 0.025*
Flag leaf 0.871 ± 0.014 0.809 ± 0.035* 0.853 ± 0.027 0.761 ± 0.041**
Booting 0.834 ± 0.024 0.767 ± 0.023* 0.823 ± 0.034 0.729 ± 0.027**
Panicle 0.798 ± 0.031 0.721 ± 0.032** 0.791 ± 0.035 0.689 ± 0.031***
Milk stage 0.789 ± 0.025 0.681 ± 0.032** 0.779 ± 0.029 0.591 ± 0.049***

NPQ 3rd tiller 0.062 ± 0.010 0.073 ± 0.018 0.066 ± 0.014 0.091 ± 0.013*
6th tiller 0.041 ± 0.018 0.055 ± 0.011 0.046 ± 0.012 0.075 ± 0.016*
Flag leaf 0.025 ± 0.020 0.035 ± 0.020 0.031 ± 0.013 0.055 ± 0.028*
Booting 0.048 ± 0.012 0.057 ± 0.016 0.049 ± 0.016 0.076 ± 0.017**
Panicle 0.076 ± 0.018 0.094 ± 0.016* 0.079 ± 0.024 0.119 ± 0.023***
Milk stage 0.097 ± 0.011 0.123 ± 0.020** 0.104 ± 0.017 0.169 ± 0.030***
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Expression pattern of NR, NiR, GS, GOGAT in rice 
cultivars at low N treatment

To find out low N affects the expression of key genes 
involved in nitrogen metabolism, RT-qPCR was used 
to compare the expression levels of genes encoding NR 
(nitrate reductase), NIR (nitrite reductase), GS (glutamine 
synthetase), and GOGAT (glutamate synthase) in the leaves 
at different growth stages in two contrasting cv.Vikramarya 
and cv.Aditya under low and optimum N- treatment were 
analyzed by RT-qPCR (Supplementary Fig. S6). The rela-
tive expression of gene NR increases significantly from 3rd 
tiller to milk stage (3.22–7.6 folds)) in cv. Vikramarya. In 

cv. Aditya, the highest expression level was observed in 
the booting to milk stage (4.35–4.43 folds) under N-50% 
treatment compared to the N-100% treatment (Supplemen-
tary Fig. S6A). The expression level of NiR were signifi-
cantly higher in all growth stages and showed an increase in 
expression level from 3rd tiller to panicle stage (1.94–4.62 
folds) and then a decline in milk stage (0.52 folds) in 
cv.Vikramarya under low N. Similarly, in cv. Aditya, the 
expression of this gene was significantly higher from flag 
leaf to milk (2.49–3.62 folds) stage but lower than compared 
to cv.Vikramarya at low N treatment compared to respec-
tive optimum treatment of N (Supplementary Fig. S6B). 
The expression level of GS1.1 in cv.Vikramarya was highly 

Fig. 5   Variation in plant growth of rice cultivars Vikramarya and 
Aditya at six growth stages under low and optimum N applications. 
Plant height (A), root length (B), leaf area per plant (C), and plant 
biomass (D). Data set refers to mean ± SE of each specific growth 

stages under optimum and low N treatment and the significant differ-
ences at *p < 0.05, **p < 0.01, and ***p < 0.001 between treatments 
of each cultivar represented by asterisks
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significant in all growth stages, from 3rd tiller to milk stage 
(2.14–3.99 folds). In cv. Aditya, the expression level was 
significant and increased from 3rd tiller to flag, and booting 
stage (1.42–3.10 folds) and remained constant to milk stage 
but was lower than the expression of cv.Vikramarya grown 
at low N treatment (Supplementary Fig. S6C). The expres-
sion level of GS1.2 was significantly higher from flag leaf to 

milk stage (4.26–5.82 folds) in cv.Vikramarya, whereas the 
same trend in expression level were observed in cv.Aditya 
from flag leaf to milk stage (3.41–3.96 folds) showed lower 
expression level compared to cv.Vikramarya at N-50% treat-
ment compared to N-100% in both cultivars (Supplemen-
tary Fig. S6D). The relative expression level of GS2 was 
increased after every growth stage from 3rd tiller to milk 

Fig. 6   Yield components and Nitrogen use efficiency of cv.  Vikra-
marya and cv. Aditya under optimium and low N treatment. Panicle 
length in centimeters (A), number of panicles per hill (B), Number 
of grains per panicle (C), Number of panicles per meter square (D), 
1000 grain weight in gram (E), grain yield per meter square (F), N 

utilization efficiency (NUtE) (G), N uptake efficiency (NUpE) (H), 
and N use efficiency (NUE) (I). Bars in each graph represent the 
mean ± SE of each treatment, and the asterisks denote the significant 
differences at *p < 0.05, **p < 0.01, and ***p < 0.001 between treat-
ments of each cultivar
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stage (3.21–4.69 folds) but shows a significant increase in 
their expression level from flag leaf to milk stage under low 
N treatment in both cultivars. In cv.Vikramarya, increase in 
the expression level of GS2 from 3rd tiller, 6th tiller, and 
flag leaf and then remain stable from booting to milk stage. 
In cv. Aditya, a significant increase in expression level was 
observed from flag leaf to milk stage (2.94–3.76 folds) but 
lower than cv.Vikramarya at low N treatment (Supplemen-
tary Fig. S6E).

The expression level Fd-GOGAT1 in cv. Vikramarya 
were highly significant from 6th tiller to the milk stage 
(4.80–6.45 folds) and showed increase in expression with 
growth stages at low N treatment. However, in cv. Aditya 
a significant increase in expression was observed from flag 
leaf to milk stage (3.25–4.50 folds). At low N treatment, 
the expression of enzyme Fd-GOGAT2 in cv. Vikramarya 
increased from 3rd tiller to the booting stage (2.89–4.69 
folds) and then remained stable upto milk stage. Similarly, 
in Aditya, the maximum expression levels of this genes 
were detected at flag leaf, booting, panicle, and milk stages 
(2.74–3.64 folds) under low N treatment (Supplementary 
Fig. S6F-G). The transcript level of NADH-GOGAT1 in cv. 
Vikramarya was highly significant with growth stages and 
increased from 3rd tiller to  milk stage (2.54–4.46 folds). 
Interestingly, in cv. Aditya, the highest expression levels 
were observed from 6th tiller, flag leaf, and booting stage 
to milk stage (2.05–3.93 folds) grown at low N treatment 

(Supplementary Fig. S6H). In contrast, the expression level 
of NADH-GOGAT2 was greatly significant in cv. Vikra-
marya 6th tiller, flag leaf, booting stage, panicle, and milk 
stages (1.20–5.39 folds). Similarly, the expression level in 
cv. Aditya showed significant expression from flag leaf to 
milk stage (2.14–3.96 folds) and remained almost stable 
compared to cv. Vikramarya grown at low N treatments 
in comparison  to optimal N treatments (Supplementary Fig. 
S6I). Gene expression levels were represented on  heatmap 
by a spectrum of colours, from red (indicating the highest 
expression) to blue (indicating the lowest expression). There 
is a clear definition of the expression of these genes across 
the six growth stages at low N treatment in cv. Vikramarya 
and cv. Aditya (Fig. 7A, B).

Discussion

Since most N from applied fertilizers is lost to the envi-
ronment, minimizing fertilizer use is essential for sustain-
able agriculture. N-efficient genotypes can be developed 
to improve crop plants or genotypes that can absorb and 
retain significant amounts of N and grow and yield well in 
low N regimes [39]. Such genetic modifications require a 
deeper knowledge of plant stress response conditions at the 
molecular level. The development of N-efficient genotypes 
necessitates a thorough knowledge of the regulatory genes 

Table 2   N-assimilation enzyme activities and leaf N content in rice cultivars Vikramarya and Aditya at six growth stages under optimum and 
low N treatments

Data in the table represents mean ± SE of each treatment and the significant differences at *p < 0.05, **p < 0.01, and ***p < 0.001 between treat-
ments of each cultivar denoted by asterisks

Traits Cultivar Treatment 3rd tiller 6th tiller Flag leaf Booting Panicle Milk stage

NR (µmol−1 g−1 
FW h-1)

Vikramarya N-100% 6.52 ± 0.57 6.82 ± 0.35 7.89 ± 0.42 8.81 ± 0.34 9.32 ± 0.65 9.18 ± 0.62
N-50% 5.13 ± 0.48 5.57 ± 0.36 6.52 ± 0.52 7.71 ± 0.51 6.67 ± 0.41* 5.72 ± 0.39*

Aditya N-100% 4.12 ± 0.43 4.91 ± 0.53 5.87 ± 0.61 7.55 ± 0.52 7.03 ± 0.45 6.32 ± 0.41
N-50% 3.81 ± 0.39 4.29 ± 0.45 5.06 ± 0.53 5.28 ± 0.49* 4.11 ± 0.43* 3.48 ± 0.52**

NiR activity 
(µmol g−1 FW h−1)

Vikramarya N-100% 33.21 ± 2.12 35.55 ± 2.02 39.14 ± 2.01 42.51 ± 2.97 40.01 ± 2.73 37.09 ± 2.74
N-50% 31.61 ± 2.17 32.83 ± 2.34 36.11 ± 2.62 38.62 ± 2.34 33.08 ± 2.12* 29.79 ± 2.22**

Aditya N-100% 26.14 ± 2.62 30.14 ± 2.31 33.41 ± 0.34 36.32 ± 2.49 35.31 ± 2.87 32.63 ± 2.53
N-50% 24.73 ± 2.41 29.3 ± 2.21 31.78 ± 2.34 31.29 ± 2.65* 29.11 ± 2.84* 25.79 ± 2.41**

GS activity 
(µmol g−1 FW h−1)

Vikramarya N-100% 1.29 ± 0.052 1.42 ± 0.067 1.59 ± 0.075 1.69 ± 0.068 1.72 ± 0.067 1.73 ± 0.043
N-50% 1.21 ± 0.062 1.37 ± 0.057 1.47 ± 0.053 1.56 ± 0.049 1.42 ± 0.034* 1.23 ± 0.043*

Aditya N-100% 1.19 ± 0.056 1.32 ± 0.067 1.41 ± 0.068 1.49 ± 0.061 1.4 ± 0.0532 1.32 ± 0.043
N-50% 1.17 ± 0.049 1.24 ± 0.057 1.2 ± 0.061* 1.17 ± 0.053* 1.11 ± 0.0432** 1.01 ± 0.037***

NADH-GOGAT 
(µmol g−1 FW h−1)

Vikramarya N-100% 0.53 ± 0.043 0.59 ± 0.053 0.68 ± 0.043 0.76 ± 0.034 0.78 ± 0.032 0.71 ± 0.047
N-50% 0.51 ± 0.051 0.55 ± 0.052 0.62 ± 0.062 0.61 ± 0.057 0.58 ± 0.043* 0.51 ± 0.053*

Aditya N-100% 0.47 ± 0.040 0.51 ± 0.052 0.59 ± 0.058 0.68 ± 0.044 0.71 ± 0.063 0.67 ± 0.060
N-50% 0.44 ± 0.053 0.48 ± 0.045 0.58 ± 0.063 0.49 ± 0.035* 0.45 ± 0.066** 0.37 ± 0.051**

Leaf nitrogen con-
tent (LNC) (mg 
g-1 DW)

Vikramarya N-100% 4.10 ± 0.142 4.90 ± 0.137 5.31 ± 0.104 5.46 ± 0.150 5.5 ± 0.193 5.59 ± 0.183
N-50% 3.90 ± 0.171 4.70 ± 0.163 5.20 ± 0.188 5.00 ± 0.145 4.94 ± 0.121* 4.81 ± 0.150*

Aditya N-100% 3.25 ± 0.198 3.55 ± 0.186 4.27 ± 0.179 4.55 ± 0.195 4.69 ± 0.180 4.79 ± 0.167
N-50% 3.19 ± 0.177 3.49 ± 0.199 3.79 ± 0.152* 3.62 ± 0.166* 3.49 ± 0.197** 3.28 ± 0.202***
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that impart low-N tolerance in crop plants. In the present 
work, screening of ten rice cultivars under low N application 
showed physiological differences (Supplementary Figs. S2, 
S3 and Tables S3, S4). The two contrasting cultivars were 
selected for the stage-specific experiment based on growth 
and physiological performances (Figs. 3 and 5; Tables 1 
and 2). Phenotypic variations were observed at different 
growth stages in cv.Vikramarya and cv. Aditya under low 
N treatment. In cv. Aditya a significant decrease in pho-
tosynthetic efficiency, stomatal conductance, and relative 
chlorophyll content at higher growth stages were observed 
(Fig. 3), which may be due to the reduced photochemical 
efficiency of PSII with limiting N availability for process-
ing of photosystems and chlorophyll molecules. The severe 
impact of low-N supply was observed on Fv/Fm, ΦPSII, 
and ETR in cv. Aditya than cv. Vikramarya; and quenching 
efficiency (NPQ) data suggested that cv. Aditya loses more 
light photons into heat energy due to higher values of NPQ, 
notably at reproductive growth stages (Table 1). However, a 
decrease in photosynthesis was reported at a single growth 
stage under low-N treatment in earlier studies [13, 40–42]. 
We confirmed it at different vegetative and reproductive 
growth stages in rice plants. Proper N-fertilization cannot 

alone improve the photosynthesis rate [43]. However, the 
maintenance of N-dependent photosynthetic components is 
necessary during the growth of rice plants [44]. The pho-
tochemical efficiency attributes are essential indicators for 
plant growth, physiological response, and modulation of 
PSII under low N conditions. The malfunction of PSII due to 
low-N supply was studied, where increased NPQ explained 
the dissipation of exciting energy of PSII as heat [45] and 
the slow rate of the PSII reaction center from quenched to 
unquenched state [46]. Furthermore, a significant decrease 
in ETR was observed in cv. Aditya as compared to the 
cv. Vikramarya, which may be due to low proton motive 
force in non-cyclic electron transport mode during the pho-
tochemical reaction [47] and, thus, transiently obstruct the 
photosynthesis in cv. Aditya, particularly at reproductive 
growth stages [48]. The observed results showed that reduc-
tion in photosynthetic and fluorescence efficiency impacts 
the growth attributes, including plant biomass, leaf area, 
and plant length showing more decline in cv. Aditya than 
cv. Vikramarya under low N treatment (Fig. 5). The Pear-
son's correlation matrix of physio-biochemical, chlorophyll 
fluorescence, and growth traits  showeda significant positive 
correlation in both rice cultivars, but negative correlations 

Fig. 7   Heatmap for N assimila-
tion genes representing relative 
gene expression levels at 
different stages of growth (3rd 
tiller to milk stages) in cultivar 
Vikramarya (A) and Aditya (B) 
under low nitrogen treatment. 
The relative expression level 
were represented in different 
colour codes as given in colour 
key: Red (high expression) 
and blue (low expression). The 
expression levels were normal-
ized to corresponding house-
keeping gene β-actin. (Color 
figure online)
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were also found to be more prominent in cv. Aditya than 
Vikramarya cultivar under low-N application (Supplemen-
tary Fig. S7). The leaf nitrogen content showed a strong and 
positive correlation with growth traits and photosynthesis, 
at different growth stages. Murata [49] also observed a high 
positive association between leaf photosynthesis and crop 
growth rates. Increased LNC per unit boosts rice photosyn-
thesis and biomass production, possibly due to increased N 
supply to Rubisco. However, increased photosynthesis in 
rice plants would increase yield and biomass [13].

The observed improvements in agronomic attributes for 
cv. Vikramarya suggests that this cultivar is more success-
ful in taking up and using N for grain growth than cv. Adi-
tya. The grain yield per unit area was severely declined in 
cv. Aditya compared to cv. Vikramarya under low-N supply 
(Fig. S6), due to the low production of panicles per unit 
area and grains per panicle (Fig. 6A–D) in  cv. Aditya. The 
leaf N levels in cv. Vikramarya increased by up to ~ 18% at 
higher growth stages when compared with the cv. Aditya at 
low-N supply (Table 2). The overall result was an enhanced 
NUE in cv. Vikramarya (Fig. 6I) due to increased NUtE and 
NUpE for low-N supply than cv. Aditya (Fig. 6G, H). These 
outcomes suggest that the influence of NUpE and NUtE on 
NUE strongly differs dependent on the amount of N fertili-
zation and rice cultivar [24]. While other studies in cereals 
have also demonstrated that the NUpE influences NUE at 
low-N supply [50, 51], and NUtE was more closely associ-
ated with genetic variation in NUE under different N regimes 
rather than NUpE [13, 52, 53]. Indeed, in the current study, 
growth and yield enhancements in cv. Vikramarya versus 
cv. Aditya were detected under the low-N supply, and NUE 
was improved due to NUpE and NUtE in cv. Vikramarya 
than in cv. Aditya. Together, this supports that the high-
efficient cv. Vikramarya and low-efficient cv. Aditya repre-
sent exceptional candidates for studying genetic differences 
pertaining to rice yield and NUE.

The enhancement in N application can promote the 
activities of NR and GS, the ability of N absorption and 
assimilation after flowering, and the content of grain protein 
[54]. The enzyme activities related to leaf N metabolism 
are directly affected by the level of soil fertilizer supply 
[55]. A suitable amount of nitrogen fertilizer can enrich the 
activities of NR, NiR, GS, and GOGAT in the leaves of 
rice at the later stages of growth, but higher application of 
nitrogen fertilizer will reduce their activities [56]. cv. Aditya 
and Vikramarya showed a drop in NR activity by 45% and 
37% at reproductive phases, respectively, but an increase in 
activity was detected during the vegetative stage at low N 
treatment (Table 2). The differences in NR activity persist in 
contrasting cultivars at the transcript level. Leaf NR activ-
ity was higher than root activity in several cereals and other 
crop plants [57]. Root cell nitrate and amino acid concen-
trations could be influenced by the NR, plays a key role in  

absorption of nitrate [58]. NR activity may differ between 
the two cultivars because of differences in the regulation of 
N transporter genes or N flux in roots [59]. A decrease in 
NiR activity was observed during reproductive stages in both 
cultivars but the decline was more prominent in cv. Adi-
tya (21%) than cv. Vikramarya (19.70%) under low N supply.

In N metabolism, GS serves as a multifunctional enzyme. 
In higher plants, all N goes through the GS reaction and a 
single nitrogen atom is subjected the GS reaction many times 
[60]. Assimilation and remobilization in diverse organs to the 
ultimate storage protein during uptake from the soil. There-
fore, the GS reaction serves as a control point for N assimila-
tion since the GS product is given to glutamate synthase in 
a regular amount [61]. The GS and glutamate synthase work 
together to direct N flow, which is then utilized by the rest of 
the metabolism. The GS plays an essential role in N nutrition 
and enhancing grain yield in rice [62]. In this study, GS activ-
ity was reduced at low N treatment and effects were more pro-
nounced in the cv. Aditya (27%) than  cv. Vikramarya,  at low 
N application, indicating that GS plays a vital role in N uptake 
and utilization under low N conditions. Increase in GS activity 
and N content in plants grown hydroponically under low and 
optimum N treatment may be attributed to over-expression 
of GS1 isoform [63]. At low N treatments, cultivars with 
differential GOGAT activity showed a considerable impact. 
Both cultivars had significant levels of leaf GOGAT activity 
at the vegetative stage, but this activity decreased when the 
plants entered the reproductive phase. Under low N condi-
tions, GS and NR play a key role in assimilating nutrients for 
crop growth [64]. The metabolic rates are determined by the 
enzymes activity that are involved in N assimilation [59]. The 
strength of GS, GOGAT, and GDH enzyme activities showed 
the power of plant to assimilate organic N into amino acids. 
Their activities are affected by different N application doses 
[59]. High N efficient cultivar (cv. Vikramarya) had greater 
activities in growth stages as compared to low N inefficient 
cultivar (cv. Aditya), indicating these enzymes are closely 
associated with N metabolism in plants. Further, a well mul-
tiplex system of N uptake and assimilation may be base for 
better N use efficiency in cv. Vikramarya owing to their high 
enzymatic activity (Table 2).

Genes such as NR, NiR, GS, and GOGAT are widely 
known to be regulated by N, which serves as a signaling 
source [65]. The expression level of genes related to N 
metabolism between an N-efficient rice cv. Vikramarya and 
a low efficient rice cv. Aditya under low-N treatment were 
analyzed and found that NR, NIR, GS, and GOGAT were 
highly expressed in cv. Vikramarya than cv. Aditya (Sup-
plementary Fig. 6SA-I). These results showed that NiR, 
GS2, and GOGAT might play important roles in low-N 
tolerance in Vikramarya, especially GS2 and  because of 
their induction in leaves of cv. Vikramarya at different 
growth stages and their stronger responses to low-N stress 
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in the leaves of Vikramarya than in cv. Aditya, which 
might also be an important reason for cv.Vikramarya better 
adaptation to low-N stress. Nevertheless, in barley (Hor-
deum vulgare L.), increased expression of the cytosolic , 
which plays a role in N remobilization, resulted in higher 
grain yield and NUE compared with wild-type plants 
when grown under varying N supply [66]. Low and high 
NUE cultivars differed in the expression of NiR and GS, 
suggesting that these enzymes play an active role in the 
efficient uptake and use of N fertilizer [64]. Experiments 
on a rice hybrid that received five N treatments showed 
that ammonium assimilation enzymes have an important 
influence on grain yield and NUE [67]. In rice seedlings, 
Hirose et al. [68] found that activating NADH-GOGAT 
expression using NH4Cl in root tissues boosted its expres-
sion. After ammonium induction, Sonoda et al. [69] found 
comparable effects, with an increase in NADH-GOGAT 
mRNA accumulation (after 60 min). However, cytosolic 
GS1 expression remained stable throughout the ammo-
nium induction process [70]. GS and GDH were shown 
to be expressed in barley seeds at an early stage of seed 
development in another investigation [71]. In order to 
compensate for the low expression of GS genes in seeds, 
Grabowska and Kwintaj  [72] found that TsGS1-3 and 
TsGS2-1 (low), and TsGDH1 (high) were differentially 
expressed. These corresponding genes of nitrogen acquisi-
tion, transport, and assimilation contribute to efficient use 
of plant N [27]. Our results showed that rice plants from 
the high-efficient cv. Vikramarya expressed these genes 
more than low-efficient cv. Aditya at various phases of 
growth, explaining their role in N assimilation in rice.

Conclusion

In conclusion, two contrasting rice cultivars showed signifi-
cant physiological, biochemical, and genetic variations in 
leaf photosynthesis, photochemical efficiency of PSII, plant 
growth attributes at different growth stages, grain yields, 
and nitrogen use efficiency (NUE) under low-N supply. The 
outcomes of the study support that changes in low-efficient 
plants are required to attain higher physiological growth 
and crop yields along with improved NUpE, NUtE, and 
NUE. These modifications are controlled at the gene level, 
particularly by important regulators like C and N at low 
N conditions. Our study further suggests that the genetic 
manipulation of N metabolism genes provides a potential 
strategy to improve NUE at low N supply. However, while 
the changed expression of single metabolic and transporter 
genes has been successful in some plant species but individ-
ual gene changes may not be suitable for a general approach 
to improve NUE; instead multiple gene targets approach 

enhances the NUE in rice [73]. Specific modulation of leaf 
N/C metabolic and transport processes may require efficient 
coordination to avoid end-product inhibition or substrate 
limitation of metabolic pathways and to enhance NUE.
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