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Abstract
Background  Metformin has good anti-hyperglycemic effectiveness, but does not induce hypoglycemia，is very safe, and 
has become the preferred drug for the treatment of type 2 diabetes. Recently, the other effects of metformin, such as being 
anti-inflammatory and delaying aging, have also attracted increased attention.
Methods and Results  The relevant literatures on pubmed and other websites for reading, classification and sorting, and did 
not involve any animal experiments.
Conclusion  Metformin has anti-inflammatory effects through multiple routes, which provides potential therapeutic targets 
for certain inflammatory diseases, such as neuroinflammation and rheumatoid arthritis. In addition, inflammation is a key 
component of tumor occurrence and development ; thus, targeted inflammatory intervention is a significant benefit for both 
cancer prevention and treatment. Therefore, metformin may have further potential for inflammation-related disease preven-
tion and treatmen. However, the inflammatory mechanism is complex; various molecules are connected and influence each 
other. For example, metformin significantly inhibits p65 nuclear translocation, but pretreatment with compound C, an AMPK 
inhibitor, abolishes this effect, and silencing of HMGB1 inhibits NF-κB activation . SIRT1 deacetylates FoxO, increasing 
its transcriptional activity . mTOR in dendritic cells regulates FoxO1 via AKT. The interactions among various molecules 
should be further explored to clarify their specific mechanisms and provide more direction for the treatment of inflammatory 
diseases, as well as cancer.
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Introduction

Metformin has been used since 1957 for the treatment of 
type 2 diabetes due to its good anti-hyperglycemic effec-
tiveness, but does not induce hypoglycemia,high safety, low 
cost, and low rate of adverse reactions, and has become the 
medication of choice for first-line treatment. In addition, it 
can reduce the complications caused by diabetes and has 
several benefits unrelated to blood-sugar control, such as 
prolonged life and reduced risk for cancer and cardiovascular 

events [1–6]. It inhibits the occurrence and progression of 
colorectal cancer [7, 8], improves the survival rate of endo-
metrial cancer patients [9], and reduces the incidence of 
breast cancer [10]. Regarding inflammatory diseases, met-
formin can target oxidative stress to downregulate transcrip-
tion factor NF-κB-mediated pro-inflammatory signaling and 
reduce mucosal damage in inflammatory bowel disease [11], 
improve rheumatic disease [12, 13], and inhibit the expres-
sion of pro-inflammatory factors in neuroinflammation [14]. 
Inflammation is a key component of tumorigenesis. For 
example, chronic inflammation is considered the underly-
ing mechanism causing DNA damage in gastric cancer [15]. 
However, the specific mechanisms of inflammation need fur-
ther exploration. The possible relevant mechanisms of the 
anti-inflammatory effects of metformin are reviewed below 
(Fig. 1).
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Suppression of pro‑inflammatory cytokine release

Pro-inflammatory cytokines are present at all stages of the 
inflammatory response and play important roles in the occur-
rence and development of inflammation. Metformin inhibits 
pro-inflammatory cytokine release to have anti-inflamma-
tory effects [16–21]. A study in rats of the potential pro-
tective effect of metformin on depression-like behavior and 
neuroinflammation induced by oxandrolone (OXA) showed 
that metformin reversed the upregulation of the pro-inflam-
matory factors interleukin 1 (IL-1) mRNA, IL-6 mRNA, 
and tumor necrosis factor alpha (TNF-α) mRNA in the 
hypothalamus and hippocampus [16]. Another study found 
that metformin inhibited IL-1-induced release of IL-6 and 
IL-8 and NF-κB activity, thereby hindering human blood-
vessel-wall inflammation [22]. It has been found to reverse 
the increased expression of the pro-inflammatory cytokines 

IL-17, IL-18, and IL-6 in mouse models of aldosterone-
induced myocarditis [20], and to inhibit the extracellular 
signal-regulated kinase 1/2-early growth response factor-1 
(ERK1/2-Egr-1) pathway in human monocytes, thereby sup-
pressing lipopolysaccharide (LPS)-induced TNF and tissue 
factor (TF) production and thus alleviating the induction 
effect of TNF on chemotaxis proteins and interleukins [23]. 
In a TBI model, metformin reduced ERK1/2 and p38 mito-
gen-activated protein kinase (p38 MAPK) phosphorylation 
levels [24], indicating that it may inhibit the inflammatory 
response induced by microglial activation via the NF-κB-
MAPK signaling pathway.

The release of NF-κB is a crucial initial step in inflam-
mation. NF-κB is an important nuclear transcription factor 
in cells that is involved in inflammatory, immune, and stress 
responses, as well as apoptosis regulation. Its overactiva-
tion is associated with many human diseases, such as rheu-
matoid arthritis, as well as inflammatory changes in heart 
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and brain diseases [22, 24]. Metformin inhibits the phos-
phorylation and nuclear translocation of the NF-κB subunit 
p65 and suppresses the degradation of its inhibitory protein 
I καB, causing NF-κB to be sequestered in the cytoplasm 
and unable to translocate to the nucleus to participate in 
inducing an inflammatory response [17, 18, 24, 25]. Most 
studies have shown that metformin promotes the synthesis 
of the anti-inflammatory factor IL-10 [16, 26]; however, one 
study [27] found that it and its analogues had no effect on 
IL-10 secretion, but reduced IL-12 p40 and IL-6 secretion. 
In addition, that study found that metformin significantly 
inhibited five plasma cytokines (CCL11, CCL22, IL-2, IL-4, 
and stromal-cell-derived factor 1). CCL11 is independent 
of BMI and diabetes, however, BMI is associated only with 
CCL22 and stromal-cell-derived factor 1αβ, indicating that 
the anti-inflammatory effect of metformin is partly inde-
pendent of its comprehensive control of blood sugar, lipids, 
and body weight.

Activation of adenosine 
5′‑monophosphate‑activated protein kinase

Adenosine 5′-monophosphate (AMP)-activated protein 
kinase (AMPK) is a highly conserved serine/threonine pro-
tein kinase that is closely associated with bioenergy metab-
olism regulation and is widely expressed in various cells. 
AMPK is a heterotrimeric serine/threonine kinase com-
posed of three subunits, one catalytic subunit and two regu-
latory subunits. The metformin-activated AMPK pathway 
mainly reduces the expression of inflammatory cytokines 
and chemokines, including CCL2, CXCL10, and CXCL11, 
by acting on various downstream proteins such as histone 
deacetylase (HDAC) and peroxisome-proliferator-activated 
receptor co-activation factor 1α (PGC-1α) [21, 28].

HDAC activation

Silent information regulation 2 homolog 1 (SIRT1) is an 
NAD+-dependent deacetylase with histone protein/protein 
as a substrate, and is a key enzyme associated with energy 
metabolism and lifespan signaling. Immunohistochemis-
try results have confirmed that AMPK activation increases 
p-SIRT1 expression levels, and knockdown of AMPK or use 
of the AMPK inhibitor compound C abolishes metformin 
activity [29]. This is consistent with numerous studies that 
found that metformin activates AMPK to upregulate SIRT1 
and has an anti-inflammatory effect [29–33]. SIRT1 inhib-
its transcriptionally active NF-κB [34, 35]. After pretreat-
ment with the SIRT1 activator, TNF-α-induced cellular 
NF-κB transcription is reduced. By contrast, pretreatment 
with SIRT1 inhibitor or HDAC I and II inhibitors increases 
TNF-α-induced NF-κB activity. Co-transfection experi-
ments that used p300 to acetylate RelA/p65 in vivo have 

revealed that SIRT1 directly deacetylates RelA/p65 lysine 
310 to act with the p65 subunit rather than p50 to repress 
NF-κB gene expression [34]. SIRT1 also positively activates 
AMPK. Lan et al. expressed the AMPK upstream kinase 
LKB1, wild-type SIRT1, and catalytically inactive SIRT1 in 
HEK293T cells. After wild-type SIRT1 activation with an 
activator, LKB1 acetylation was significantly reduced, how-
ever, inactive SIRT1 and shRNA knockout SIRT1 increased 
LKB1 acetylation several fold, with different LKB1 frag-
ments interacting with SIRT1, showing that SIRT1-mediated 
Lys-48 is a key site for upstream kinase LKB1 activation, 
phosphorylation, and cytosolic localization by AMPK [36]. 
In a study of the endotoxin-induced endothelial pro-inflam-
matory response [35], pretreatment of human umbilical 
vein endothelial cells (HUVECs) with metformin and the 
AMPK activator AIRCA phosphorylating AMPKα at threo-
nine 172 and serine 498 of HDAC5 induced nuclear export 
of phosphorylated HDAC5. Thus, metformin inhibited the 
upregulation of vascular cell adhesion molecule-1 (VCAM1) 
adhesion molecules induced by LPS and TNF-α and down-
regulation of Krupp-like factor 2 (KLF2), thus improving 
the endotoxemia-induced endothelial pro-inflammatory 
response. However, after AMPK knockdown, the inhibitory 
effect of metformin on inflammation was abolished.

PGC‑1α activation

PGC-1α is a class of nuclear co-activators and its expres-
sion is regulated by various factors. It interacts with multiple 
transcription factors to regulate the transcription efficiency 
of target genes and participates in activities including mul-
tiple mitochondrial metabolic pathways, immunity, and 
inflammation. Metformin activates the AMPK-PGC-1α 
pathway [37, 38]. Increasing or restoring PGC-1α inhibits 
inflammatory cytokines [37, 39–41]. Hang et al. [37] found 
that pAMPK/AMPK ratios varied in different regions of the 
mouse brain, being significantly higher in the ventral mid-
brain regions than in the cortex and other regions. They also 
found that levels of PGC-1α, a downstream target of AMPK, 
were well correlated with AMPK activity levels in different 
brain regions. In their study, PGC-1α significantly reduced 
the normally higher ventral midbrain pAMPK/AMPK ratio 
caused by parkin defects in the Parkinson’s disease (PD)-
related gene, and Paris, a negative regulator of PGC-1α, was 
upregulated. Metformin treatment significantly restored the 
pAMPK/AMPK ratio and PGC-1α levels in the ventral brain 
of deficient mice.

Metformin also restores the nuclear translocation level 
of PGC-1α [42]. Immunofluorescence and histochemical 
analyses have demonstrated that PGC-1α expression levels 
in microglia in the brains of humans and mice that have 
suffered an ischemic stroke are altered in a time-dependent 
manner and peak on the first day. To further determine the 
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role of PGC-1α in microglia, investigators have performed 
transient middle cerebral artery occlusion (tMCAO) sur-
gery after inducing PGC-1α overexpression in PGC-1α 
mice (mPGC-1α) and PGC-1αf/f mice (littermate control 
mice carrying the PGC-1α allele) and found that PGC-1α 
mediates neuroprotection after stroke. Quantification of 
40 cytokines/chemokines in microglia using protein-array 
analysis and verified by FACS analysis revealed that the 
levels of many pro-inflammatory cytokines such as IL-1, 
CCL5, IL-6, IL-17, and TNF-α, were significantly decreased 
and IL-1 maturation and release were mainly regulated by 
NLRP3, consistent with the suppression of NLRP3 activa-
tion in mPGC-1αmice. ChIP-Seq analysis and plasmid trans-
fection experiments have confirmed that PGC-1αand ERR 
jointly regulate ULK1 expression in microglia and reduce 
the expression of pro-inflammatory factors, thus inhibiting 
neuroinflammation [39].

Activation of the tumor suppressor gene p53

p53 is a tumor suppressor gene that normally monitors or 
slows cell division to keep it in the normal range. When it 
undergoes a mutation resulting in an altered spatial confor-
mation, it loses its regulatory effect and transforms into an 
oncogene. Recent studies have shown that p53 also plays a 
role in inflammation [43–47]. Metformin activates AMPK 
acting at p53 serine 15 and serine 20, enhancing p53 activ-
ity and having an anti-inflammatory effect [43]. Treatment 
of SKM-1 cells with metformin results in increased AMPK 
phosphorylation and p53 expression. Metformin-induced 
upregulation of p53 expression is attenuated after AMPK 
knockdown [48]. When comparing cytokine concentrations 
in streptomycin-induced diabetic mice without the p53 
gene and in wild-type mice, IL-6, IL-11, IL-12, and other 
pro-inflammatory factors are significantly increased in p53 
gene-deficient mice than in control mice. Knockout of the 
p53 gene in mice results in neutrophils and macrophages 
responding more frequently to LPS stimulation, showing 
stronger pro-inflammatory cytokine induction and NF-κB 
DNA binding activity [44]. The above studies showed that 
p53 expression is inversely associated with pro-inflamma-
tory factors [44, 45] and the regulation by metformin is 
inseparable from AMPK. Furthermore, p53 inhibits the 
activity of three different NF-κB binding sites, slowing its 
mediated transcription; NF-κB-induced cytokine-encoding 
gene expression is enhanced upon p53 failure [47]. In addi-
tion, it inhibits the transcriptionally active NF-κB by com-
peting for a complex of limited p300 and CREB-binding 
protein (CBP) coactivating proteins [46].

FoxO1 inhibition and FoxO3a activation

Both FoxO1 and FoxO3 are important members of the Fork-
head box protein (FoxO) family. Their activity is regulated 
by various modification processes such as phosphorylation 
and acetylation and both participate in a variety of physi-
opathological processes. Recently, several studies have 
shown that FoxO plays an important role in inflammation 
and immune cells [49–51]. However, FoxO family expres-
sion is mainly regulated by the AMPK signaling pathway 
[52–54]. After knockdown of FoxO1, the expression lev-
els of pro-inflammatory factors such as TNF-α, IL-1β, 
MIP2, and IFN-β significantly decreased [55] but signifi-
cantly increased with FoxO1 overexpression, leading to 
macrophage activation and promotion of the inflammatory 
response [56, 57]. In terms of macrophage apoptosis, inhibit-
ing FoxO1 activity promotes macrophage apoptosis and sup-
presses the inflammatory response [58]. FoxO1 activation 
promotes macrophage proliferation and the inflammatory 
response [59, 60]. FoxO3a directly enhances its own tran-
scriptional activity by phosphorylating AMPK. Knockdown 
of FoxO3a results in significantly increased NF-κB activity 
and inflammatory factors [61, 62]. FoxO3a also reduces the 
pro-inflammatory cytokine TNF-α and promotes the produc-
tion of anti-inflammatory cytokines such as IL-10 through 
protein–DNA interactions directly regulating transforming 
growth factor 1 (TGF-β1) and indirectly controlling TGF-
β1 [63].

Transcription factor 3 (ATF‑3) activation

ATF-3 has a leucine zipper structure and belongs to the ATF/
CREB family of transcription factors. It is a key regulator 
in the stress response and involved in various physiopatho-
logical processes. It negatively regulates the expression of 
pro-inflammatory genes [66, 67]. Expression of pro-inflam-
matory factors IL-6 and IL-8 is significantly upregulated 
in human bronchial epithelioid cells when lacking ATF-3, 
and nuclear expression of NF-κB p65 and p-p-p65 protein 
increase the degradation of p65 repressor IkBa and increase 
the levels of p-IkBa protein, indicating that ATF-3 plays a 
role in regulating p65 phosphorylation status [66]. Further-
more, ATF-3 directly binds to NF-κB p65 and inhibits the 
expression of inflammatory response cytokines induced by 
the NF-κB signaling pathway [64], or directly binds to the 
promoter regions of IL-6 and IL-12b to regulate the inflam-
matory response [67].

In LPS-induced inflammation in mouse macrophages, 
metformin increases ATF-3 expression and suppresses 
pro-inflammatory factors in a dose-dependent manner. 
After treatment with metformin, LPS-induced enrichment 
of NF-κB at the IL-6 and TNF-α promoter is replaced by 
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ATF-3. Furthermore, ATF-3 competes with NF-κB for the 
promoter binding of TNF-α and IL-6 to inhibit NF-κB sign-
aling. Knockdown of ATF-3 results in the inhibition of the 
phosphorylation of pro-inflammatory cytokines and abol-
ishes MAPK activity. Phosphorylation of threonine 172 is 
very important for AMPK activity; however, after knock-
down of AMPK, the effect of metformin on ATF-3 and 
pro-inflammatory factors is attenuated. In one study [65], 
leptin-deficient mice were used to model obesity and type 
2 diabetes. The mice were treated with oral metformin for 
3 weeks and the levels of pro-inflammatory cytokines and 
ATF-3 in plasma and tissues were analyzed. Significantly 
increased AMPK and significantly decreased plasma pro-
inflammatory cytokine levels were observed in treated mice 
compared to control mice. The above studies confirm that 
metformin has anti-inflammatory effects, at least in part, 
through AMPK-ATF-3-dependent mechanisms.

NLRP3 inflammasome inhibition

The NLRP3 inflammasome contains three domains: NYD, 
NACHT, and LRR. The inflammasome has a high-molec-
ular-weight multiprotein cytosolic assembly composed of 
receptors and sensors, an important component of innate 
immunity, and is closely associated with many diseases such 
as rheumatoid arthritis [68]. When stimulated by agonists, 
the NLRP3 inflammasome can activate caspase-1, thus 
promoting the maturation of cellular interleukins and other 
cytokines. Metformin affects the NLRP3 inflammasome 
mainly through the AMPK-dependent and AMPK-independ-
ent pathways. Yang et al. [69] found that metformin acts 
on the NLRP3 inflammasome through the AMPK/mTOR 
pathway and inhibits the recruitment and activation of the 
pro-inflammatory protein caspase-1 by NLRP3 inflamma-
some, thus preventing the conversion of IL-1 and IL-18 
precursors into mature cytokines. Furthermore, AMPK can 
activate autophagy-negative regulation to inhibit the NLRP3 
inflammasome [70]. In addition, the inhibition of the NLRP3 
inflammasome can be independent of the metformin-acti-
vated AMPK pathway, reduce DNA polymerase (DNA POL) 
activity by reducing the ATP content and inhibiting mito-
chondrial DNA (mt-DNA) synthesis, reduce the cytosol of 
oxidized mt-DNA (Ox-mtDNA), and inhibit NLRP3 inflam-
masome activation as well as caspase-1 and IL-1β cleavage 
and release [71].

Mammalian target of rapamycin signaling pathway 
inhibition

Mammalian target of rapamycin (mTOR) is a class of 
filament/threonine kinase and has an important role in 
eukaryotic cell signaling. Cytokine expression in T cells is 
affected by mTOR stability. mTOR participates in immune 

suppression, affecting transcription and protein synthesis, 
and is an important regulator of cell growth, proliferation, 
and the immune response, mainly acting through the forma-
tion of the mTORC1 and mTORC2 complexes. Metformin 
has been widely recognized as an anti-inflammatory agent 
that acts through the AMPK-mTOR pathway [69, 72–74]. 
It directly modulates mTOR [75, 76] independently of the 
AMPK pathway, but may be dependent on the ability of Rag 
GTPases to induce the transfer of mTORC1 to the intracel-
lular lumen occupied by Rheb. Therefore, direct inhibition 
of mTORC1 signaling inhibits inflammation [75].

High‑mobility group box 1 protein inhibition

High-mobility group box 1 (HMGB1) contains three major 
functional domains: an A-box domain at the N-terminal, a 
B-box domain with cytokine activity at the middle, and the 
C-terminal, an acidic tail domain composed of 30 acidic 
amino acids [77]. Horiuchi et al. [78] studied metformin 
in vitro and in vivo using a compound containing a met-
formin-like structure for affinity chromatography; mass 
spectrometry showed that the HMGB1 protein bound to 
metformin. Furthermore, full-length HMGB1, three func-
tional domains, A-free junction and acid-free HMGB1 
recombinant protein were obtained for pulldown experi-
ments. The HMGB1 mutants containing an acidic tail 
structure clearly bound to the compound whereas mutants 
lacking the acidic tail did not. The association between 
recombination of full-length HMGB1 and the compound 
was concentration-dependently inhibited only in the pres-
ence of the acidic tail mutants. The results confirm that 
metformin binds directly to the acidic tail of the C termi-
nal end of HMGB1, thereby inhibiting p38 phosphoryla-
tion and the cytokine-like activity of HMGB1.

The high-mobility family protein B1, a multifunctional 
protein jointly involved with DNA in the regulation of 
gene expression, is also an alarm protein for cellular 
inflammation that induces the inflammatory response 
through its cytokine-like activity [78–81]. In one study 
[82], the development of neuroinflammatory responses 
was monitored using magnetic resonance imaging (MRI) 
and immunohistochemistry after injecting a single redox 
isoform of HMGB1 directly into the cerebral cortex. The 
results indicated that disulfide HMGB1 (ds-HMGB1) and 
complete reduction of HMGB1 (fr-HMGB1) acted as pro-
inflammatory mediators that promoted blood–brain bar-
rier disruption and a local inflammatory response. Tar-
geting HMGB1 can alleviate a variety of disease injuries 
[78, 83–85] such as sepsis-induced acute liver, kidney, 
and lung injuries. The use of anti-HMGB1 monoclonal 
antibodies inhibits the activation of parkinsonian micro-
glia and the expression of inflammatory cytokines such 
as IL-1 and IL-6 [80], alters murine sepsis models and 
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early inflammatory factor profiles, improves the sepsis 
survival rate [86], and blocks the activation of NF-κB, 
p38, and Erk1/2 [81]. HMGB1 is associated with toll-
like receptor (TLR) [79, 87–89], late glycosylation end 
product receptor (RAGE) [90], C-X-X motif chemokine 
receptor 4 (CXCR4), and N-methyl-d-aspartate receptor 
(NMDAR), which play important roles in inflammation 
[91]. HMGB1 also binds to the complement system C1q 
to activate the classical pathway in an antibody-independ-
ent manner, exacerbating the sterile inflammatory envi-
ronment [92]. Furthermore, metformin inhibits HMGB1 
mRNA expression and nuclear translocation to hinder the 
associated inflammatory response [93, 94]. In rabbit AF 
stem cells, LPS-induced HMGB1 release from the nucleus 
to the cytoplasm causes increased release of inflammatory 
cytokines, and treatment with metformin inhibits HMGB1 
nuclear translocation and the expression of inflammatory 
factors TNF-α, IL-6, IL-1, and I L-1β [93].

Oxidative stress pathway inhibition

Oxidative stress and inflammation are interrelated pro-
cesses; oxidative stress is an imbalance between oxidation 
and antioxidant effects in the body. When the antioxidant 
system cannot adequately act on reactive oxygen clusters, 
a large number of oxidation intermediates emerge, such as 
leukotriene (LT), thromboxane A2 (TXA2), and other pro-
inflammatory mediators. Reactive oxygen clusters degrade 
the inhibitory subunit IκBα of NF-κB leading to increased 
release of NF-κB to promote inflammation [94–96]. Met-
formin has anti-inflammatory effects through antioxidants 
[20, 79, 97]. Alhaider et  al. [79] found that metformin 
restores the mRNA levels of antioxidant genes such as 
GST, NQO1, and CAT in a streptomycin-induced rat dia-
betic nephropathy model, thus inhibiting the expression of 
TNF-α and IL-6 pro-inflammatory genes. Metformin inhibits 
the aldosterone-induced oxidative stress response, silences 
the cytoplasmic adaptor molecule TRAF31 interacting pro-
tein 2 (TRAF3IP2) in the oxidative stress response, and 
inhibits the expression of pro-inflammatory factors such as 
IL-6, IL-17, and IL-18 [20]. Metformin reduces the pro-
duction of reactive oxygen species and pro-inflammatory 
factors caused by multiple pathways,such as hyperglycemia-
triggered mitochondrial dysfunction, generation of advanced 
glycation end-products(AGEs) and the activation of protein 
kinases (PKC), improves endothelial dysfunction and car-
diac function, and slows down diabetes-related cardiovas-
cular events[4, 5].

Conclusion

Metformin has anti-inflammatory effects through multi-
ple routes, which provides potential therapeutic targets for 
certain inflammatory diseases, such as neuroinflammation 
and rheumatoid arthritis. In addition, inflammation is a key 
component of tumor occurrence and development [98–102]; 
thus, targeted inflammatory intervention is a significant 
benefit for both cancer prevention and treatment. There-
fore, metformin may have further potential for inflamma-
tion-related disease prevention and treatmen. However, the 
inflammatory mechanism is complex; various molecules 
are connected and influence each other. For example, met-
formin significantly inhibits p65 nuclear translocation, but 
pretreatment with compound C, an AMPK inhibitor, abol-
ishes this effect, and silencing of HMGB1 inhibits NF-κB 
activation [77, 85]. SIRT1 deacetylates FoxO, increasing its 
transcriptional activity [103]. mTOR in dendritic cells regu-
lates FoxO1 via AKT [104]. The interactions among various 
molecules should be further explored to clarify their specific 
mechanisms and provide more direction for the treatment of 
inflammatory diseases, as well as cancer.
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