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bind Fe2+ or Fe3+ ions, however Lf has the ability to revers-
ibly bind Fe3+, and then it is found free of Fe3+ (Apo-Lf) or 
associated with Fe3+ (Holo-Lf). The binding of Fe2+ or Fe3+ 
to Lf generates a different three-dimensional conforma-
tion of the protein [5, 6]. Lf has a high homology between 
species, transport iron in blood serum and is produced and 
secreted by mucosal epithelial cells in a variety of mam-
malian species including cows, goats, horses, humans and 
some rodents [5]. Moreover, Lf is present in mucosal secre-
tions and body fluids, such as saliva, tears, vaginal fluids, 
semen, blood plasma, amniotic fluid and is abundant in milk 
and colostrum [7, 8].

Lf has antimicrobial activity against a variety of bacteria, 
fungi, yeast, virus and parasites, and regulates the absorp-
tion of iron and modulates the immune system [9–12]. 
Moreover, Lf has protective effects in gastrointestinal can-
cers, such as cancer of colon, stomach, liver and pancreas. 
Particularly, Lf inhibits proliferation and Akt activation in 
SGC-7901 stomach cancer cells, whereas bovine Lf (BLf) 
from milk decreases viability and proliferation and increase 

Introduction

Breast cancer is the most common invasive cancer in 
developed countries and the leading cause of death among 
women worldwide [1]. The highest incidence of breast can-
cer occurs in high-income countries. However, an increase 
of breast cancer has been reported in low- to middle-income 
countries, which is the consequence of a variety of factors 
including the age and lifestyle changes, such as dietary fac-
tors [2–4].

Lactoferrin (Lf) is an iron-binding glycoprotein of 
80 kDa constituted for a single polypeptide chain, which is 
folded into two symmetrical lobes that are connected by a 
hinge region constituted for α-helix regions. The lobes of Lf 
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Abstract
Purpose Breast cancer is the most common malignancy in developed countries and the main cause of deaths in women 
worldwide. Lactoferrin (Lf) is an iron-binding protein constituted for a single polypeptide chain that is folded into two sym-
metrical lobes that bind Fe2+ or Fe3+. Lf has the ability to reversibly bind Fe3+ and is found free of Fe3+ (Apo-Lf) or associ-
ated with Fe3+ (Holo-Lf) with a different three-dimensional conformation. However, the role of bovine Apo-Lf (Apo-BLf) 
and bovine Holo-Lf (Holo-BLf) in the migration and invasion induced by linoleic acid (LA) and fetal bovine serum (FBS), 
as well as in the expression of mesenchymal and epithelial proteins in breast cancer cells has not been studied.
Methods and results Scratch wound assays demonstrated that Holo-BLf and Apo-BLf do not induce migration, however 
they differentially inhibit the migration induced by FBS and LA in breast cancer cells MDA-MB-231. Western blot, invasion, 
zymography and immunofluorescence confocal microscopy assays demonstrated that Holo-BLf partly inhibit the invasion, 
FAK phosphorylation at tyrosine (Tyr)-397 and MMP-9 secretion, whereas it increased the number and size of focal adhe-
sions induced by FBS in MDA-MB-231 cells. Moreover, Holo-BLf induced a slight increase of E-cadherin expression in 
MCF-7 cells, and inhibited vimentin expression in MCF-7 and MDA-MB-231 breast cancer cells.
Conclusion Holo-BLf inhibits cellular processes that mediate the invasion process in breast cancer cells.
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apoptosis in breast cancer cells HS578T and T47D [13–15]. 
Human Lf induces arrest at G1 to S transition of cell cycle, 
inhibition of Cdk2 kinase activity, Rb hypophosphorylation 
and reduction of Cdk2 and cyclin E protein levels in breast 
cancer cells MDA-MB-231 [16, 17]. However, the role of 
Apo-BLf and Holo-BLf in the inhibition of migration and 
invasion induced by linoleic acid (LA) and fetal bovine 
serum (FBS) in breast cancer cells has not been studied.

We demonstrate here that Holo-BLf and Apo-BLf dif-
ferentially inhibit migration induced by FBS and LA in 
breast cancer cells MDA-MB-231. Holo-BLf partly inhibit 
invasion, FAK phosphorylation at tyrosine (Tyr)-397 and 
metalloproteinase (MMP)-9 secretion, and it also increases 
the number and size of focal adhesions induced by FBS in 
MDA-MB-231 cells. Moreover, Holo-BLf induces a slight 
increase of E-cadherin expression in MCF-7 cells, and 
inhibits vimentin expression in MCF-7 and MDA-MB-231 
breast cancer cells.

Materials and methods

Materials

Apo-BLf (97% purity) was from NutriScience Innova-
tions, LCC (Connecticut, USA). LA sodium salt and tet-
ramethylrhodamine (TRITC)-conjugated phalloidin were 
from Sigma-Aldrich (St. Louis MO, USA). Anti-vimentin 
antibody (Ab), anti-E-cadherin Ab and anti-focal adhesion 
kinase (FAK) Ab were from Santa Cruz Biotechnology 
(Sta. Cruz, CA, USA). Anti-paxillin Ab was from Abcam® 
(Waltham, MA, USA). Phospho-specific Ab to tyrosine 
(Tyr)-397 of FAK (anti-FAK-p-Tyr397) was from Invitro-
gen (Camarillo, CA, USA). Anti-actin Ab was from R&D 
Systems, Inc (Minneapolis, MN, USA). FBS was from 
ByProductos (Mexico).

Preparation of Holo-BLf

Holo-BLf was obtained by saturation of Apo-BLf with iron 
according to a method previously described [18]. Quantifi-
cation of iron in Holo-BLf was determined by an enzymatic 
automated method, (MicroTech Laboratories, Mexico), and 
it was of 93%.

Cell lines and culture

Human breast cancer cells MDA-MB-231 and MCF-7 were 
acquired from American Type Culture Collection (ATCC). 
Cells were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) complemented with 5% FBS, 3.7 g/l sodium 
bicarbonate and antibiotics. Cultures were incubated under 

a humidified atmosphere with 5% CO2 and 95% air at 37 ºC. 
MDA-MB-231 cells were starved with DMEM without FBS 
for 24 h, and MCF-7 cells were starved in DMEM without 
FBS for 18 h before treatment with BLf, FBS and/or LA.

Cell stimulation

Cultures of MDA-MB-231 and MCF-7 cells were washed 
twice with phosphate-buffered saline (PBS), equilibrated in 
DMEM for 30 min and then untreated or treated with Apo-
BLf, Holo-BLf, FBS or LA. After stimulation, conditioned 
media were obtained and cells were solubilized in 500 µl 
ice-cold RIPA buffer (50 mM HEPES pH 7.4, 150 mM 
NaCl, 1 mM EGTA, 1 mM sodium orthovanadate, 100 mM 
NaF, 10 mM sodium pyrophosphate, 10% glycerol, 1% Tri-
ton X100, 1% sodium deoxycholate, 1.5 mM MgCl2, 0.1% 
SDS and 1 mM PMSF). Protein concentration of lysates 
was determined by the micro-Bradford protein assay (Bio-
Rad, USA).

Western blot (WB)

Proteins were separated by using 10% SDS-PAGE separat-
ing gels, and then proteins were transferred to nitrocellu-
lose membranes. Membranes were blocked with 5% non-fat 
dried milk in PBS pH 7.2/0.1% Tween 20 (wash buffer) for 
2 h at room temperature. Primary Abs were incubated with 
membranes overnight at 4 ºC, and washed three times with 
wash buffer. Secondary Abs conjugated to horseradish per-
oxidase were incubated with membranes for 2 h at room 
temperature and were washed three times with wash buffer. 
Immunoreactive bands were visualized using WB luminol 
reagent and an autoradiography film. Autoradiograms were 
scanned and bands were analyzed by using the ImageJ soft-
ware v. 1.52e (NIH, USA).

Scratch-wound assay

Cell cultures were treated with 12 µM mitomycin C for 2 h 
to inhibit proliferation. Cultures were scratched, washed 
with PBS and supplemented with serum-free DMEM with-
out or with BLf, FBS and LA for 48 h at 37 ºC. Cultures 
were photographed with an inverted microscope coupled to 
a camera. Images from at least three fields per experimen-
tal condition were obtained and analyzed using the ImageJ 
software v. 1.52e (NIH, USA).

Invasion assays

Inserts of 24-well plates were covered with 30 µl Matrigel 
(3 mg/ml) and incubated overnight at 37 ºC. MDA-MB-231 
cells (1 × 105) in FBS-free DMEM were plated on Matrigel 
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of each insert (Upper chamber). Lower chamber contained 
600 µl DMEM without or with Holo-BLf and/or FBS. Plates 
were incubated for 48 h at 37 °C under a humidified atmo-
sphere with 5% CO2 and 95% air. After incubation, cells and 
Matrigel on the upper surface of membranes were removed 
with cotton swabs, and cells on the lower surface of mem-
branes were washed with PBS and fixed with methanol at 
room temperature for 5 min. Quantification of invaded cells 
was obtained by staining of membranes with a solution of 
crystal violet (0.5%) for 15 min at room temperature and 
elution of dye with 300 µl acetic acid (10%). Absorbance of 
samples was measured at 600 nm.

Zymography

Conditioned media were obtained and concentrated with 
3,000 NMWL Amicon Ultra Centrifugal filters (Merck Mil-
lipore). Equal volumes of non-heated conditioned medium 
and sampler buffer (2% sucrose ,2.5% SDS, 4 µg/ml phenol 
red) were mixed and loaded into 8% polyacrylamide gels 
copolymerized with gelatin (1 mg/ml). Electrophoresis was 
performed at 72 V for 2 h and gels were rinsed three times 
with 2.5% Triton X-100 for 30 min, and incubated in assay 
buffer (50 mM Tris–HCl pH 7.4, 5 mM CaCl2) at 37 °C for 
48 h. Gels were fixed and stained with developer solution 
(0.125% Coomassie Brilliant Blue G-250, 50% acetic acid, 
10% methanol). Proteolytic activity was identified as clear 
bands against the background stain of undigested substrate. 
Controls of MMP-2 and MMP-9 secretion were obtained by 
treatment of MDA-MB-231 cells with 400 mg/dl ethanol 
or 100 ng/ml PDB for 24 h at 37 ºC respectively [19, 20]. 
Controls were included.

Immunofluorescence confocal microscopy

MDA-MB-231 cells were grown on coverslips, washed 
with PBS, equilibrated in FBS-free DMEM for 30 min and 
treated with Holo-BLf and/or FBS for 20 min at 37 °C. Cells 
on coverslips were fixed with 4% paraformaldehyde for 
20 min, permeabilized with 0.5% Triton X-100 for 20 min 
and blocked with gelatin solution (0.5% gelatin, 1 mM 
CaCl2, 0.5 mM MgCl2) for 20 min at room temperature. 
Staining was performed by incubation of cells on conver-
slips with anti-paxillin Ab (1:1000) for 12 h at 4 °C fol-
lowed by FITC-labeled anti-mouse secondary Ab for 2 h at 
room temperature. Fibrillar actin was stained by incubation 
of cells with TRITC-conjugated phalloidin for 2 h at room 
temperature. Cells were mounted on glass slides with Vecta-
shield and analyzed by confocal microscopy (Model TCS 
SP2; Leica Microsystems, Inc). Analysis of images was per-
formed by using the ImageJ software v. 1.52e (NIH, USA).

Statistical analysis

Data are expressed as mean ± SD of at least three inde-
pendent experiments. Analysis of data was performed by 
one-way ANOVA and Dunnett’s multiple comparison test. 
Statistical probability of P < 0.05 was considered significant.

Results

BLf does not induce migration in MDA-MB-231 
breast cancer cells

We determined whether Holo-BLf and Apo-BLf induced 
migration in breast cancer cells MDA-MB-231. Cultures of 
MDA-MB-231 cells were scratch-wounded and untreated 
or treated for 48 h with increasing concentrations of Holo-
BLf or Apo-BLf. As illustrated in Fig. 1 A and B, treatment 
with Holo-BLf and Apo-BLf did not induce migration in 
breast cancer cells MDA-MB-231.

BLf inhibits migration induced by FBS

Since Holo-BLf and Apo-BLf did not induce migration, we 
studied whether Holo-BLf and Apo-BLf inhibited migration 

Fig. 1 BLf does not induce migration in MDA-MB-231 breast cancer 
cells. a and b Migration assays of MDA-MB-231 cells treated with 
increasing concentration of Holo-BLf and Apo-BLf. One positive con-
trol of migration was included (FBS). Graphs are the mean ± S.D. of at 
least three independent experiments, and indicate the fold of migration 
above unstimulated cells (Control, Ctrl) value
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BLf inhibits invasion induced by FBS

Since, Holo-BLf inhibited migration to basal levels, we 
determined whether Holo-BLf inhibited invasion and secre-
tion of MMP-2 and MMP-9 induced by FBS. Invasion 
assays were performed with MDA-MB-231 cells cotreated 
with 2500 nM Holo-BLf and 5% FBS for 48 h. Results 
demonstrated that treatment with Holo-BLf partly inhibited 
invasion induced by FBS (Fig. 4 A).

We determined whether Holo-BLf inhibited MMP-2 
and MMP-9 secretion induced by FBS. Cultures of MDA-
MB-231 cells were cotreated with 2500 nM Holo-BLf and 
5% FBS for 48 h, and conditioned media were obtained. 
Secretion of MMP-2 and MMP-9 was analyzed by gelatin 
zymography of conditioned media. Findings showed that 
treatment with Holo-BLf partly inhibited the secretion of 
active MMP-9 induced by FBS in MDA-MB-231 cells. In 
contrast, treatment with Holo-BLf did not inhibit secre-
tion of Pro-MMP-9 and MMP-2 induced by FBS in MDA-
MB-231 cells (Fig. 4B).

induced by FBS. Cultures of MDA-MB-231 cells were 
scratch-wounded and treated without or with 5% FBS and 
increasing concentrations of Holo-BLf or Apo-BLf for 48 h. 
Results showed that treatment with Holo-BLf and Apo-BLf 
partly inhibited the migration induced by FBS in MDA-
MB-231 cells. Particularly, treatment with 2500 nM Holo-
BLf inhibited FBS-induced migration by ∼90%, whereas 
treatment with 2500 nM Apo-BLf inhibited FBS-induced 
migration by ∼50% in MDA-MB-231 cells (Fig. 2 A and B).

BLf inhibits migration induced by LA

LA induces migration and invasion of MDA-MB-231 cells 
[21, 22]. We determined whether Holo-BLf and Apo-BLf 
inhibited migration induced by LA. Cultures of MDA-
MB-231 cells were scratch-wounded and treated without or 
with 90 µM LA and increasing concentrations of Holo-BLf 
or Apo-BLf for 48 h. Findings demonstrated that treatment 
with 125 nM and 1250 nM Holo-BLf inhibited LA-induced 
migration by 90%, whereas treatment with 2500 nM Holo-
BLf inhibited LA-induced migration to basal levels in 
MDA-MB-231 cells. Moreover, treatment with 1250 nM 
and 2500 nM Apo-BLf inhibited LA-induced migration by 
50% in MDA-MB-231 cells (Fig. 3 A and B).

Fig. 3 BLf inhibits migration induced by LA. a and b Migration assays 
of MDA-MB-231 cells cotreated with increasing concentrations of 
Holo-BLf and Apo-BLf and 90 µM LA. One positive control of cell 
migration was included (FBS). Graphs represent the mean ± S.D. of at 
least three independent experiments, and indicate the fold of migration 
above Ctrl value. **P < 0.01. ****P < 0.0001

 

Fig. 2 BLf inhibits migration induced by FBS. a and b Migration 
assays of MDA-MB-231 cells cotreated with increasing concentra-
tions of Holo-BLf and Apo-BLf and 5% FBS. One positive control of 
migration was included (FBS). Graphs represent the mean ± S.D. of at 
least three independent experiments, and indicate the fold of migration 
above Ctrl value. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Fig. 4 BLf inhibits invasion and the expression of mesenchymal 
proteins. a Invasion assays of MDA-MB-231 cells cotreated with 
2500 nM Holo-BLf and 5% FBS. One positive control of invasion 
was included (FBS). b Analysis of MMP-2 and MMP-9 secretion 
from MDA-MB-231 cells cotreated with 2500 nM Holo-BLf and 5% 

FBS. Positive controls of MMP-2 (EtOH) and MMP-9 (PDB) were 
included. c Analysis of E-cadherin and vimentin expression in lysates 
from MDA-MB-231 and MCF-7 cells treated with 125 nM and 1250 
nM Holo-BLf. Graphs represent the mean ± S.D. of at least three inde-
pendent experiments, and indicate the fold of invasion or MMP-2 and 
− 9 secretion above Ctrl value. **P < 0.01, ***P < 0.001, ***P < 0.001
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determination of its phosphorylation at Tyr-397. MDA-
MB-231 cells were treated for 1 h with 1250 nM Holo-BLf 
and then cells were stimulated with 5% FBS for 60 min and 
lysed. Cell lysates were analyzed by WB with anti-FAK-
p-Tyr397 Ab and anti-actin Ab as loading control. Results 
demonstrated that Holo-BLf partly inhibited FAK phos-
phorylation at Tyr-397 induced by FBS in MDA-MB-231 
cells (Fig. 5 A).

Next, we studied whether Holo-BLf inhibited the forma-
tion of focal adhesions induced by FBS. Focal adhesions 
were analyzed by immunofluorescence analysis of paxillin, 
because the paxillin protein is concentrated in focal adhe-
sions [24]. MDA-MB-231 cells cultured on coverslips were 
treated without or with 1250 nM Holo-BLf for 1 h and stim-
ulated with 5% FBS for 20 min. Results showed that FBS 
induced the assembly of focal adhesions, whereas treatment 
with Holo-BLf and FBS increased the number and size of 
focal adhesions in MDA-MB-231 cells (Fig. 5B).

BLf regulates the expression of mesenchymal 
markers associated with the epithelial to 
mesenchymal transition (EMT) process

EMT process involves migration, invasion and secretion 
of MMPs [23]. We studied whether Holo-BLf regulates 
the expression of the epithelial protein E-cadherin and the 
mesenchymal protein vimentin in breast cancer cells. MDA-
MB-231 and MCF-7 breast cancer cells were treated with 
125 nM and 1250 nM Holo-BLf for 24 h and cells were lysed. 
Cell lysates were analyzed by WB with anti-E-cadherin Ab, 
anti-vimentin Ab and anti-actin Ab as loading control. Find-
ings showed that treatment with Holo-BLf induced a slight 
increase of E-cadherin expression in MCF-7 cells, however 
Holo-BLf did not induce E-cadherin expression in MDA-
MB-231 cells. In contrast, treatment with 125 nM Holo-BLf 
partly inhibit vimentin expression in MCF-7 cells, and 1250 
nM Holo-BLf completely inhibited expression of vimentin 
in MCF-7 and MDA-MB-231 cells (Fig. 4 C).

BLf promotes the formation of focal adhesions

We studied whether Holo-BLf regulates FAK activa-
tion induced by FBS. FAK activation was analyzed by 

Fig. 5 BLf inhibits FAK activation and induces assembly of focal 
adhesions. a Analysis of FAK-p-Tyr397, FAK and actin in lysates 
from MDA-MB-231 cells cotreated with 2500 nM Holo-BLf and 5% 
FBS b Immunofluorescence analysis of paxillin (green) and F-actin 
(red) in MDA-MB-231 cells cotreated with 2500 nM Holo-BLf and 

5% FBS. Graph represents the mean ± S.D. of at least three indepen-
dent experiments, and indicates the fold of FAK phosphorylated at 
Tyr397 (p-FAk) above Ctrl value. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001
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mesenchymal properties, and then the ability to execute the 
steps implicated in invasion and metastasis [23]. EMT pro-
cess is mediated by the loss of apico-basal polarity, disas-
sembly of adherens junctions, MMPs secretion, expression 
of mesenchymal proteins including vimentin, N-cadherin, 
α-smooth muscle actin, myosin isoforms, fibronectin and 
FSP-1, and the loss of epithelial characteristics, such as 
downregulation of E-cadherin expression [23, 35]. In this 
study, we analyzed MCF-7 breast cancer cells because 
they are non-invasive with a low metastatic potential that 
still have epithelial characteristics including expression of 
E-cadherin, estrogen and progesterone receptors. However, 
MCF-7 cells express some mesenchymal markers, such as 
vimentin. In contrast, MDA-MB-231 breast cancer cells are 
invasive with high metastatic potential and have mesenchy-
mal characteristics, such as the expression of vimentin and 
the absence of E-cadherin, estrogen and progesterone recep-
tors expression [36–38]. We demonstrate that Holo-BLf 
induces downregulation of vimentin expression in MDA-
MB-231 and MCF-7 cells. Moreover, Holo-BLf induces a 
slight increase of E-cadherin expression in MCF-7 cells, 
however it does not induce E-cadherin expression in MDA-
MB-231 cells. We propose that treatment with Holo-BLf 
promotes the expression of epithelial characteristics in 
breast cancer cells, such as the expression of E-cadherin 
and downregulation of vimentin, and then Holo-BLf is able 
to inhibit the EMT process in breast cancer cells. Support-
ing our proposal, Holo-BLf induces a higher inhibition of 
vimentin expression than Apo-BLf in human glioblastoma 
GL-15 cells, whereas high concentrations of BLf (10 and 
100 µg/ml) induce upregulation of E-cadherin expression 
and downregulation of vimentin expression in malignant 
oral squamous carcinoma cells HOC3313 [39, 40].

EMT induces the activation of signal transduction path-
ways that mediate the invasion process through extracellu-
lar matrix. Particularly, EMT induces a variety of specific 
cellular processes, including migration, invasion, focal 
adhesion assembly and secretion of some MMPs, includ-
ing MMP-2 and MMP-9 (gelatinases) [35]. We demonstrate 
that Holo-BLf partly inhibits invasion and MMP-9 secretion 
induced by FBS in MDA-MB-231 cells. In agreement with 
our findings, BLf partly inhibits invasion in HOC3313 and 
SCCVII oral squamous carcinoma cells [39]. Our findings 
support the proposal that Holo-BLf inhibits the EMT pro-
cess in breast cancer cells.

Focal adhesions are structures wherein integrin receptors 
mediate the interaction between the actin cytoskeleton of 
cells and the extracellular matrix. The composition of focal 
adhesion is varied and includes scaffolding proteins, adaptor 
proteins, GTPases, phosphatases and kinases, such as FAK 
and Src [41, 42]. FAK is a protein tyrosine kinase of 125 kDa, 
which is activated by a variety of agonists and regulates cell 

Discussion

Metastasis is a process that implicate the dissemination of 
cancer cells from primary tumors to distant organs in adeno-
carcinomas, and it requires the migration and invasion of 
cancer cells into adjacent tissues and then intravasation into 
blood and/or lymphatic vessels [25, 26]. Therefore, migra-
tion and invasion play a pivotal role in metastasis. BLf (1 
µM) enhances migration of WI-38 human fetal fibroblasts, 
whereas recombinant human Lf (50–200 µg/ml) induces 
migration of human dermal fibroblasts [27, 28]. In contrast, 
we demonstrate that Holo-BLf and Apo-BLf do not induce 
migration in MDA-MB-231 breast cancer cells. Since, 
human fetal fibroblasts WI-38 and human dermal fibroblasts 
are not cancerous cells, we propose that BLf induces migra-
tion in non-cancer cells but it does not induce migration in 
breast cancer cells.

An association between diets containing high levels of 
omega-6 polyunsaturated fatty acids, particularly LA, and 
an increased risk of developing breast cancer has been sug-
gested [29–32]. LA is an essential fatty acid and represents 
the main polyunsaturated fatty acid in most Western diets, 
and these diets increase the risk for development of chronic 
diseases [29]. Particularly, LA induces FAK and PLD acti-
vation, migration and invasion via a FFAR1-, FFAR4- and 
PI3K/Akt-dependent pathway in MDA-MB-231 cells [21, 
22, 33]. We demonstrate that treatment with 2500 nM Holo-
BLf completely inhibit the migration induced by LA, whereas 
treatment with 2500 nM Holo-BLf inhibit the migration 
induced by FBS by ∼90% in MDA-MB-231 cells. How-
ever, treatment with 2500 nM Apo-BLf inhibit the migra-
tion induced by LA and FBS by ∼50% in MDA-MB-231 
cells. Since, Apo-BLf and Holo-BLf have a different three-
dimensional conformation depending on its binding to Fe3+ 
[5], our results demonstrate that Holo-BLf conformation 
has a bigger capacity than Apo-BLf conformation to inhibit 
migration induced by FBS and LA in MDA-MB-231 breast 
cancer cells. In contrast, it has been reported that treatment 
with 10 nM Apo-BLf has a bigger capacity than Holo-BLf 
to inhibit migration induced by FBS in MDA-MB-231 and 
MCF-7 breast cancer cells [34]. We propose that Apo-BLf 
and Holo-BLf and their different concentrations used in the 
different studies show different capacities of inhibition of 
specific cell processes in breast cancer cells. Supporting our 
proposal, Holo-BLf has a bigger capacity than Apo-BLf 
to inhibit proliferation induced by FBS in MDA-MB-231 
cells, whereas Holo-BLf and Apo-BLf inhibit proliferation 
induced by FBS to similar levels in MCF-7 cells [34]. More-
over, Apo-BLf is more cytotoxic than Holo-BLf in MDA-
MB-231 and MCF-7 cells [34].

EMT is a cellular process implicated in tumor progres-
sion, because through EMT the epithelial cells acquire 
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spreading, differentiation, proliferation, migration, invasion 
survival and angiogenesis [43, 44]. FAK activation is given 
by its phosphorylation at Tyr-397, which is a binding site 
for SH2 domains of proteins including Src family kinases. 
Particularly, formation of FAK/Src complex, mediated by a 
SH2 domain, participates in the regulation of assembly and 
disassembly of focal adhesions, and then it mediates migra-
tion, invasion, and then the EMT process [43, 45, 46]. We 
demonstrate that Holo-BLf inhibits phosphorylation of FAK 
at Tyr-397, and promotes an increase in the number and size 
of focal adhesions induced by FBS in MDA-MB-231 cells. 
We propose that Holo-BLf induces inhibition of migration 
and invasion through inhibition of FAK activation and the 
inactivation of proteins that participate in the disassembly 
of focal adhesions. Supporting our proposal, a peptide cor-
responding to residues 17–25 of BLf induces paxillin tyro-
sine phosphorylation in intestinal epithelial cells IEC-6 [47]. 
These findings support our proposal that Holo-BLf inhibits 
the EMT process in breast cancer cells.

In conclusion, our findings demonstrate Holo-BLf exhibit 
a higher capacity of inhibition of migration than Apo-BLf in 
MDA-MB-231 breast cancer cells. In addition, Holo-BLf 
inhibits migration and invasion in MDA-MB-231 cells, and 
the expression of epithelial characteristics in MDA-MB-231 
and MCF-7 cells. We propose that Holo-BLf inhibit the 
EMT process in breast cancer cells.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s11033-
022-07943-8.

Acknowledgements We are grateful to Nora Ruiz for her technical 
assistance.

Author contributions N R-O, K R-R: design, conduction, data analy-
sis, methodology, validation and manuscript preparation. P C-R, MG, 
EPS: Conceptualization, Methodology, Writing-Review and editing, 
Project administration, Funding acquisition, Visualization, Supervi-
sion.

Funding This research was funded by CONACYT (255429), Mexico. 
Grants from CONACYT supported N R-O and K R-R.

Declarations

Ethical approval This article does not contain any studies with human 
participants or animals performed by any of the authors.

Conflict of interest The authors declare that they have no conflicts of 
interests.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A 
(2018) Global cancer statistics 2018: GLOBOCAN estimates of 

1 3

200

http://dx.doi.org/10.1007/s11033-022-07943-8
http://dx.doi.org/10.1007/s11033-022-07943-8


Molecular Biology Reports (2023) 50:193–201

37. Dai X, Cheng H, Bai Z, Li J (2017) Breast Cancer Cell Line Clas-
sification and Its Relevance with Breast Tumor Subtyping. J Can-
cer 8:3131–3141

38. Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells 
re-express E-cadherin during mesenchymal to epithelial reverting 
transition. Mol Cancer 9:179

39. Chea C, Miyauchi M, Inubushi T, Okamoto K, Haing S, Nguyen 
PT, Imanaka H, Takata T (2018) Bovine lactoferrin reverses 
programming of epithelial-to-mesenchymal transition to mesen-
chymal-to-epithelial transition in oral squamous cell carcinoma. 
Biochem Biophys Res Commun 507:142–147

40. Cutone A, Colella B, Pagliaro A, Rosa L, Lepanto MS, Bonac-
corsi di Patti MC, Valenti P, Di Bartolomeo S, Musci G (2020) 
Native and iron-saturated bovine lactoferrin differently hinder 
migration in a model of human glioblastoma by reverting epithe-
lial-to-mesenchymal transition-like process and inhibiting inter-
leukin-6/STAT3 axis. Cell Signal 65:109461

41. Guo W, Giancotti FG (2004) Integrin signalling during tumour 
progression. Nat Rev Mol Cell Biol 5:816–826

42. Wozniak MA, Modzelewska K, Kwong L, Keely PJ (2004) Focal 
adhesion regulation of cell behavior. Biochim Biophys Acta 
1692:103–119

43. Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell 
Sci 116:1409–1416

44. Zhao J, Guan JL (2009) Signal transduction by focal adhesion 
kinase in cancer. Cancer Metastasis Rev 28:35–49

45. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Par-
sons JT, Horwitz AF (2004) FAK-Src signalling through paxillin, 
ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 
6:154–161

46. Avizienyte E, Frame MC (2005) Src and FAK signalling controls 
adhesion fate and the epithelial-to-mesenchymal transition. Curr 
Opin Cell Biol 17:542–547

47. Jeong YY, Lee GY, Yoo YC (2021) Bovine Lactoferricin Induces 
Intestinal Epithelial Cell Activation through Phosphorylation of 
FAK and Paxillin and Prevents Rotavirus Infection. J Microbiol 
Biotechnol 31:1175–1182

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this arti-
cle is solely governed by the terms of such publishing agreement and 
applicable law. 

and invasion through FFAR4- and PI3K-/Akt-dependent pathway 
in MDA-MB-231 breast cancer cells. Med Oncol 34:111

22. Serna-Marquez N, Villegas-Comonfort S, Galindo-Hernandez O, 
Navarro-Tito N, Millan A, Salazar EP (2013) Role of LOXs and 
COX-2 on FAK activation and cell migration induced by linoleic 
acid in MDA-MB-231 breast cancer cells. Cell Oncol (Dordr) 
36:65–77

23. Thiery JP (2003) Epithelial-mesenchymal transitions in develop-
ment and pathologies. Curr Opin Cell Biol 15:740–746

24. Schaller MD (2001) Paxillin: a focal adhesion-associated adaptor 
protein. Oncogene 20:6459–6472

25. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination 
and growth of cancer cells in metastatic sites. Nat Rev Cancer 
2:563–572

26. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: 
diversity and escape mechanisms. Nat Rev Cancer 3:362–374

27. Tang L, Cui T, Wu JJ, Liu-Mares W, Huang N, Li J (2010) A 
rice-derived recombinant human lactoferrin stimulates fibroblast 
proliferation, migration, and sustains cell survival. Wound Repair 
Regen 18:123–131

28. Takayama Y, Mizumachi K (2001) Effects of lactoferrin on col-
lagen gel contractile activity and myosin light chain phosphoryla-
tion in human fibroblasts. FEBS Lett 508:111–116

29. Simopoulos AP (2006) Evolutionary aspects of diet, the omega-6/
omega-3 ratio and genetic variation: nutritional implications for 
chronic diseases. Biomed Pharmacother 60:502–507

30. Tsubura A, Uehara N, Kiyozuka Y, Shikata N (2005) Dietary fac-
tors modifying breast cancer risk and relation to time of intake. J 
Mammary Gland Biol Neoplasia 10:87–100

31. Lee MM, Lin SS (2000) Dietary fat and breast cancer. Annu Rev 
Nutr 20:221–248

32. Buja A, Pierbon M, Lago L, Grotto G, Baldo V (2020): Breast 
Cancer Primary Prevention and Diet: An Umbrella Review. Int J 
Environ Res Public Health 17

33. Diaz-Aragon R, Ramirez-Ricardo J, Cortes-Reynosa P, Simoni-
Nieves A, Gomez-Quiroz LE, Perez Salazar E (2019) Role of 
phospholipase D in migration and invasion induced by linoleic 
acid in breast cancer cells. Mol Cell Biochem 457:119–132

34. Gibbons JA, Kanwar JR, Kanwar RK (2015) Iron-free and iron-
saturated bovine lactoferrin inhibit survivin expression and differ-
entially modulate apoptosis in breast cancer. BMC Cancer 15:425

35. Thiery JP, Sleeman JP (2006) Complex networks orchestrate 
epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 
7:131–142

36. Ziegler E, Hansen MT, Haase M, Emons G, Grundker C (2014) 
Generation of MCF-7 cells with aggressive metastatic potential in 
vitro and in vivo. Breast Cancer Res Treat 148:269–277

1 3

201


	Bovine holo-lactoferrin inhibits migration and invasion in MDA-MB-231 breast cancer cells
	Abstract
	Introduction
	Materials and methods
	Materials
	Preparation of Holo-BLf
	Cell lines and culture
	Cell stimulation
	Western blot (WB)
	Scratch-wound assay
	Invasion assays
	Zymography
	Immunofluorescence confocal microscopy
	Statistical analysis

	Results
	BLf does not induce migration in MDA-MB-231 breast cancer cells
	BLf inhibits migration induced by FBS
	BLf inhibits migration induced by LA
	BLf inhibits invasion induced by FBS
	BLf regulates the expression of mesenchymal markers associated with the epithelial to mesenchymal transition (EMT) process
	BLf promotes the formation of focal adhesions

	Discussion
	References


