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cell communication that guides cellular behavior in normal 
homeostasis and disease conditions [1, 2].

The multitasking ECM is formed by hundreds of different 
building blocks, interacting macromolecules and bioactive 
modulators that upon cell-matrix communication affect cell 
phenotype and functions [3]. The core of ECM network is 
consisted of structural and functional macromolecules, such 
as proteoglycans and glycosaminoglycans (PGs/GAGs), 
collagens, elastin, laminins, tenascins, nidogens as well as 
cell surface receptors and co-receptors, including integrins 
and hyaluronan (HA) receptor, CD44. Matrix remodeling is 
finely tuned by the enzymatic actions of matrix-degrading 
enzymes, as proteases, including matrix metalloproteinases 
(MMPs), adamalysins and glycosidases, such as heparanase 
and hyaluronidases (Fig. 1) [4, 5].

The content and structural features of matrix compo-
nents segregate ECMs into interstitial and pericellular ones, 
the latter being the basement membrane (ΒΜ). Interstitial 
matrices mainly consist of fibrillar collagens, fibronectin, 
PGs and matricellular proteins. The main ECM components 
of the ΒΜ consist of collagen IV, laminins, nidogens, and 

ECMs: dynamic regulatory networks in tissue 
remodeling and integrity

Human tissues are mainly constituted of cells including 
fibroblasts, immune, endothelial, and epithelial cells, and 
various types of non-cellular ECM networks. The com-
position of ECMs differs between tissues, developmental 
stages, and pathophysiological conditions. ECM macro-
molecular networks orchestrate cellular properties through 
signaling cascades, exhibiting paramount importance in 
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Abstract
Extracellular matrixes (ECMs) are intricate 3-dimensional macromolecular networks of unique architectures with regula-
tory roles in cell morphology and functionality. As a dynamic native biomaterial, ECM undergoes constant but tightly 
controlled remodeling that is crucial for the maintenance of normal cellular behavior. Under pathological conditions like 
cancer, ECM remodeling ceases to be subjected to control resulting in disease initiation and progression. ECM is com-
prised of a staggering number of molecules that interact not only with one another, but also with neighboring cells via 
cell surface receptors. Such interactions, too many to tally, are of paramount importance for the identification of novel 
disease biomarkers and more personalized therapeutic intervention. Recent advances in big data analytics have allowed 
the development of online databases where researchers can take advantage of a stochastic evaluation of all the possible 
interactions and narrow them down to only those of interest for their study, respectively. This novel approach addresses 
the limitations that currently exist in studies, expands our understanding on ECM interactions, and has the potential to 
advance the development of targeted therapies. In this article we present the current trends in ECM biology research and 
highlight its importance in tissue integrity, the main interaction networks, ECM-mediated cell functional properties and 
issues related to pharmacological targeting.
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the heparan sulfate PGs, perlecan and agrin [3]. It is worth 
noticing that the formulation of ECMs may constantly be 
adapted depending on mechanical or biochemical sig-
nals, resulting in a fine-tuned ECM remodeling procedure. 
Matrix macromolecules are finely orchestrated to form a 
3D dynamic ECM meshwork being the most important and 
abundant native biomaterial in human organisms.

ECMs surround cells and act as their physical barrier, 
while also being constituents of tissues along with a variety 
of cells, such as endothelial and epithelial cells, fibroblasts, 
pericytes and immune system cells. Interestingly, in tis-
sues, ECMs significantly contribute to the structural support 
of the parenchymal cells [6]. The biological functions of 
ECMs differ depending on the type of ECM and the tissue. 
Interstitial matrices and BMs exhibit certain similarities, 
though at the same time their functionality is distinct. Spe-
cifically, interstitial connective tissue matrix contributes to 

the organization of space between cells and regulates cells 
and tissues interactions, while BM acts on tissue integrity, 
viscoelasticity and biomechanical signaling, as well as to 
modulate cell-cell interactions [1]. In tissues, ECMs present 
an array of functions that vary from tissue barrier, growth 
and shaping to cell adhesion, migration and signaling [7, 
8]. Of note, during brain development, the parenchymal and 
endothelial BMs are crucial for the formation of the blood-
brain barrier. In the skin, BM is the underlying support on 
which the basal epithelial cells accumulate and give rise to 
the stratified skin layers [9–11]. In general, the tissue matrix 
constantly remodels through a delicately balanced circle of 
synthesis and degradation, to maintain tissue homeostasis 
and normal functionality.

Fig. 1  Major macromolecular components of the 3D matrix network. 
The matrix biomolecules that contribute to the structural and func-
tional stability and multitasking processes in cells and tissues include 

glycosaminoglycans, proteoglycans, growth factors and their recep-
tors, proteolytic and non-proteolytic enzymes. Created with Biorender.
com
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ECMs as 3D complex interacting functional 
networks

The functional interactions of matrix bioactive effectors 
with the conterminous microenvironment are key players in 
regulating tissue homeostasis and pathological conditions, 
including cancer [3]. Interactions within the ECM are quite 
complex and responsible for generating signals to remodel 
vital cell properties, such as proliferation, migration, adhe-
sion, and differentiation [12]. For instance, the extracellular 
PG, decorin, interacts with epidermal growth factor recep-
tor (EGFR), Met and vascular endothelial growth factor 
receptor 2 and regulates the assembly of collagen fibrils 
[13, 14]. Moreover, lumican interacts with MMP14, inte-
grins and collagen type I [15], while the intracellular PG, 
serglycin interacts with chemokines, zymogens and MMPs, 
as pro-MMP9 and MMP13 [16]. The cell-surface PG, syn-
decan-1  (SDC-1) dynamically interacts with α6β4, ανβ3, 
ανβ5 integrins to regulate angiogenesis, cell invasion and 
survival, whereas SDC-4 interacts with EGFR, α6β4 and 
α5β1 integrins to promote wound healing and focal adhe-
sion [17].

A thorough understanding of these interactions may ben-
efit the matrix-centric tissue engineering to systematically 
regulate cellular functions in respect to human pathologies.

ECM interacting networks databases – the matrix 
interactome code

Protein-protein interactions among matrix components 
are particularly important for the complex web of func-
tional associations between biomolecules that mediates cell 
behavior in normal homeostasis and disease conditions [8]. 
Biomolecular networks allow the inference of specific cell 
properties through functional association of matrix compo-
nents, and support drug target discovery, therefore they are 
widely used in modern drug design and pharmacology [18, 
19]. Several online resources dedicated to organism-wide 
protein association networks have already developed using 

curated proteomic data on the ECM of normal and diseased 
tissues (Table 1).

The adhesive interactions of cells with their environment 
through the integrin family of transmembrane receptors may 
be predicted using Adhesome [20]. Functional enrichment 
and interaction network analysis of genes and proteins may 
be integrated using searchable resources as demonstrated in 
Table 1 [i.e., Cytoscape [21], DAVID [22], FunCoup [23], 
FunRich [24], IID [25], IMP 2.0 [26], MatrisomeDB [27], 
MatrixDB [28], STRING [29]].

The Adhesome network is a literature-based protein-
protein interaction network that was developed from the 
biomedical literature. The network is made of known inter-
actions and cellular components constituting the focal adhe-
sion complex in mammalian cells [20]. MatrisomeDB is a 
searchable database that integrates experimental proteomic 
data on the matrix composition in normal and diseased tis-
sues [30]. It also provides live cross-referencing to gene and 
protein databases for every matrix and matrix-associated 
gene [27]. Matrix DB reports interactions established by 
matrix proteins, PGs and polysaccharides with individual 
polypeptide chains or with multimers (i.e., collagens, lami-
nins, thrombospondins) [31]. Moreover, it stores experimen-
tal data established by full-length proteins, matricryptins, 
GAGs, lipids and cations [28]. Last but not least, the 
STRING resource aims to integrate known protein-protein 
physical interaction networks and functional associations by 
functional enrichment analysis containing more than 14 000 
organisms [29].

ECM-mediated cell signaling and functional 
properties

Cells continuously audit the biochemical composition of the 
surrounding matrix utilizing various cell surface receptors 
including integrins, discoidin domain receptors (DDRs), 
SDCs and CD44, to fine-tune intracellular signaling path-
ways respectively [3]. Integrins, transmembrane heterodi-
mers of α and β subunits, can bind to various proteins that 
contain an RGD (arginine–glycine–aspartic acid) domain 
(i.e., collagens, fibronectin etc.) and act not only as anchor-
age proteins, but also as signal transducers to intracellular 
molecules to control cell behavior [32]. Particularly, inte-
grins cluster with actin and create complexes that reinforce 
focal adhesion interactions and commence the assembly of 
adhesomes. Likewise, following growth factor stimulation, 
they co-localize at focal adhesions alongside growth factor 
receptors (GFRs), signaling molecules, (i.e., FAK, Src) and 
cytoskeleton-associated molecules like vinculin, talin and 
paxillin (Fig. 2). This way, integrins ultimately modulate the 
activity of downstream effectors, such as PI3K/Akt, JNK, 

Table 1  Available databases predicting interaction networks among 
functional matrix components
Database Hyperlink Reference
Adhesome http://www.adhesome.org [20]
Cytoscape https://cytoscape.org [21]
DAVID https://david.ncifcrf.gov [22]
FunCoup http://funcoup.sbc.su.se [23]
FunRich http://www.funrich.org [24]
IID http://ophid.utoronto.ca/ophidv2.204/ [25]
IMP 2.0 http://imp.princeton.edu [26]
MatrisomeDB http://matrisomedb.pepchem.org [27]
Matrix DB http://matrixdb.univ-lyon1.fr [28]
STRING https://string-db.org [29]
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CD44 is one of the cell adhesion molecules (CAMs) and is 
a complex glycoprotein that associates with ECM compo-
nents namely HA, osteopontin (OPN) and MMPs, to stimu-
late downstream signaling pathways such as PI3K/Akt [38, 
39] (Fig. 2). Nevertheless, CD44 also interacts with numer-
ous other ECM molecules, growth factors and cytokines and 
advances tumor growth, angiogenesis, metastasis and can-
cer stem cell (CSC)-related properties [40].

ECM, as a highly dynamic macromolecular network of 
vital importance for cells, is well established that it deter-
mines and influences the morphology and fundamental 

ERK and the Rho GTPases [33]. Additionally, integrins 
are able to intervene in the rate of growth factor receptor’s 
internalization and subsequent degradation [34]. DDRs are 
affiliated with the receptor tyrosine kinases (RTKs), though 
they present unique characteristics, especially their ability 
to bind collagens [3, 35].

SDCs, transmembrane proteoglycans with cell and 
tissue-specific expression patterns, are receptors mainly 
associated with adhesion [36]. What’s more, SDCs signal 
synergistically with integrins through clustering and serve 
as co-receptors of growth factor receptors (Fig.  2) [37]. 

Fig. 2  ECM-mediated outside-in signal transduction. Cell-surface 
receptors act as liaisons between ECM effectors and intracellular sig-
naling cascades. Particularly, integrins, key anchorage proteins, act 
also as signal transducers after their interaction with cytoskeleton-
associated molecules (i.e., talin, vinculin, paxillin), that leads to the 
activation of focal adhesion kinase (FAK) and Src-family protein 
tyrosine kinases (SFKs) and subsequently modulation of downstream 
effectors like PI3K/Akt, ERK and Rho GTPases. Integrins usually co-

localize beside GFRs at focal adhesions and can also signal interde-
pendently with SDCs. SDCs additionally function as co-receptors for 
GFRs. Furthermore, DDRs are a unique sub-family of RTKs that do 
not bind integrin but respond to collagens as ligands. Finally, CD44 
acts as a receptor for various ECM molecules (i.e., HA, OPN, MMPs) 
to prompt activation of downstream signaling, while functioning as 
co-receptor for GFs, cytokines and other ECM components to promote 
angiogenesis, EMT and stemness. Created with Biorender.com
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metastasis through induction of epithelial-to-mesenchymal 
transition (EMT) and stemness [45–47]. On the other hand, 
fibronectin fibers are less stiff and more relaxed than colla-
gen fibers, yet FN-enriched matrices tend to promote more 
malignant phenotype, since it is well-established that fibro-
nectin is a key driver of EMT [48]. The different actions 
between collagen and fibronectin are usually attributed to 
distinct integrin dimer binding, which in turn activates alter-
native intracellular signaling pathways [49]. Furthermore, 
mutations or alterations in the expression of crucial ECM 
effectors like matrix remodeling enzymes (i.e., MMPs), 
heparan sulfate proteoglycans (HSPGs) and CD44 greatly 
influence disease progression. For example, higher MMPs 
expression and activity levels guides invasion and metasta-
sis via, among others, promotion of invadopodia formation 
[48, 50]. In addition, SDCs govern angiogenesis and migra-
tion by acting as co-receptors of growth factor signals and 
have recently been recognized as biomarkers of stemness in 
breast cancer [17, 51, 52]. Finally, CD44 is also implicated 
as a marker for the induction of cancer stem cell (CSC) phe-
notype and thus, the therapeutic resistance in various can-
cers [53, 54].

The role of ECM in disease development and 
progression

Abnormal ECM remodeling is one of the leading causes of 
pathological conditions including cancer, fibrosis and osteo-
arthritis (Table 2). Particularly, the excessive ECM degrada-
tion causes tissue destruction, while the excessive synthesis 
and deposition of ECM, observed in chronic or acute tissue 
injuries, lead to fibrosis [55].

Fibrosis is a dynamic and reversible process, which is 
characterized as a heterogeneous disorder of connective 
tissue. ECM stiffness and disorganization because of non-
canonical tissue repair, affect ECM signaling. The main 
components of fibrotic ECM are heterotypic fibrils of col-
lagen type I, III and V, elastin, fibronectin, HA and versi-
can aggregates, matricellular proteins and cross-linking 
enzymes like lysyl oxidase (LOX) [16, 56]. Generally, in 
pulmonary diseases, fragments of degraded collagen type 
I, VI and elastin are released to the circulation, where they 
induce eosinophil inflammation and development of emphy-
sema [57]. Secreted ECM molecules in fibrous matrix inter-
act with cell surface receptors including integrins. Integrins 
and SDCs can facilitate profibrotic signaling. In addition, it 
has been found that MMP3 and MMP7 are upregulated in 
lung fibrosis where induce the EMT program [16].

ECM remodeling promotes cardiac stiffness and therefore 
leads to heart failure. The deposition of collagen is a lead-
ing cause for the formation of atherosclerotic plaques and 

cellular properties, including proliferation, migration, 
adhesion, polarity and angiogenesis [4]. The landscape 
by which the biology of ECM regulates cell functionality 
is complex. ECM effects on the cells can be differentially 
mediated either by the direct binding of cell surface recep-
tors or co-receptors that modulates cell anchorage, mecha-
notransduction and intracellular signaling pathways, or 
by the remodeling due to aberrant presentation of growth 
factors and the actions of enzymes [41, 42]. The various 
ECM macromolecules implicated in main diseases are pre-
sented in Table  2. In pathological conditions like cancer, 
cells undergo significant changes in the molecular level that 
drive tumor progression and many researchers have focused 
on detailing these changes in the ECM. Elevated collagen 
deposition is often linked to more aggressive morphological 
characteristics and increased invasion, while the collagen 
fiber alignment is tightly connected to cell migration and 
tumor progression [43, 44]. Moreover, collagen rich ECMs 
with disproportionate cross-linking lead to stiffer microen-
vironments, which has been shown to promote invasion and 

Table 2  Extracellular matrix (ECM) macromolecules and association 
with main diseases
ECM molecule Disease
Collagen
collagen type I fibrosis; pulmonary 

diseases; cancer
collagen type III fibrosis; cancer
collagen type V fibrosis
collagen type VI pulmonary diseases
Glycoproteins
elastin fibrosis; pulmonary 

diseases
laminins cancer
fibronectin fibrosis; osteoarthri-

tis; cancer
GAGs
hyaluronan fibrosis; inflamma-

tion; osteoarthritis; 
cancer

Proteoglycans
versican fibrosis; inflamma-

tion; cancer
aggrecan osteoarthritis
brevican cancer
perlecan cancer
biglycan fibrosis; osteoarthri-

tis; cancer
decorin osteoarthritis; cancer
lumican myocardial fibrosis
fibromodulin cancer
syndecans fibrosis; cancer
glypicans cancer
serglycin cancer
Integrins fibrosis; cancer
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(uPA) and cathepsins, which are involved in ECM molecules 
degradation [41]. Particularly, the plasminogen activation 
system is associated with tumor initiation and progression, 
while overexpression of MMP2, 3, 9, 13 and 14 augments 
cancer cell aggressiveness, stimulating EMT. Remarkably, 
MMP14 (MT1-MMP) has a very important role in can-
cer cell invasion and metastasis due to its regulatory role 
in invadopodia functions and its ability to degrade ECM 
molecules and basically collagen [41]. Versican regulates 
cell proliferation and metastasis by interacting with HA, 
TLRs and activating EGFR, or via ADAMTS-1-mediated 
proteolytic cleavage. On the other hand, proteolytic cleav-
age of brevican induces cancer cell adhesion and motility 
[16]. The interaction of decorin with various receptors in 
tumor niche exhibits antiproliferative and anti-angiogenic 
effects, whereas the interplay among biglycan and TLRs 
induces inflammation [66]. In glioblastoma cells, upregu-
lated fibromodulin binds to collagen type I and promotes the 
activation of integrin-FAK-Src-Rho-ROCK signaling cas-
cade causing tumor cell migration [67], while in lung can-
cer, fibromodulin promotes angiogenesis by increasing the 
expression of angiogenic factors [68]. Similarly, perlecan 
induces angiogenesis, cell proliferation, invasion, migration 
and drug resistance through the binding of heparan sulfate 
(HS) chains with growth factors, facilitating their presenta-
tion in cell surface receptors [16, 69]. In breast cancer cells, 
serglycin is upregulated and is correlated with increasing 
aggressiveness of tumor cells, as it promotes the expres-
sion of degrading enzymes, mesenchymal markers and 
the secretion of interleukin-8 (IL-8) [70]. The cell surface 
proteoglycans, SDCs and glypicans, are involved in tumor 
progression, acting either as tumor promoters or as tumor 
suppressors. Glypicans regulate growth factor signaling 
cascades, while SDCs, except for growth factors, interact 
with integrins regulating cancer cell functions [16]. Nota-
bly, SDC-1 is involved in exosomes biogenesis and regu-
lates the exosome packaging [66].

Pharmacological applications, diagnostics 
and ECM targeting

Collagen can be combined with several compounds such as 
GAGs to form scaffolds, which are used for the regeneration 
of cartilage, bone, tendon, burned skin, lung, and cornea. 
Furthermore, collagen-elastin scaffolds seem to be suitable 
for vascular tissue engineering, whereas collagen fragments 
have been used for wound healing [71]. Correspondingly, 
HA due to its structural properties, is used in regenera-
tive medicine, generating scaffolds with great mechanical 
properties [72]. Notably, it is suggested that the molecular 
weight of HA affects its function in bone regeneration [73]. 

its degradation by MMPs is a risk factor for plaque rupture 
[58]. Among the most common ECM components involved 
in cardiac remodeling are extracellular and cell surface pro-
teoglycans. It is worth mentioning that alterations in GAG 
chains increase PGs affinity for incoming into arterial wall 
low-density lipoproteins (LDLs), which are responsible for 
plaque progression [58]. Small leucine-rich proteoglycans 
(SLRPs) bind to collagen fibrils and regulate collagen orga-
nization, participating in cardiac fibrosis development. It is 
hypothesized that lumican induces myocardial fibrosis as it 
can control cellular expression and post-translational modi-
fications of main cardiac remodeling molecules [59]. What 
is more, decorin regulates angiogenesis and thus is involved 
in the cardiac function recovery after injury [60].

Osteoarthritis is a musculoskeletal disease in which irre-
versible collapse of cartilage occurs. The accumulation of 
proteolytic enzymes and reactive oxygen species (ROS) 
in the injured tissue induces the degradation of collagen, 
aggrecan and other ECM components generating bioactive 
fragments of aggrecan, fibronectin and HA, which in turn 
proceed inflammation and catabolism [16, 61, 62]. Indeed, 
MMP3,MMP7 and MMP9 are overexpressed in the carti-
lage of patients with osteoarthritis [63]. Decorin and big-
lycan, two members of the SLRPs family, are associated 
with the initiation and progression of osteoarthritis, as both 
are upregulated. Notably, at the late stage of osteoarthritis, 
soluble fragments of biglycan are released to the synovial 
fluid and facilitate the loss of sulfated GAGs via the activa-
tion of NF-κΒ [64].

ECM association with inflammatory responses and 
cancer

Tumor tissue is stiffer in comparison with the normal one 
and includes inflammatory mediators. This environment 
increases the expression of fibronectin-EDB, which pro-
motes angiogenesis [65], whereas toll-like receptors (TLRs) 
induce proinflammatory signaling through binding to fibro-
nectin and HA or cooperating with biglycan [16]. During 
inflammation, large amounts of ECM macromolecules 
including collagen type I, III and HA are produced induc-
ing EMT and the dedifferentiation of epithelial cells into 
activated fibroblasts. Thus, epithelial cells acquire mesen-
chymal properties and move to distant sites. In addition, 
fibroblasts regulate the organization of collagen fibers. In 
case of desmoplastic stroma, collagen fibers are aligned in 
an ordered fashion, facilitating cancer cell migration [65]. 
Tumor progression is facilitated via the interaction between 
laminins and integrins. Furthermore, tumor cells and CAFs 
release MMPs, disintegrin and metalloproteinase domain-
containing proteins (ADAMs), ADAMs with thrombospon-
din motifs (ADAMTSs), urokinase plasminogen activator 
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size and concentration. For instance, low molecular weight HA 
fragments exhibit an angiogenic effect and their presence in 
the serum of breast cancer patients is associated with lymph 
node metastasis [79]. Decorin is an anti-tumor factor, and its 
increased levels are associated with better survival and treat-
ment response in cancer patients, including breast cancer. On 
the contrary, biglycan is a potential biomarker, whose over-
expression relates to poor survival of colorectal, gastric and 
esophageal cancer patients [80]. Likewise, biglycan belongs to 
potential biomarkers of cardiac disease and contributes to the 
identification of patients, who may benefit from statin therapy 
[59]. The methylation of SDC-2 gene is a common event in 
precancerous lesions and its presence in bowel lavage fluid is 
useful for detecting patients with colorectal cancer [81]. Fur-
thermore, shed PGs such as SDC-1 and SDC4 are promising 
blood biomarkers in heart disease [82]. Finally, it has been 
found that high glypican-1 is also a tumor marker of hepatocel-
lular cancer [83].

Finally, SDC-4 is recommended as a promising biomarker 
for tissue regeneration [74].

Plenty of ECM molecules are used as biomarkers in can-
cer prognosis and diagnosis (Fig. 3). Namely, high amounts 
of collagen type I fragment, ICTP, in serum of preoperated 
patients with triple negative breast cancer (TNBC) or lumi-
nal B subtypes may be a great biomarker for better patient 
prognosis [75]. On the other hand, N-telopeptide of collagen 
type I, appears to have high sensitivity and specificity and 
consequently can be used as a biomarker for bone metastasis 
in patients with lung cancer [76]. Moreover, increased elastin 
fragments produced by MMP7, 9 and 12, observed in the serum 
of lung cancer patients, are potential biomarkers for this type of 
cancer [77]. In osteoarthritis, degradation and synthesis prod-
ucts of collagen have been evaluated as predictive biomark-
ers of the development and progression of the disease. Further, 
other ECM components such as PGs, HA, aggrecan and gly-
coproteins seem to be useful tools for osteoarthritis diagnosis 
[78]. HA fragments possess different roles depending on their 

Fig. 3  Pharmacological applications, diagnostic value and targeting 
of the main ECM components. Collagen, elastin and hyaluronan are 
important molecules for tissue regeneration and diagnosis of cancer 
and osteoarthritis. SDC-4, also, is used for tissue regeneration. Col-
lagen can be targeted by monoclonal antibody, cetuximab, while 
hyaluronan is degraded by a recombinant human hyaluronidase, 
PEGPH20. The extracellular and cell surface proteoglycans are use-

ful tools for cancer, osteoarthritis and heart disease diagnosis. Inte-
grins are potential targets for the regulation of ECM remodeling in 
disease and matrix enzymes (MMPs, HPSE) are targeted by inhibi-
tors or monoclonal antibodies respectively. An alternative strategy for 
ECM biosynthesis regulation are miRNAs. Created with Biorender.
com Abbreviations: HPSE; heparanase, mAbs; monoclonal antibod-
ies, MMPs; metalloproteinases
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Targeting of ECM molecules is a very important approach 
for therapeutic purpose against cancer and fibrosis. They have 
been developing four therapeutic strategies targeting collagen, 
so far. These comprise the inhibition of collagen synthesis, the 
degradation of stromal collagen, the suppression of collagen 
cross-linking by inhibiting LOX activity and the blocking of 
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Concluding remarks
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