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mitochondrial dysfunction, apoptosis, diminished growth 
factor functions, and synaptic plasticity loss are all impli-
cated in neurodegenerative diseases causing loss of function 
and eventually death of neurons in the brain and peripheral 
nervous system [4].

Neuron cells have high oxygen consumption; high con-
centration of polyunsaturated lipids, which are prone to 
oxidation, and a limited antioxidant defense system lead-
ing to the deleterious effects of oxidative stress on biomol-
ecules. Biomolecules including lipids, proteins, DNA/RNA, 
etc. are very sensitive to free radicals and are all negatively 
impacted by oxidative stress in the neuronal cells [5, 6]. Dif-
ferent ROS like OH• and ONOO can functionally modify 
the heterocyclic lipid and protein bases. The heterocyclic 
DNA/RNA bases are more susceptible to oxidative stress, 
in particular, guanine is more vulnerable to the assault of 
ROS, leading to the generation of 8-hydroxyguanine and 
8-hydroxy-2-deoxyguanosine. Increased ROS attack sus-
ceptibility leads to the generation of 8-hydroxyguanine, and 
amounts of these modified bases are seen in PD brains, indi-
cating that OH radicals 8-hydroxy-2-deoxyguanosine are 

Introduction

Neurodegenerative diseases are protein aggregation abnor-
malities with neurodegeneration, referring to a group of 
disorders predominantly damaging the neurons in the 
brain. The most frequent neurodegenerative disorders are 
Alzheimer’s disease (AD) and Parkinson’s disease (PD). 
Multiple sclerosis, Huntington’s disease, frontotemporal 
dementia, amyotrophic lateral sclerosis, and spinocerebel-
lar ataxias are among the other neurodegenerative disorders 
[1–3].

Oxidative injury, autophagy dysfunction, inflammation, 
protein aggregation, genetic and epigenetic characteristics, 
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Abstract
Neurodegenerative disease refers to a group of disorders that predominantly damage the neurons in the brain. Despite 
significant progress in the knowledge of neurodegenerative diseases, there is currently no disease-modifying drug avail-
able. Vitamin K was first established for its involvement in blood clotting, but there is now compelling evidence indicating 
its role in the neurological system. In particular, the results of recent studies on the effects of vitamin K2 on prevent-
ing apoptosis, oxidative stress, and microglial activation in neuron cells through its role in electron transport are very 
promising against Alzheimer’s disease. In addition to its protective effect on cognitive functions, its inhibitory effects on 
inflammation and α-synuclein fibrillization in Parkinson’s disease, which has been revealed in recent years, are remark-
able. Although there are many studies on the mechanism and possible treatment methods of neurodegenerative diseases, 
especially Parkinson’s and Alzheimer’s disease, studies on the relationship between vitamin K and neurodegenerative 
diseases are very limited, yet have promising findings. Vitamin K has also been proposed for therapeutic use in multiple 
sclerosis patients to lower the intensity or to slow down the progression of the disease. Accordingly, the aim of this study 
is to review the current evidence for the use of vitamin K supplementation in neurodegenerative diseases, in particular 
Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis.
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involved. As oxidative species, elevated amounts of these 
changed bases are seen in PD. Additionally, protein carbon-
ylation and nitration are mostly seen in brains. Accordingly, 
oxidative stress is suggested to increase the risk of neurode-
generative diseases by leading to abnormal protein folding 
and function [5, 6].

Despite breakthroughs in our understanding of the 
neurobiology of neurodegenerative disorders, no disease-
modifying treatments have been approved. Therapies may 
alleviate several physical and mental signs and symptoms of 
neurodegenerative disorders however, there are presently no 
known cures to decrease the development of the disease [2]. 
It is important to fully understand the causes and processes 
of these diseases characterized by protein aggregation and 
neurodegeneration, to provide effective disease-modifying 
treatments [4, 7, 8].

Vitamin K was first established for its involvement in 
blood clotting, but today compelling proof shows that it 
also plays a role in the neurological system. Vitamin K is 
involved in the formation of sphingolipids. Accordingly, 
sphingolipid metabolism changes have been linked to.

cognitive impairment as a result of aging and neuro-
degenerative disorders like AD. Furthermore, increasing 
evidence shows the impact of Vitamin K on psychomotor 
activity and cognition, and the distinct antioxidant and anti-
inflammatory properties of K vitamer menaquinone-4 (MK-
4) are worth mentioning [9, 10]. Although there are many 
studies on the mechanism and possible treatment methods 
of neurodegenerative diseases, especially PD and AD dis-
ease, studies on the link between vitamin K and neurode-
generative diseases belong to the last decade [9–13].

The aim of this study is to evaluate the potential for 
vitamin K administration in neurodegenerative diseases, 

in particular AD, PD, and multiple sclerosis (MS). Accord-
ingly, the integrated review format was applied to this 
article [14]. When combining and integrating the studies in 
literature where basic research is restricted, this technique 
appears to be more acceptable, while attempting to offer a 
meaningful literature summary to health experts. The avail-
able biomedical research was evaluated using MEDLINE/
PubMed, conference proceedings, and books. The terms 
examined were Vitamin K (K1 and K2) and its involvement 
in neurodegenerative diseases including AD, PD, multiple 
sclerosis, Huntington’s disease, frontotemporal dementia, 
amyotrophic lateral sclerosis, and spinocerebellar ataxias. 
However, since the studies focused on AD, PD, and MS 
the relationship between vitamin K and these degenerative 
diseases is mentioned in the following sections. For this 
purpose first, the structure and functions of vitamin K will 
be explained, then its effects on AD, PD, and MS, and the 
mechanisms of these effects will be reviewed.

Structure and function of vitamin K

Vitamin K refers to a class of fat-soluble vitamins and, 
occurs in two forms, K1 and K2. The primary form is Vita-
min K1 (phylloquinone) is mainly present in green leafy 
vegetables, bound to the chloroplast membrane. Vitamin 
K2 (menaquinones-MK) is a group of bacterial-derived 
vitamins present in animal proteins and fermented foods 
[15]. Menadione, often known as vitamin K3, is a synthetic 
version of vitamin K that can be found in supplements and 
the intestines transform vitamin K3 into vitamin K2 [16]. 
Sources of Vitamin K1 and K2 in food are given in Fig. 1.

Fig. 1 Sources of Vitamin K1 
and K2 in food. Vitamin K1 
(phylloquinone) is mainly found 
in green leafy vegetables whereas 
Vitamin K2 (menaquinones-MK) 
is found in animal proteins and 
fermented foods
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Although Vitamin K1 is present only in one form, the MK 
family has multiple isoforms. In both human and rat brains, 
short chain menaquinone-4 (MK-4) is the most abundant 
vitamer and has been shown to defend against oxidative 
stress and the activation of the inflammatory reaction [17]. 
Furthermore, MK-4 depletion has been linked to poor cog-
nitive function in rat models [18]. MK-7, MK-8, and MK-9 
are long chain menaquinones that are present in fermented 
foods including cheese, curd, and sauerkraut [19].

They are regarded as necessary cofactors in the activa-
tion of numerous proteins that function in the homeosta-
sis of coagulation and calcium in humans. Vitamin “K” is 
derived from the K in the Germanic word “Koagulation”, 
which refers to the capacity to coagulate blood or inhibit 
bleeding. Over the last several years, a lot has been discov-
ered about vitamin K2 and its function in osteoporosis and 
vascular calcification associated with osteoarthritis, as well 
as cancer and cognition [20].

Vitamin K1 and K2 are well recognized for their cofactor role 
in blood coagulation for the endoplasmic reticulum enzyme, 
ɤ-glutamyl carboxylase. This post-translational modification of 
glutamic acid residues of blood coagulation factors to gamma-
carboxyglutamic acid (Gla), produces Gla-containing proteins. 
Blood coagulation factors including factor II (prothrombin), 
VII, IX, X, protein C, and protein S are well-known examples 
of Gla-containing proteins, which are synthesized in the liver 
[21]. The carboxylation reactions of two vitamin K-dependent 
proteins, Gas-6 and protein S, whose activity helps to appropri-
ate brain homeostasis, are also facilitated by vitamin K [4, 22] 
(Fig. 2). Furthermore, vitamin K functions as a cofactor in the 
creation of sphingolipids, a key component of the membrane 
of neurons in the brain [23]. The function of these elements in 
brain metabolism has been emphasized in several studies using 
in vitro and murine models [24–26]. In several cases, a link to 
neurodegenerative disorders was discovered, which might be 
investigated further in human investigations [18, 27].

Bone proteins containing Gla are osteocalcin, matrix Gla, 
and the pit protein S, and are generated by osteoblasts. The 
involvement of Vitamin K is essential for glutamate carbox-
ylation to Gla. Matrix Gla protein (MGP) and vitamin K are 
related because inactive MGP needs vitamin K to carboxyl-
ate it to become active. Since MGP is a peripheral protein, 
the vitamin that may most readily carboxylate MGP is Vita-
min K2, which is the most common form of vitamin K in the 
non-hepatic tissue [28].

Therefore unlike vitamin K1, vitamin K2 can activate dif-
ferent extrahepatic Vitamin K- dependent proteins including 
MGP, osteocalsin, and Gas6. Vitamin K1 does not appear 
to have a substantial impact on vascular calcification, as 
revealed in multiple studies, but Vitamin K2 is being inves-
tigated for its function in the regulation of calcification [29, 
30]. This may be partially explained by the fact that LDL 
molecules targeting extra-hepatic organs contain more Vita-
min K2 than Vitamin K1 and that this makes it more effec-
tive in carboxylating peripheral VKDPs [31]. This might 
explain why Vitamin K2 has stronger anti-calcification 
properties than Vitamin K1 [32].

Vitamin K2 deficiency is related to vascular calcification 
and osteoporosis. Vitamin K-dependent protein-MGP when 
activated, prevents the calcification of the vascular and soft 
tissues [33]. Carboxylated osteocalcin (OC) increases after 
vitamin K2 administration, and uncarboxylated OC is asso-
ciated with the frequency of clinical fractures [34]. Even 
15 mg vitamin K2 (MK-4) supplementation three times a 
day, is quite safe and does not cause hypercoagulation [35]. 
Vitamin K has a critical role in sphingolipid metabolism and 
Gas-6 and Protein S are the nervous system proteins that are 
vitamin K–dependent.

In addition to its protective action in neuronal mem-
branes, vitamin K may also play an independent protective 
function in the myelin membranes, against oxidative stress. 
In primary cultures of immature fetal cortical neurons as 
well as the oligodendrocyte precursors, it has recently been 

Fig. 2 Role of Vitamin K as 
a cofactor for the conversion 
of glutamate residues via the 
endoplasmic reticulum resident 
vitamin K-dependent gamma-
glutamyl carboxylase to gamma 
carboxyglutamic acid (Gla) in 
vitamin K-dependent proteins
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frontal cortex showed the most extreme reduction in expres-
sion, and levels decreased in 24-month-old rats, compared 
with the 6-month-old rats, while the striatum and the hip-
pocampus also showed a 55% reduction in expression [41].

Gas-6 reduces the proinflammatory response by down-
regulating interleukin-1b expression which triggered nitric 
oxide-synthase, according to studies employing microglial 
cells from mice [42]. Microglial cell recruitment to neuro-
nal regions of damage was decreased in two recent mouse 
models utilizing Mer and Axl knock-out animals, which 
also affected phagocytic activity through cytoskeleton alter-
ations [43, 44]. Moreover, by inhibiting low-voltage Ca2+ 
influx channels, Gas-6 has been demonstrated to reduce 
ß-amyloid-activated apoptosis, which is a characteristic 
feature of AD [45]. On the other hand, it was discovered 
recently that Gas-6 inhibits Tyro3, preventing the accumula-
tion of β-amyloid [46].

Consequently, Gas6 has been regarded as the main 
modulator of cell survival and proliferation, as well as the 
myelination process, based on studies acquired over the last 
15 years [41–46].

The number of studies examining the relationship 
between vitamin K and Gas6 is very limited.

Extrahepatic Gla protein carboxylation and vitamin 
K-dependent coagulation were both improved but not totally 
normalized by intravenous vitamin K1 at a high dosage of 
10 mg after 24 h, according to a recent report [47].

In a prospective screening study, the effects of intrave-
nously administered vitamin K1 were investigated on the 
plasma levels of Gas6 and its soluble Axl receptor, in inten-
sive care patients. A small yet significant increase in Gas6 
levels was reported and a dramatic increase in soluble Axl 
receptor was detected in only one patient. Studying the res-
toration of Gas6 carboxylation deficiencies was suggested 
to be necessary to confirm a real vitamin K impact [48].

Vitamin K–dependent protein protein S

Protein S as the cofactor of protein C has long been recog-
nized for its anticoagulant properties, but new research has 
found that in addition to enhancing post-ischemic cerebral 
blood flow, it may also regulate inflammation, angiogenesis, 
and cancer [49]. Protein S, like Gas6, is found in the brain, 
although in a considerably smaller amount [50].

The locus coeruleus, choroid plexus, and astrocytes, have 
been shown to express the protein in the nervous system. 
mRNA of Protein S is found in rabbit brains, in the pyrami-
dal neurons of the cortex and hippocampus, and also in the 
dentate gyrus, in granule neurons. mRNA of Protein S was 
also shown to be expressed in glioblastoma and neuroblas-
toma cell lines and has been demonstrated to be increased in 
nerve damage [50, 51].

shown that MK-4 and, to a smaller extent, phylloquinone, 
inhibit oxidative damage, which was characterized as free 
radical buildup and cell death [36]. This is a significant 
finding since it suggests that oxidative stress is the primary 
driver of age-related impairments in motor and cognitive 
function. Because the addition of warfarin or 2-chloro-vita-
min K1 as a.

γ-carboxylase inhibitor did not reduce the protective 
effect of vitamin K, it appeared to be independent of the 
-carboxylation of vitamin K-dependent proteins [37].

Vitamin K and neurodegenerative diseases: 
possible mechanisms

Vitamin K–dependent protein Gas6

Gas6 (75 kDa) a secreted protein discovered in 1993, is 
encoded by the growth arrest–specific gene. It contains rec-
ognition sites for γ-carboxylation by the vitamin K-depen-
dent carboxylase [19]. It was implicated in chemotaxis, 
mitogenesis, cell proliferation, and myelination in the neu-
rological system. All of these effects have been connected to 
the protein’s capacity to attach to the Tyro3, Axl, and Mer 
(TAM) receptors and cause phosphorylation of the receptors 
[19]. The binding of Gas6 to the receptor tyrosine kinases 
TAM family, causes their activation, a process that is reliant 
on Gla units. The post-translational modification of Gas6 on 
its glutamic acid residues forming Gla, is mediated by the 
γ-glutamyl carboxylase enzyme requiring vitamin K [29]. 
Gas-6 is vital for the nervous system’s proliferation and 
survival. In neural and glial cells, it also has anti-apoptotic, 
mitogenic, and myelinating properties [8, 18].

Axl is necessary for the proliferation of a variety of cells 
as well as the continuation of gonadotropin-releasing hor-
mone-expressing neurons, regulating their migration from 
the olfactory bulb through the hypothalamus. Tyro3’s exact 
involvement in cell survival is unknown, however, it has 
been linked to Axl-like actions [38]. Mer prevents oxidative 
stress-induced apoptosis in primary macrophages [39].

The dissemination of Gas6 in the CNS of rats was shown 
before. In rat embryos during the first development stages, 
Gas6 is expressed primarily in non-neuronal tissues. Pur-
kinje neurons express Gas6 at high levels, also adult rats 
express Gas6 in cerebral cortex, hippocampus as well as 
midbrain, and cerebellum. At embryonic day 14, Gas6 is 
also found in motor neurons. The dorsal root ganglia neu-
rons and ventral horn neurons in the spinal cord have also 
been shown to express Gas6 [40]. The expression of Gas6 in 
adults was also studied as a function of age. Age-dependent 
decrease of Gas6 has been reported in the synaptosomes 
of rats’ striatum, hippocampus, and the frontal cortex. The 
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bacteria only grow slowly in a media devoid of vitamin 
K, but DNA/RNA or protein synthesis continues to occur 
[61]. It was also demonstrated using tagged phosphorus 
that the vitamin K-free diet is connected with a decreased 
production of sphingolipids. Critical proof that vitamin K 
may play a particular function in sphingolipid metabolism 
was provided when vitamin K was added to the medium 
and caused an acceleration of sphingolipid production 
before there was a rise in overall growth [37]. These inves-
tigations into P. levii’s sphingolipid metabolism were then 
expanded to include mammalian models, notably the mouse 
and rat. When vitamin K antagonists were administered to 
mice, their brain serine palmitoyltransferase activity, a key 
enzyme in sphingolipid synthesis, dropped by 19%. This 
activity was then recovered after a 3-day supplementation 
of vitamin K (phylloquinone) [62].

Sphingolipids play a central role in myelination, and 
myelin stability maintenance. Changes in sphingolipid 
metabolism have a significant impact on plasma membrane 
organization and alterations in the composition of myelin 
sphingolipids may play a key role in the phenotypic of ill-
nesses defined by demyelinalization such as Multiple sclero-
sis [23]. Ceramide has sphingosine, a long-chain sphingoid 
base, with a fatty acid linked with an amide bond at the C2 
position, serving as the foundation for more complicated 
sphingolipids [63]. Attaching multiple head groups to the 
C1 location of ceramide produces more complicated sphin-
golipids. The structural variety and combinations within the 
long-chain sphingoid base, fatty acids, and the head group 
variants are responsible for the large number of sphingolip-
ids species [64, 65].

The research group of Meir Lev is the first to prove the 
findings on vitamin K’s function in sphingolipid metabo-
lism. Vitamin K was demonstrated to work as a growth 
factor for Bacteroides melaninogenicus rumen strain, in an 
early study published in Nature in 1958 [51, 61]. This bacte-
rial growth requirement for vitamin K was then discovered 
to be connected to homeostasis of cell membrane [61].

Sphingolipid metabolism have been shown to play a key 
role in a variety of cellular activities and signaling cascades, 
including neuroinflammation, and is increasingly being 
linked to the pathogenesis of CNS defects [66, 67]. Because 
of microglial activation and amyloid precursor protein 
(APP) buildup, these polar lipids have been linked to neuro-
inflammatory and neurodegenerative conditions [66].

The reactive appearance and altered function of the glial 
compartment are described as neuro-inflammation, which is 
a neuropathological phase in AD [67]. Even though appar-
ent inflammatory glial response is thought to be caused by 
neuronal loss or malfunction, it is thought that microglia 
and astrocyte activation contributes to the course of AD. 
Microglia, the CNS’s innate immune cells, are the most 

Protein S has a similar amino acid structure with Gas-6, 
and hence fulfills some of its functions as a TAM receptor 
ligand [10]. A link between Tyro3/Akt signaling pathway 
suppression and hypoxia-induced death of hippocampus 
neurons has been shown, suggesting that protein S may 
have a protective role in cerebral infarction [52]. Protein S, 
in particular, protects cells from the N-methyl-D-aspartate-
induced toxicity and apoptosis through the Tyro3/Akt path-
way [40]. When applied to stroke animal models in high 
concentrations, this discovery may imply adjuvant function 
of protein S to tissue plasminogen-activator to minimize 
cerebral post-ischemic damage, without raising bleeding 
risk [10]. Protein S also appears to maintain the structure of 
the blood-brain barrier, acting as a protective barrier against 
persistent ischemia damage and blood-brain barrier-related 
diseases [53].

Although the research is limited, the evidence so far indi-
cates that protein S may exert antithrombotic properties and 
signaling-mediated neuroprotective effects to defend the 
brain and nervous system. Serious thrombotic and necrotic 
phenotypes seen in animals missing protein S in their brains 
is consistent with antithrombotic properties and neuropro-
tective effects of protein S [54].

In previous studies, the effects of vitamin K on protein S 
were examined. As has been demonstrated for hepatocytes 
[55], vitamin K had no direct impact on the secretion or 
activity of protein-S in the MG 63 cells, but it might coun-
teract the effects of warfarin [56]. The results are shown 
with endothelial cells [57] and also with a megakaryoblastic 
cell line [58], which show that Vitamin K promotes protein-
S secretion and activity, are in contrast.

Role of vitamin K in sphingolipid metabolism

Vitamin K is known to increase the synthesis of sphingo-
lipids, which are one of the primary families of eukaryotic 
lipids and an important component of brain cell membranes 
[59]. They are important regulators of cell proliferation, 
differentiation, and survival [10, 60]. They are now recog-
nized to have a role in essential cellular activities such as 
senescence, and cell-cell interactions, in addition to their 
structural role. Some sphingolipids in the brain, are strongly 
linked to MK-4 [51]. Ceramides, sphingomyelin, cerebro-
sides, sulfatides, and gangliosides are the most common 
sphingolipids found in neuronal cell membranes [60].

The effects of vitamin K on the synthesis of sphingo-
lipids have been investigated. The sphingolipids ceramide 
phosphorylethanolamine and ceramide phosphorylglycerol 
are present in the rumen strains of Porphyromonas levii, for-
merly known as Bacteroides melaninogenicus. Vitamin K is 
necessary for the growth of this particular bacterial species, 
and phylloquinone or menadione can provide this need. The 
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Recent studies that demonstrate the regulation of brain 
sphingolipids by nutritional vitamin K expand Lev’s work 
and highlight the potentially much further influence of vita-
min K in brain function, given the critical role of these lipids 
in cell signaling activities [68–71].

Vitamin K and neurodegenerative diseases

Vitamin K and Alzheimer’s disease

The incidence of Alzheimer’s disease (AD), the most com-
mon type of dementia, has increased dramatically in recent 
years and, AD continues to be a primary cause of persistent 
impairment and mortality. 50 million dementia patients have 
been reported globally in 2018 [64]. The mental, physiologi-
cal, and economic burden of Alzheimer’s disease affects not 
just people and families, but community as a whole, because 
there is no treatment or slowing of the disease’s course [72]. 
A number of hereditary and non-genetic variables including 
the alleles of the apolipoprotein E (APOE) gene have also 
been linked to its etiology [73].

important cellular participants in neuroinflammatory pro-
cesses. On the other hand, microglia has a multifaceted 
role that includes an anti-inflammatory effect in which 
they ingest toxic proteins and apoptotic cells, as well as a 
(chronic) pro-inflammatory phenotype that fosters neuro-
toxicity by producing and secreting excessive amounts of 
inflammatory regulators [68, 69].

The major signaling molecules of the sphingolipids sys-
tem to initiate a pro/anti-inflammatory activity are ceramide 
and sphingosine-1-phosphate [69]. For instance, in the 
dopaminergic neurons, mitochondrial sphingosine-1-phos-
phate has been shown to promote mitochondrial function in 
a mouse PD model [70].

Accordingly, sphingolipids are related with a number of 
diseases, including AD, where inflammation is a result of 
microglial activation driven by -amyloid plaques [71]. As 
important components of the oligodendrocyte membrane, 
sphingolipids govern myelination in the CNS (Fig. 3). Anti-
bodies against myelinic sphingolipids have been reported 
in the serum and cerebrospinal fluid samples of individu-
als with multiple sclerosis, as well as ceramide buildup in 
lesions [10, 71].

Fig. 3 The role of Vitamin K in the synthesis of sphingolipids and 
cognitive function. Sphingolipids are found in high amounts in the 
membranes of brain cells and Vitamin K is needed for their synthesis. 

As important components of the oligodendrocyte membrane, sphingo-
lipids play a central role in myelination, and maintenance of myelin 
stability and healthy cognitive function. Created with BioRender.com.
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neuronal MK4 concentrations were also linked to lower lev-
els of neurofibrillary tangle density, high Braak stage, and 
the presence of Lewy bodies, according to further analysis 
of neuropathologically defined outcomes. These results add 
to the expanding research showing a protective relation-
ship between dietary consumption of vitamin K and aging-
related cognitive deterioration [77].

Drugs used in the prevention and treatment of thrombo-
embolic disorders in older persons are known as vitamin K 
antagonists. Brangier et al., validated the cross-sectional 
association between the use of vitamin K antagonists and 
reported decreased cognitive performance during 24 months 
of follow-up in geriatric patients using vitamin K antago-
nists [78].

Soutif-Veillon et al., [79] aimed to explore the relation-
ship between dietary vitamin K consumption and older 
individuals’ subjective memory complaints, namely their 
existence and severity. It was found that in older persons 
not taking vitamin K antagonists, higher dietary vitamin 
K consumption was linked to fewer and milder subjective 
memory complaints.

A lifelong low intake of vitamin K was linked to a loss in 
spatial learning capacity in 20-month-old rats. This associa-
tion was made with greater levels of ceramides in the hip-
pocampus and decreased levels of gangliosides [18].

Vitamin K2 reduced neuronal death caused by β-amyloid, 
in PC12 cells originating from a rat pheochromocytoma. The 
cells that had been pretreated with Vitamin K2 showed signifi-
cantly reduced apoptosis when exposed to either hydrogen per-
oxide (H2O2) or β-amyloid. Pretreatment with Vitamin K2 also 
lowered the number of apoptotic signaling proteins, lowered 
the Bax/Bcl-2 ratio, decreased reactive oxygen species (ROS), 
and raised glutathione, a potent antioxidant. The particular class 
of serine/threonine kinases known as mitogen-activated pro-
tein kinases (MAPKs) regulates cellular development, death, 
and responses to external stimuli including cellular stress. 
p38 MAPKs are the effector enzymes in the MAPK pathway. 
Mammalian cells’ phosphorylated p38 MAPKs react to exter-
nal stressors and thus stimulate apoptosis [80]. According to 
studies, the p38 MAPK signaling pathway in AD is activated 
when H2O2 levels rise (Fig. 4) [80–82].

By reducing the phosphorylation of p38 MAPK, vita-
min K2 lowered phospho-p38 MAPK to p38 MAPK ratio 
and prevented cell death whereas Aβ and H2O2 stimulated 
phospho-p38 MAPK. Therefore, vitamin K2 was suggested 
to prevent apoptosis through activating the p38 MAP kinase 
pathway [82]. Damage to mitochondria, reduction in the 
mitochondrial membrane potential, and increased ROS gen-
eration cause a caspase-mediated apoptotic pathway, which 
is the primary cause of AD pathogenesis [83]. Accordingly, 
vitamin K may inhibit apoptosis by inhibiting the phosphor-
ylation of p38 MAPK in relation to its antioxidant effect.

Extracellular accumulation of the neurotoxic β-amyloid 
(amyloid beta (β) peptides) and neurofibrillary tangles 
(tau proteins) in the brain are the two hallmarks of AD. 
Accordingly, senile plaques which are extracellular amy-
loid deposits that accumulate, are frequently linked to AD 
as a physiological characteristic of the disease, which are 
extracellular amyloid deposits that accumulate. Hyperphos-
phorylated tau proteins are the most important constituents 
of neurofibrillary tangles. Phosphorylated tau accumulates 
in neurons during AD. Before reaching a steady state that 
is susceptible to aggregation, phosphorylated tau gradu-
ally loses its usual function and binds to microtubules [74]. 
Apolipoprotein E (APOE), presenilin 1 (PSEN1), presenilin 
2 (PSEN2), and the amyloid precursor protein (APP) are 
related to AD. Early-onset AD, which accounts for 5% of all 
cases, is caused by mutations in the genes for APP, PSEN1, 
and PSEN2. Although APOE mutations do not directly 
cause late-onset illness, they significantly raise the preva-
lence of the condition in adults over 65 [6, 75].

Vitamin K has important effects on the neurological sys-
tem and as a result of our research in databases, we deter-
mined that Alzheimer’s disease is associated with vitamin 
K2 more than vitamin K1. Although both vitamin K1 and 
K2 have been shown to have positive effects on brain health, 
unlike VK1, VK2 can activate a range of extrahepatic vita-
min K-dependent proteins having different complex activi-
ties. One of the best studied is Gas6, which has a wide 
distribution in the nervous system where it regulates neuro-
inflammation [72, 76].

In European diets, vitamin K2 accounts for only 10% 
of dietary vitamin K [72]. Almost all MKs are produced 
by bacteria, and the majority of them may be found in 
fermented foods including natto, sauerkraut, pickled veg-
etables, and certain cheeses. MK-4 is the sole Vitamin K2 
isoform formed by conversion from Vitamin K1 rather than 
bacterial production, and it may be found in meat, fish, and 
egg yolk [72].

Booth et al. (2022) measured the concentrations of vita-
min K and related metabolites in human brains, as well as 
their relationships to pre-mortem tests of cognitive func-
tion and post-mortem neuropathologic results in 325 par-
ticipants, in order to assess the hypothesis that higher 
vitamin K levels are connected to specific changes that 
reduce the risk of dementia and cognitive decline. Addi-
tionally, relationships between plasma vitamin K levels of 
ante-mortem blood sampling and post-mortem neuropatho-
logic results were examined. MK4, the main vitamin K 
metabolite in the brain, was found in higher quantities in 
the post-mortem brain and was linked to improved cogni-
tive ability before death. Improved cognitive function and 
a decrease in the rate of cognitive decline were also linked 
to increased plasma vitamin K1 concentrations. Increased 
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antioxidant effect of vitamin K in this model was unrelated 
to its recognized biological function in carboxylation [36].

A very recent investigation found comparable results in a 
C6 cell line of rat astroglia that had been transfected to express 
Aβ. Increased Vitamin K2 concentrations resulted in cells 

Studies on the mechanisms of the antioxidant effect of 
vitamin K continue. Primary cortical neurons exposed to 
nanomolar doses of vitamin K are protected against oxida-
tive cell death brought on by GSH deficiency. Moreover, the 

Table 1 Studies evaluating the effect of Vitamin K on Parkinson’s Disease
References Purpose and Study Population Analysis Method Results
Vos et al. 
2012 (103)

In pink1 mutated Drosophila (Heix 
mutants) electron carrier function of Vita-
min K2 was evaluated.

Time-dependent ATP production were 
evaluated in mitochondria isolated from 
Drosophila.

Vitamin K2, acted as a mitochondrial 
electron transporter that supported 
ATP synthesis, and was able to 
reverse mitochondrial dysfunction.

Prasuhn et 
al., 2021 
(104)

Potential effects of MK-7 were evaluated 
in MitoPD patients having heterozygous 
mutations in Parkin and PINK1, sporadic 
PD patients, and healthy individuals.

31P-Magnetic resonance spectroscopy 
imaging measurements were conducted in 
pre- and post-medication intake.

Pillot data revelaed increased ATP 
levels in two homozygous PINK1 
mutation carriers treated with MK-7.

Yu et al., 
2020 (105)

Serum VK2 levels of PD patients were 
compared with those of the control group 
and PD patients

Enzyme-linked immunosorbent assay was 
used to detect VK2 in plasma

VK2 was reported to be related with 
the onset and progression of PD, and 
suggested to be used as a biomarker 
for PD diagnosis and prognosis.

Yu et al., 
2016 (106)

Molecular mechanisms of the effects of 
MK4 on rotenone-induced microglial acti-
vation were investigated in vitro.

TNF-α and IL-1β levels in BV2 cells were 
measured by ELISA kits. Mitochondrial 
membrane potential, ROS production, and 
cell viability were evaluated.

MK-4 inhibited microglial activa-
tion, neuronal cell death and lowered 
ROS generation and suppressed 
NF-B activation.

da Silva et 
al.,2013 (108)

Effect of vitamin K on α-syn aggregation 
were investigated and compared with other 
anti-fibrillogenic molecules.

BL21(DE3)pLysS E. Coli transfected with 
pT7-7-wt plasmid containing human α-syn. 
Fibrillization of α-syn and fibril-destabilizing 
activity were determined.

Vitamins K interacted with the 
N-terminus α-syn and regulated pro-
tein fibrillization.

Fig. 4 Potential mechanisms of the beneficial effects of Vitamin K2 
in Alzheimer’s disease (AD) include inhibiton of apoptotic signaling 
proteins and oxidative stress through decreased reactive oxygen spe-
cies activation of potent antioxidants. The inhibition of the p38 MAP 

kinase pathway was discovered as a mechanism for Vitamin K2’s puta-
tive protective involvement in Alzheimer’s disease. Inhibition of glial 
activation prevents neurodegeneration in AD. Created with BioRen-
der.com.
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a group of people 65 and older. In specific, Presse et al. [91] 
presented the findings of a cross-sectional investigation on 320 
old people from the NuAge study who were aged 70 to 85 and 
free of cognitive decline in 2013. The findings highlighted the 
significance of vitamin K in memory consolidation by demon-
strating that recruited people with greater blood phylloquinone 
significantly improved verbal episodic memory whereas no 
link was identified with non-verbal episodic memory, speed of 
processing, or executive skills [91].

Higher vitamin K consumption is linked to slower cogni-
tive decline in older individuals’ community-based research. 
Moreover, better cognitive performance is related to greater 
levels of circulating vitamin K, which suggests that vitamin 
K may have a role in the pathophysiology causing cognitive 
decline [92–94].

Vitamin K2 was shown to enhance ATP levels and reduce 
cognitive decline in mice expressing β-amyloid or phos-
phorylated tau proteins in anesthetics exposed mice. Effects 
of two isoflurane and desflurane as different anesthetics on 
transgenic mice and wild-type mice were examined. Iso-
flurane exposed transgenic mice developed mutant forms 
of the APP gene, which is linked to familial Alzheimer’s 
disease and demonstrated cognitive delay and they had 
fewer synapses and lower levels of ATP generated in their 
hypothalamus, both of which were alleviated by Vitamin 
K2 therapy [72, 95]. Vitamin K2 has also been shown to 
reduce sevoflurane induced tau phosphorylation and cogni-
tive impairments newborn mice [96]. As these studies eval-
uated distinct indicators for AD in mice, and both showed 
that Vitamin K2 has neuroprotective benefits implies that 
Vitamin K2 might be useful in the treatment of AD.

In addition to all these studies that directly correlate AD 
with vitamin K, we think that the effect of vitamin K on 
atherosclerosis-related vascular health, which is an impor-
tant feature of AD, should also be emphasized. There is 
strong evidence that vascular health is intimately connected 
to AD. Atherosclerosis of the brain, small vessel disease, 
cerebral amyloid angiopathy, and blood-brain barrier failure 
have all been linked to AD [97]. According to the results of 
population-based cohort and cross-sectional studies Vitamin 
K2, rather than Vitamin K1, has been shown to function in 
arterial health [98, 99]. Based on the link between vascular 
health and AD, Vitamin K2 might be suggested to be useful 
in preventing the disease.

Vitamin K and Parkinson’s Disease

PD has a complex molecular structure, with numerous cel-
lular constituents and metabolic procedures related in the 
disease’s genesis and progression [100]. Mitochondrial dys-
function is a widely proposed pathophysiological pathway 
in sporadic PD that leads to neurodegeneration.

surviving longer as a result to prevention against β-amyloid-
induced neuronal cell death [84]. The inclusion of warfarin, 
which blocks vitamin K-dependent carboxylation, reversed 
this action. Vitamin K2 also decreased the amount of ROS in 
a dose-dependent manner and inhibited the activation of cas-
pase-3, an enzyme that initiates β-amyloid-induced apoptosis. 
Moreover, the researchers discovered that Gas6 protects Vita-
min K2 against A cytotoxicity, which supports findings from an 
earlier investigation reporting dramatically reduced β-amyloid-
induced chromatin condensation and DNA fragmentation by 
Gas6 [60, 64]. Based on these studies mentioned above we 
suggest that there is compelling evidence for the antiapoptotic 
and antioxidant capabilities of Vitamin K2.

Neuroinflammation and persistent glial hyperactivation 
have been linked to neurodegeneration and the etiology of 
AD [72, 73]. Although, the clearance of Aβ by astrocytes 
and microglia can protect neurons, prolonged persistent 
activation might hasten or even induce neurodegeneration. 
Activated microglia sets off an inflammatory cascade that 
results in the release of an overabundance of proinflamma-
tory mediators. Through a number of processes, including 
loss of synapse, neuron death, and neurotoxic astrocytes 
activation, the disturbance of microglial homeostasis lead 
to a chronic neuroinflammation state and eventually leads to 
neurodegeneration [85, 86].

When the mouse microglia-derived MG6 cells were exposed 
to LPS, MK-4 reduced microglial inflammation, NF- B signal-
ing, the generation of major inflammatory cytokines (TNF-α, 
IL-1β, and IL-6), as well as cytokine overexpression [87]. In 
rat astrocytes, MK-7 was reported to counteract the increase of 
proinflammatory cytokines generated by glial activation [88]. 
MK-7 also inhibited the generation of reactive oxygen spe-
cies (ROS) in hypoxic astrocytes, supporting the antioxidant 
actions of VK2 [88, 89].

Mitochondrial dysfunction has been demonstrated in 
AD, and the link between mitochondrial dysfunction lead-
ing to neuroinflammation, and neurodegeneration in AD, as 
well as PD, and multiple sclerosis has been reported [72, 
89]. Vitamin K2 lowered brain β-amyloid levels, enhanced 
ATP generation, repaired mitochondrial dysfunction, 
enhanced climbing ability, and extended longevity in arctic 
mutant Aβ42 drosophila [90]. Vitamin K2 also increased the 
expression of genes involved in autophagy and considering 
that stimulating autophagy has been proven to minimize Aβ 
neurotoxicity and enhance cognition, it is noteworthy that 
Vitamin K2’s ability to minimize β-amyloid neurotoxicity 
and restore mitochondrial dysfunction makes it a promising 
novel treatment for AD.

The connection between vitamin K insufficiency and cogni-
tive deterioration is still up for discussion today [10]. There is 
a clear link between declining cognitive and behavioral abili-
ties and low vitamin K consumption or serum concentration in 
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serum VK2 levels. Accordingly, VK2 was suggested to be 
related with the onset and progression of PD, and to be used 
as a biomarker for PD diagnosis and prognosis. Long-term 
low level of VK2 was proposed to be a factor contributing to 
the PD process by increasing the coagulation signal [105].

Growing research reports that vitamin K2 is associated 
with inflammatory regulation. In rotenone treated BV2 
cells, a mouse microglial cell line MK-4 inhibited microglial 
activation by restoring mitochondrial membrane potential, 
lowering ROS generation and suppressing NF-B activation. 
MK-4 also inhibited neuronal cell death induced by microg-
lial activation [106].

As a presynaptic neuronal protein, α-synuclein has been 
associated to PD both genetically and neuropathologically. 
α-Synuclein may play a role in the pathogenesis of PD in a 
variety of ways, however it is widely assumed that abnormal 
soluble oligomeric conformations of α-synuclein, known as 
protofibrils have toxic effects that cause neuronal death by 
affecting a variety of intracellular pathways, such as synap-
tic function [107]. In a study that approaches the relationship 
between PD and Vitamin K from a different perspective, the 
effects of vitamin K, on α-synuclein were investigated and 
compared to other anti-fibrillogenic compounds including 
quinones, polyphenols, and lipophilic vitamins. In substoi-
chiometric doses, vitamin K slowed α-synuclein fibrilliza-
tion, and it was suggested that, 1,4-naphthoquinone can 
control α-synuclein fibrillization, which may act as a pos-
sible framework for developing novel monoamine oxidase 
inhibitors [108].

Taken together, these findings summarized in Table 1 
demonstrate that Vitamin K may enhance ETC efficiency 
and ATP production, may present anti-inflammatory and 
anti-fibrillogenic properties and has the potential to treat 
inflammatory illnesses. However, further data and thor-
ough analyzes are needed before confirming a causal link 
between Vitamin K2 and the development of PD.

Vitamin K and multiple sclerosis

Multiple sclerosis (MS) is a neurodegenerative disease ill-
ness that affects the CNS and is caused by an autoimmune 
process. MS damages the CNS’s myelinated axons, destroy-
ing myelin and axons to variable degrees [109]. As a chronic 
demyelinating disorder, MS affects young and middle-aged 
individuals and is one of the most frequent debilitating neu-
rological disease [110]. It is more common in women than in 
males, and it is more prevalent in the northern hemisphere. 
The primary pathophysiology of the disease is thought to 
involve a variety of immunological cells [111]. Environ-
mental factors, or the interaction of environmental param-
eters and susceptible genes, are considered to play a key 
part in the disease’s genesis. A number of variables that can 

Under specific brain pathological conditions, mitochon-
drial respiratory chain structure may have an influence on 
energy efficiency, mROS, and neuronal survival [101].

PD patients’ brains contain high amounts of iron, 
enhanced dopamine oxidation, and decreased endogenous 
antioxidants (glutathione and coenzyme Q10). Dopamine’s 
oxidative metabolism generates peroxides that combine 
with ferrous iron to make extremely lethal hydroxyl radi-
cals. Increased oxidative stress is associated with the degen-
eration of dopaminergic neurons in PD patients. Moreover, 
genetic variations are one of the risk factors causing PD. 
DNA variants in SNCA, PARK2, PINK1, DJ-1 (PARK7) 
and LRRK2 are related to familial PD [6].

Despite the rarity of monogenic PD, homozygous or 
compound-heterozygous PARK2 and PINK1 mutations 
have been linked to mitochondrial dysfunction and subse-
quent bioenergetic deficiencies. However, it is preferable to 
focus on specific pathways for genes and pathophysiologi-
cal markers of the afflicted person when developing tailored 
therapy choices for PD patients [102].

In bacteria Vitamin K2 is found as a membrane-bound 
electron carrier. Using a pink1 mutated model (Heix 
mutants), vitamin K2 has been reported to be vital and 
sufficient for the transfer of electrons in Drosophila mito-
chondria, resulting rescued mitochondrial defects. Like ubi-
quinone, Vitamin K2 has been reported to be able to transfer 
the electrons, leading to an effective ATP production in 
Drosophila mitochondria. In pink1 and parkin mutant adult 
flies, vitamin K2 was even beneficial in treating systemic 
locomotion deficits. Vitamin K2 did not directly impact 
mitochondrial reconfiguration, but it did contribute to the 
proton motif force that aids ATP generation, comparable 
to ubiquinone, by enhancing ETC efficiency. Accordingly 
Vitamin K2 has been suggested to be a potentially viable 
treatment for mitochondrial dysfunction, particularly in PD 
patients with Pink1 or Parkin deficiency [103].

Clinical research investigating the neuroprotective 
effects of increasing mitochondrial bioenergetics in vivo, 
may help to develop individualized treatment of PD 
patients. In a recent project, the investigation of the poten-
tial effects of MK-7 (long-chain menaquinone 7, MK-7) 
in mitoPD patients having heterozygous mutations in Par-
kin and PINK1, sporadic PD patients, and healthy indi-
viduals has been proposed. The researchers suggested that 
MK-7 might act as a mitochondrial enhancer and faciliate 
the transport of electrons within the ETC. Their pilot data 
reported increased ATP levels of two homozygous PINK1 
mutation carriers treated with MK-7, through 31P-Magnetic 
resonance spectroscopy imaging measurements pre- and 
post-medication intake [104]. In another clinical study, 
serum VK2 levels of PD patients were compared with those 
of the control group and PD patients had considerably lower 
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lateral sclerosis will attract more attention in the future, consid-
ering its role in improving cognitive functions.

In the coming periods, the potential of vitamin K to 
improve mitochondrial functions and ATP production will 
garner greater interest in the development of individual 
treatment methods according to the genetic background of 
neurodegenerative diseases.
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