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Abstract
Renal ischemia-reperfusion (IR) injury triggers a cascade of signaling reactions involving an increase in Ca2 + charge 
and reactive oxygen species (ROS) levels resulting in necrosis, inflammation, apoptosis, and subsequently acute kidney 
injury (AKI).

Transient receptor potential (TRP) channels include an essential class of Ca2+ permeable cation channels, which are 
segregated into six main channels: the canonical channel (TRPC), the vanilloid-related channel (TRPV), the melastatin-
related channel (TRPM), the ankyrin-related channel (TRPA), the mucolipin-related channel (TRPML) and polycystin-
related channel (TRPP) or polycystic kidney disease protein (PKD2). TRP channels are involved in adjusting vascular 
tone, vascular permeability, cell volume, proliferation, secretion, angiogenesis and apoptosis.

TRPM channels include eight isoforms (TRPM1–TRPM8) and TRPM2 is the second member of this subfamily that 
has been expressed in various tissues and organs such as the brain, heart, kidney and lung. Renal TRPM2 channels have 
an important role in renal IR damage. So that TRPM2 deficient mice are resistant to renal IR injury. TRPM2 channels 
are triggered by several chemicals including hydrogen peroxide, Ca2+, and cyclic adenosine diphosphate (ADP) ribose 
(cADPR) that are generated during AKI caused by IR injury, as well as being implicated in cell death caused by oxidative 
stress, inflammation, and apoptosis.
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Introduction

Renal ischemia-reperfusion (IR) injury, defined as the 
cessation and restoration of renal blood flow (RBF), is a 
major cause of acute kidney injury (AKI) [1, 2]. AKI is a 
worldwide health issue that is associated with a high rate of 
morbidity and mortality [3]. Renal IR injury is most com-
monly caused by transient or persistent renal hypoperfu-
sion [4]. However, it may also be owing to temporary renal 
artery occlusion during suprarenal aortic aneurysm repair, 
nephrectomy, renal transplantation [5], cardiovascular sur-
gery, hypovolemic, and septic shock [6, 7].

Interruption of RBF during the ischemic phase decreases 
medullary blood flow and reduces oxygen and glucose sup-
ply to tubular structures in this area, resulting in an imbal-
ance in delivery, and demand [5]. Reduced O2 levels alter 
metabolism from aerobic to anaerobic, which cannot pro-
vide the requirement of aerobic tissues, resulting in fast 
depletion of intracellular ATP levels [8]. ATP depletion 
causes an increase in cytoplasm Ca2 + charge, hypoxanthine 
level inside the cells, and production of reactive oxygen 
species (ROS), which finally results in acidosis [9]. Apopto-
sis and necrosis are triggered by hypoxia, glucose depriva-
tion, acidosis, and the formation of ROS [10]. In addition, 
reduced intracellular pH and ATP levels during the ischemia 
phase result in (1) lysosome membrane instability, followed 
by lysosome enzymes exudation and cell structure distur-
bance, and (2) inhibition of ionic pumps, especially the 
Na+/K+ ATPase [11].

Inhibition of Na+/K+ ATPase activity and Na+/H+ anti-
porter function, which attempts to correct the intracellular 
pH by pumping Na+ ions into the cell and protons out of 
the cell, results in increased intracellular Na+, water, and 
edema [12, 13]. Furthermore, because of ATP depletion, the 
cessation of Ca2+ pumping out of the cells and the suppres-
sion of Ca2+ reuptake into the endoplasmic reticulum raises 
intracellular Ca2+ levels. Furthermore, the cessation of Ca2+ 
pumping out of the cells and the suppression of Ca2+ reup-
take into the endoplasmic reticulum due to ATP depletion 
raises intracellular Ca2+ levels [9].

The cytoplasmic Ca2+ overload activates Ca2+-dependent 
proteases like calpains, proteases, phospholipases, and cas-
pases, which are inactive due to the acidic environment but 
can cause cell damage after pH normalization during reper-
fusion [9, 14]. Besides, Ca2+ overload leads to ROS pro-
duction in mitochondria during ischemia, which is followed 
by the opening of the mitochondrial transition pore (mPTP) 
in reperfusion as a result of pH normalization, resulting in 
apoptosis and cell death [15]. Despite the fact that quick 
reperfusion recovers the oxygenation and substrates needed 
for aerobic ATP production and normalizes extracellular 
pH by washing out accumulated H+, it creates additional 

damage known as reperfusion damage [9, 16, 17]. Ca2+ 
overload causes activation of the calpains, ROS production, 
reduction of antioxidant capacity, mPTP opening, apoptosis, 
necrosis, endothelial dysfunction, alterations in outer med-
ullary microcirculation, inflammation, and tubular injury [5, 
18, 19].

TRPM2, the second TRPM channel subfamily member, 
enhances intracellular Ca2+, ROS generation, and oxida-
tive stress, all of which are implicated in physiological and 
pathological processes [6, 20, 21]. TRPM2 has been found 
to play a deleterious role in IR injury in a variety of tis-
sues, including the kidney, brain, and pancreas [22, 23]. 
Therefore, it is necessary to review the important patho-
physiological mechanisms mediated by TRPM2 activation 
in renal IR injury. This review will focus on new results that 
provide light on the role of TRPM2 in IR-induced inflam-
mation, oxidative stress, apoptosis, and AKI. Fig. 1 shows 
how TRPM2 channel opening activates oxidative stress, 
apoptosis, and inflammation signaling pathways in renal IR 
injury (Fig. 1).

Materials and methods

For this review, we gathered data from a variety of sources, 
including PubMed, Scopus, Web of Science (WOS), and 
EMBASE. The following keywords and or their equiva-
lents were used for the search strategy; TRPM2, acute 
kidney injury, oxidative stress, inflammation, and renal 
ischemia-reperfusion.

General structural features of TRPM2

Transient receptor potential (TRP) channels with six trans-
membrane domains belong to a superfamily of monova-
lent and divalent cation permeable ion channels [24]. TRP 
channels are implicated in many biological processes, i.e., 
regulating vascular tone, permeability, proliferation, cell 
volume, secretion, apoptosis, angiogenesis, and cell death 
[25].

Based on differences in amino acid sequence similarities 
between the different gene products, this superfamily with 
28 members is classified into six subgroups: canonical (C), 
vanilloid (V), melastatin (M), mucolipin (ML), polycystin 
(P), and, ankyrin (A) [26]. TRPM1 to TRPM8 are mem-
bers of the TRPM subfamily. TRPM1 is the name of the first 
member to be characterized (M, melastatin) [27].

TRPM2 was first isolated from the human brain and 
named LTRPC-2 or TRPC7. This channel was later classi-
fied as TRPM2 [28]. The TRPM2 gene is found on chro-
mosome 21q22.3 in humans. Its 6.5-kilobyte transcript 
codes a 1503-amino-acid protein with a molecular weight 
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of 170 kDa. It covers 90 kb which contains 32 exons. The 
trpm2 mouse gene has 34 exons and produces a 1507-amino-
acid protein and is highly similar to human TRPM2 gene 
[23, 24].

The TRPM2 channel is a protein with 1503 amino acids 
with six transmembrane fragments, namely S1 to S6, a loop 
domain between S5 and S6 that forms pores, and intracellu-
lar N and C termini [29, 30]. TRPM2 contains four homolo-
gous domains and a calmodulin (CaM)-binding IQ-like 
motif at its N terminus, which is needed for channel acti-
vation [31]. The TRP box, coiled-coil domain (CCD), and 
NUDT9 (Nudix-like domain or NUDT9 homology domain) 
are all found at the C terminus (NUDT9-H) [30, 31]. The 
most common endogenous ligand for TRPM2 is adenosine 
diphosphate ribose (ADPR), which binds to the NUDT9-
H domain and opens the channel, allowing Ca2+ inflow. 
The enzymatic activity of NUDT9H catalyzes the conver-
sion of ADPR to ribose-5-phosphate (R5P), with adenine 
monophosphate (AMP) acting as a negative regulator for 
ADPR gating TRPM2 [21, 30, 32]. TRPM2 has both ADPR 
hydrolase enzymatic and ion channel gating activity, and is 
referred to as a “coenzyme” because of its ability to convert 
ADPR into AMP and R5P [25, 29, 33]. Calmodulin (CaM) 
has been demonstrated to have a key role in TRPM2 chan-
nel facilitation and activation; it interacts directly with the 
IQ-like motif and modifies TRPM2’s Ca2+dependent activa-
tion, increasing intracellular Ca2+ levels [34].

TRPM2 has been found in a variety of organs (kidney, 
brain, heart, lung, liver, spleen, bone marrow, and pancreas) 
and cell types (neurons, hematopoietic, cardiomyocytes, 
endothelial cells, and pancreatic β -cells) [25, 26, 35, 36]. 
TRPM2 is almost expressed in the cortex and outer medulla 
of the kidney’s proximal tubular epithelial cells. TRPM2 
receptors were also shown to be intracellular without a clear 

plasma membrane localization, whereas glomeruli, peri-
tubular endothelial cells, and interstitial cells were spared 
[25]. In the ischemic AKI, the TRPM2 channel is activated 
by different molecules, including cyclic ADPR (cADPR), 
hydrogen peroxide, and Ca2+ [37] that are implicated in oxi-
dative stress, cell death, apoptosis, and inflammation [36, 
38].

Regulation of TRPM2

TRPM2 activators

Although ADPR is the most common TRPM2 activator, 
various ADPR analogs, including ADPR-2′-phosphate, 
ADPR2′-O-acetyl-, and 2′-deoxy-ADPR can activate the 
channel [6]. Furthermore, it has been shown that TRPM2 
can be activated by several second messengers associated 
with adenine nucleotides that are metabolically related to 
ADPR, including cyclic ADPR (cADPR), nicotinamide 
adenine dinucleotide (NAD), and nicotinic acid adenine 
dinucleotide phosphate (NAADP) [6, 29]. Other molecules 
like reactive nitrogen species (NOS), ROS, and H2O2 are 
triggers of the TRPM2 channels and bind to them in patho-
logical conditions, including oxidative stress, inflamma-
tion, and cell death [25, 39]. Besides, TRPM2 is activated 
by tumor amyloid β-peptide, necrosis factor α (TNF-α), 
and concanavalin A. All of these extracellular signals cause 
ADPR production. ADPR binds to the TRPM2 NUDT9-H 
domain on the C-terminus and activates TRPM2, permitting 
substantial penetration of monovalent or divalent cations 
such as K+, Na+, Zn2+, and Ca2 + [6, 24].TRPM2 is also 
regulated by intracellular Ca2+. Therefore, when ADPR 
interacts with TRPM2, Ca2+ is released [36]. TRPM2 is 
entirely activated by Ca2+; thus, the loss of outer or inner 

Fig. 1.  Schematic diagram of 
activation of inflammatory 
cytokines and cells, production 
of ROS, oxidative stress, and 
apoptosis in renal IR injury and 
the role of TRPM2 channels 
activation in these pathways.
VCAM: Vascular cell adhesion 
molecule, ICAM: Intercellular 
Adhesion Molecule, ROS: Reac-
tive oxygen species, NUDT9-H: 
Nudix-like domain homology 
domain, PARG: Poly (ADP-
Ribose) Glycohydrolase, PARP: 
Poly(ADP-Ribose) Polymerase, 
ADPR: Adenosine diphosphate 
ribose, NFkB: Nuclear Factor 
kappa B, ERK: Extracellular 
signal-regulated kinases, AIF: 
apoptosis-inducing factor.
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monocytes is triggered by TRPM2-mediated Ca2+ influx, 
exacerbating neutrophil inflammatory properties [50, 51]. 
Because inflammation is an important mediator of IR injury, 
TRPM2 expression on hematopoietic cells could explain 
Trpm2-KO mice’s resistance to IR damage. Using bone mar-
row chimeric mice with Trpm2 KO in either hematopoietic 
or parenchymal cells, Gao et al. discovered that Trpm2 KO 
in parenchymal cells protected the kidney against IR injury, 
whereas Trpm2 KO in hematopoietic cells had no effect on 
ischemia-induced kidney damage. According to these data, 
TRPM2 in renal parenchymal cells appears to be a mediator 
in renal IR damage [31].

TRPM2-induced intracellular Ca2+ increase activates 
Ca2+-dependent signaling pathways such as the multi-
subunit IB kinase (IKK) complex and extracellular signal-
regulated kinase (ERK), which leads to nuclear factor B 
(NF-κB) activation [52, 53]. Studies identified the activa-
tion of NF-κB [54–56] and TRPM2 after renal IR damage 
[6, 31]. TRPM2 has been shown to modulate NF-κB sig-
naling so that TRPM2 deficiency inhibited NF-κB signal-
ing by blocking Jun N-terminal kinases (JNKs) signaling 
[57]. These findings imply that TRPM2 inhibiting and then 
preventing NF-κB activation can protect the kidney against 
inflammation.

Kurata et al. investigated the effects of TRPM2 on isch-
emic kidney in trpm2 KO mice by inducing bilateral IR 
at various ischemia periods (20, 25, and 30 min). A com-
parison of renal function in trpm2 KO and WT mice after 
30 min of ischemia revealed a significant rise in plasma cre-
atinine in KO mice, but not in 20 or 25 min of ischemia. In 
trpm2 KO, mRNA expression of kidney injury molecule 1 
(Kim1) was considerably greater in 25 and 30 min of isch-
emia, and monocyte chemoattractant protein-1, (MCP-1 or 
Ccl2) was significantly higher in 20 and 25 min of ischemia. 
In contrast to the protective effect of TRPM2 deletion in the 
IR injury (28 min) described by Gao et al., trpm2 KO was 
deleterious in this investigation, as evidenced by a rise in 
plasma creatinine and higher mRNA expression levels of 
Kim1 and Ccl2 in several ischemia times. These disparities 
are most likely due to varied anesthetics and ischemia times 
in the two studies [58].

TRPM2 and oxidative stress in renal IR injury

When the balance between oxidants (free radicals) and 
antioxidants is disrupted, oxidative stress results, which, 
depending on the severity and duration, can cause tissue 
damage [59, 60]. Mammalian healthy cells produce a tiny 
amount of ROS when cellular metabolism is normal [61]. It 
is established that ROS moderate amounts affect many cel-
lular signaling pathways, as well as proliferation, therefore 

Ca2+ prevents ADPR from inducing TRPM2 currents. This 
impact might be due to the canal’s increased sensitivity to 
ADPR [40, 41]. Ca2+ also acts as a concentration-dependent 
gate for the TRPM2 channel. This can be due to conforma-
tional changes induced by CaM interaction with the TRPM2 
IQ-like motif [6]. Ca2+-bound CaM enhances the interac-
tion between CaM and the IQ-like motif, providing positive 
feedback for TRPM2 stimulation [36].

TRPM2 inhibitors

The first TRPM2 channel inhibitor discovered was adenos-
ine monophosphate (AMP), which is formed by hydrolysis 
of ADPR. AMP competes with ADPR by binding to binding 
sites located on the NUDT9-H domain of TRPM2 ion chan-
nels [42]. As a TRPM2 antagonist, 8-Br-ADPR can compete 
with ADPR to prevent TRPM2 activation [37]. Further-
more, protons and a variety of divalent heavy metal cations 
like Cu2+, Hg2+, Pb2+, Fe2+, Se2+, and Zn2+ inhibit TRPM2 
currents, all of these factors are targets of the TRPM2 chan-
nel pore region. Some structurally unrelated pharmaco-
logical agents that have been found to block the TRPM2 
activity include clotrimazole, flufenamic acid (a member of 
nonsteroidal anti-inflammatory drugs), N-(p-amylcinnam-
oyl) anthranilic acid, and 2-Aminoethoxydiphenyl borate 
(2-APB) [6].

The role of TRPM2 channels in renal IR injury

TRPM2 and inflammation in renal IR injury

The inflammatory process triggered by renal IR damage 
induces cascades of proinflammatory cytokines (IL-1, IL-6, 
IL-10, and TNF-α) [43], chemokines (MCP, MIP-2, and 
IL-8) [44, 45], expression of various adhesion molecules 
(ICAM (Intercellular adhesion molecule), VCAM (Vascu-
lar cell adhesion molecule), P selectin, and E selectin by 
endothelial and parenchymal renal cells [46, 47]. The com-
bination of cytokines, chemokines, and adhesion molecules 
recruit leukocytes and neutrophils infiltration into the isch-
emic kidney, resulting in improved leukocyte-endothelial 
interactions, the generation of additional ROS and cyto-
kines, and eventually significant progression of kidney 
damage [48, 49].

TRPM2 expression was found in tubular epithelial cells 
across the cortex and outer medulla using immunofluores-
cence. TRPM2 is also found in hematopoietic cells [31, 35]. 
Gao et al. have shown that mice Trpm2 knockout (Trpm2-
KO) models are resistant to renal IR injury [31]. After IR 
injury, inflammatory cells like neutrophils entered the kid-
neys of Wild-Type (WT) mice, while this effect was less 
observed in Trpm2 KO animals. Chemokine production in 
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increases TRPM2 expression while 8BrcADPR decreases it 
[37]. These findings show that cADPR is an excellent Ca2+ 
entry coreceptor via TRPM2 channels and it is possible 
that 8-Br‐cADPR altered oxidant and antioxidant enzymes 
levels (increase and decrease, respectively) by decreasing 
TRPM2 expression [37].

Tamm-Horsfall protein (THP) levels in AKI have been 
related to ROS production, and systemic oxidative stress. 
A HEK 293 recombinant cell line producing an inducible 
version of TRPM2 was used by La Favers et al. to demon-
strate that THP suppressed TRPM2-mediated Ca2+ current 
and oxidative stress. The oxidative stress in vehicle-treated 
THP−/− animals was greater than in vehicle-treated THP+/+ 
animals. Inhibition of TRPM2 using 2-APB significantly 
reduced oxidative stress in THP+/+ and THP−/− mice 
exposed to IR injury. The disparity in oxidative stress found 
between THP+/+ and THP−/− animals was abolished after 
using 2-APB, showing that TRPM2 is a prime target for 
THP’s inhibitory impact on systemic oxidative stress [79].

TRPM2 and apoptosis in renal IR injury

In kidney cells of WT mice, IR damage increases apoptotic 
cell death by activating caspase-9 and caspase-3, reducing 
the expression of anti-apoptotic Bcl-xL and Bcl-2 proteins, 
which was reversed in Trpm2-KO animals exposed to IR 
[31]. This effect indicates that TRPM2 channels activate the 
apoptotic pathways after IR.

NADPH oxidase (NOX) is a transmembrane enzyme 
with several isoforms, including NOX oxidase 1 & 2, 
NOX1–5, NOX1 organizer, and NOX1 activator. The trans-
fer of electrons from NADPH to O2 by NOX is the primary 
source of renal ROS in the cortex [80, 81].

IR damage stimulates NADPH oxidase and RAC1 (a key 
element of NAPDH oxidase activation) in the kidney of WT 
mice, while both of them decreased in Trpm2-KO animals 
[31]. The activated RAC1 interacts with TRPM2, which 
generates a possible positive feedback loop, resulting in 
TRPM2 membrane localization and greater oxidant injury 
[31, 37]. Treatment with NSC23766 as the RAC1 inhibi-
tor before renal IR injury reduces NOX activation, PARP 
cleavage, and caspase-3 activity and increases the levels of 
anti-apoptotic proteins like Bcl-2 in mice subjected to IR 
injury [31].

ROS generated via activated NADPH oxidase causes 
DNA destruction and hence activates PARP, which functions 
as a modulator of cell death followed by IR injury [82]. The 
activated PARP increases the synthesis of PARP, which is 
converted into ADPR by PARG enzymes. ADPR stimulates 
Ca2+ influx through the TRPM2 channel and increases mito-
chondrial Ca2+ ion via NUDT9-H domain-TRPM2 C-ter-
minal attachment [83]. The mitochondrial Ca2+ overload 

playing a vital role in preserving cellular and tissue homeo-
stasis [61].

It is known that several pathological conditions like IR 
injury, mitochondrial dysfunction, metabolism dysfunction, 
drug overdose, elevated Ca2+ levels, and aging increase the 
formation of ROS [62, 63]. Free radicals cause renal dam-
age by DNA destruction, protein dysfunction, and lipid per-
oxidation ultimately leading to cell death [64].

The antioxidant defense systems deteriorate after renal 
IR injury, and the activity of antioxidant enzymes such as 
superoxide dismutase (SOD) and catalase (CAT) decreases, 
while the quantity of malondialdehyde (MDA), a lipid per-
oxidation product, rises [65]. Similar to oxidants, TRPM2 
channels increase the cell membrane’s permeability to Ca2+, 
which promotes endothelial damage and ultimately, cell 
death [66, 67]. An increase in intracellular Ca2+ driven by 
Ca2+ entry through TRPM2 channels is part of the oxidant-
induced breakdown of endothelial barrier function. There-
fore, TRPM2 is considered a cellular redox sensor [68, 69]. 
As a result of these events (intracellular Ca2+ and oxida-
tive stress), ADPR is generated and binds to the NUDT9-
H domain, activating TRPM2 [70]. The production of 
ADPR takes place via two enzymes, including nuclear poly 
(ADPR) polymerases (PARPs) and poly (ADPR) glyco-
hydrolases (PARGs) [71, 72]. PARP is triggered by oxida-
tive stress-induced DNA damage and performs DNA repair 
tasks; whereas PARG hydrolyzes PARP chains to release 
free ADPR. Another avenue for ADPR formation in mito-
chondria is when oxidative stress results in the production 
of free ADPR [72, 73].

TRPM2 channel activation leads to a rise in Ca2+ entry 
and, as a result, a rise in Ca2+ adherence to calmodulin 
(CaM). CaM interaction with an IQ-like motif in the N-ter-
minus of TRPM2 produces a positive response, activating 
TRPM2 channels and boosting the flow of Ca2+ through 
them. Increased intracellular Ca2+ activates Ca2+ dependent 
phospholipase A2, endonuclease, and proteases, ultimately 
leading to cell death in cells expressing TRPM2 channels 
[74–76]. While oxidative stress results in an excess of Ca2+, 
downregulating TRPM2-L, inhibiting TRPM2-S, or chelat-
ing Ca2+ might reduce TRPM2 activity and hence limit the 
rise in Ca2+ [28, 66, 77].

Furthermore, oxidative stress induces lipid peroxidation 
and the subsequent formation of highly electrophilic alde-
hydes such as 4-hydroxynonenal (4-HNE) that participate 
in renal IR injury [59, 60]. IR causes a significant rise in 
4-HNE in WT mice kidneys, but Trpm2-KO mice have sig-
nificantly lower 4-HNE levels [60]. The levels of H2O2, 
MDA, SOD, CAT and Glutathione (GSH) are increased in 
ischemic renal tissue while injection of 8 bromocyclic ADP 
ribose (8-BrcADPR) as an antagonist of cADPR, decreases 
the levels of all these enzymes[78]. Besides, renal IR injury 
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creatinine (Cr), and epithelial cell membrane damage in WT 
animal models while these effects were improved positively 
in TRPM2-KO animals [31]. TRPM2 deletion decreased 
renal dysfunction significantly, as demonstrated by lower 
serum Cr, BUN, and kidney injury molecule 1 (KIM-1) and 
lipocalin-2 (NGAL, a marker of kidney injury) levels [31, 
57, 78]. Treatment with NSC23766 (RAC1 inhibitor), 8-Br‐
cADPR, and 2-APB before ischemia, decreases ischemic 
damage in WT mice, while there was no additional amelio-
ration in renal function in TRPM2-KO mice [78].

Conclusion

From this review it can be concluded that TRPM2 ion chan-
nels through various mechanisms such as ROS production, 
oxidative stress, Ca2+ overload, apoptosis, and inflamma-
tion are involved in AKI induced by IR injury. There is a 
crosstalk between the TRPM2 and its role in oxidative 
stress, inflammation, apoptosis, and inflammatory cells acti-
vation through Ca2+ overload.

The pharmacological inhibition of TRPM2 protects the 
kidney against IR damage. Therefore, the study of TRPM2 
ion channels using their antagonists, agonists, modulators, 
as well as genetic deletion of TRPM2 and the use of ani-
mal models with manipulated TRPM2 channels can provide 
promising ideas for a better understanding of TRPM2 func-
tion under particular renal physiological and pathophysi-
ological conditions and possibly a strategy for treating or 
even preventing the harmful effects of AKI caused by IR 
injury.
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