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DNA methylation is a biological process in which gene 
expression is regulated by the recruitment of proteins 
involved in gene repression or by inhibition of the bind-
ing of transcription factors to DNA without changing the 
DNA sequence. Aberrant promoter hypermethylation and 
hypomethylation may be associated with risks of various 
diseases, including cardiovascular, cancer and metabolic 
diseases [7–9]. Several previous studies have revealed that 
the methylation signatures of critical genes may play a role 
in CAD development [4–6].

In this study, we aimed to investigate the association 
of the methylation status of 8 lipid metabolism-related 
genes (ANGPTL4, APOC3, APOA5, APOB, LIPC, CETP, 
PCSK9 and APOC1) with the risk of CAD development in 
the Chinese Han population.

Materials and methods

Study population.

Introduction

Coronary artery disease (CAD) is a common chronic inflam-
matory disease that has been recognized as the leading 
cause of death worldwide [1]. In China, it is estimated that 
700,000 people died from CAD every year [2]. Blood lipid 
levels, including triglyceride (TG), high-density lipopro-
tein cholesterol (HDL-C), low-density lipoprotein choles-
terol (LDL-C) and serum total cholesterol (TC) levels, have 
been identified as important independent risk factors for 
CAD [3]. Recent advances have started to reveal the genetic 
architecture of CAD and have shown that genetic variants 
and epigenetic regulation of lipid metabolism-related genes 
also contribute to CAD etiology [4–6].
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The participants in this study were recruited from Shang-
hai Renji Hospital between 2018 and 2020. A total of 120 
CAD patients (88 male and 32 female) and 140 non-CAD 
controls (93 male and 47 female) were included in this 
study. The criterion for CAD diagnosis was at least one of 
the major segments of the coronary arteries (right coronary, 
left circumflex, or left anterior descending artery) with at 
least 50% organic stenosis based on coronary angiography. 
All unaffected controls were determined to be free of CAD. 
All participants were genetically unrelated Chinese Han 
individuals from Shanghai. This study was approved by the 
Medical Ethics Committee of Renji Hospital affiliated with 
the Shanghai Jiaotong University School of Medicine and 
compliant with the principles set forth by the Declaration 
of Helsinki. Written informed consent was obtained from 
all subjects. Blood samples (5 ml) were collected from the 
participants into EDTA tubes and then stored at − 80 °C for 
further use.

DNA extraction, bisulfite conversion and targeted bisul-
fite sequencing.

Genomic DNA was extracted from whole blood with a 
Tiangen DNA extraction kit (Tiangen Ltd., Beijing, China) 
according to the manufacturer’s instructions. DNA quality 
and concentration were analyzed using electrophoresis and 
a NanoDrop spectrophotometer (NanoDrop Technologies, 
Houston, TX, USA). Bisulfite conversion of 200 ng genomic 
DNA was performed by the EZ DNA Methylation-Gold Kit 
(Zymo Research, Irvine, CA, USA) according to the manu-
facturer’s standard protocol. For each gene, PCR primers 
were designed specifically for bisulfite-converted DNA 
using MethPrimer [10]. PCR primers were synthesized by 
Shanghai Free Biotechnology Co., Ltd. (Shanghai, China). 
Multiplex PCR of target CpG regions was performed, 
and the products were sequenced with Illumina NovaSeq 
sequencing instruments (Novogene, Beijing, China). A mean 
sequencing depth of > 500X was achieved for all samples. 
CpG sites were named according to their relative distance 
(in bp) to the transcriptional start site (TSS) (with negative 
distances upstream from the TSS). The methylation level of 
each CpG site was calculated as the percentage of the meth-
ylated cytosines over the total tested cytosines. The average 
methylation level was calculated using the methylation lev-
els of all measured CpG sites within the gene.

Statistical analysis

Statistical analyses were performed using SPSS version 
21.0 (SPSS Inc., Chicago, IL, USA) and GraphPad Prism 5 
software (GraphPad Software Inc., San Diego, CA, USA). 
The correlation between DNA methylation and CAD was 
assessed using an independent sample t test and expressed 
as the mean ± standard deviation (SD). Both the average 

gene methylation data and the methylation data for the indi-
vidual CpG loci were analyzed. Stratified analyses based on 
sex were carried out. A P value < 0.05 was considered statis-
tically significant.

Results

A total of 120 CAD patients and 140 healthy controls were 
recruited for this study. Targeted bisulfite sequencing was 
used to assess a total of 98 CpG sites in 8 lipid metabolism-
related gene (ANGPTL4, APOC3, APOA5, APOB, LIPC, 
CETP, PCSK9 and APOC1) promoters. The methylation 
levels of each CpG site were compared between patients 
and healthy controls (Fig. 1). The methylation levels of 14 
sites were significantly higher in the case group than in the 
control group, while the methylation levels of 37 sites were 
significantly lower in the case group than in the control 
group (supplementary Table 1).

The mean methylation level of each gene was calculated 
(Table  1). As shown in Table  1, significantly decreased 

Fig. 1  Methylation levels of patients and healthy controls
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methylation levels of the APOC3, CETP and APOC1 genes 
were observed in the case group compared with the control 
group. Most CpG sites were hypomethylated in APOC3 (5 
of 5), CETP (9 of 10) and APOC1 (11 of 12). Significantly 
increased methylation levels of the APOA5 and LIPC genes 
were observed in the case group compared with the control 
group. For LIPC, 3 of 4 CpG sites were hypermethylated. 
For APOA5, 2 CpG sites were hypomethylated, and 2 CpG 
sites were hypermethylated. However, no significant corre-
lations between methylation level and CAD were observed 
in ANGPTL4, APOB or PCSK9.

Discussion

CAD is a complex disease that is influenced by environ-
mental, biochemical, and genetic risk factors. Lipoprotein 
metabolism disorder is a causal risk factor for cardiovascu-
lar diseases in the general population. DNA methylation, the 
most widely studied epigenetic mechanism, plays an impor-
tant role in the etiology of human disease. Recent studies 

revealed that DNA methylation changes in gene promoters 
might be implicated in the development of CAD. In this 
study, we investigated the methylation status of a subset of 
lipid metabolism-related genes in CAD patients and control 
subjects in the Chinese Han population via targeted bisulfite 
sequencing.

The results support the hypothesis that epigenetic changes 
within lipid metabolism-related genes might account for 
blood lipid profile variability and could be a molecular 
mechanism explaining the pathogenesis of CAD. Different 
methylation statuses of the APOC3, APOA5, LIPC, CETP 
and APOC1 gene promoters were observed between CAD 
patients and healthy controls. DNA methylation could serve 
as a biomarker for predicting the risk of CAD [11–13].

APOC3 encodes a protein component of TG-rich lipo-
proteins (TRLs) and plays a role in promoting the hepatic 
secretion of TRLs. APOC3 is an inhibitor of lipoprotein 
lipase (LPL) enzyme activity and prevents TRL clearance 
[14, 15]. Loss-of-function APOC3 mutations were associ-
ated with low plasma TG levels and reduced risk of cardio-
vascular disease [16, 17]. Genetic variation in the promoter 
region of the APOC3 gene was associated with increased 
risks of hypertriglyceridemia, metabolic syndrome and 
CAD [18–20]. Overexpression of the APOC3 gene in 
transgenic animals induces severe hypertriglyceridemia, 
while APOC3 gene deletion results in hypotriglyceridemia 
[21–24]. In this study, the APOC3 gene was hypomethyl-
ated in CAD patients. The methylation level of CpG-119 
in the APOC3 gene promoter was significantly lower in the 
CAD group than in the control group (13.5% vs. 24.5%) and 
might lead to higher gene expression.

The APOC1 gene encodes a member of the apolipo-
protein C1 family and resides within the APOE/APOC1/
APOC2 gene cluster. This gene is predominantly expressed 
in the liver, lung, skin, spleen, adipose tissue, and brain [25]. 
APOC1 plays an important role in high-density lipoprotein 
(HDL) and very-low-density lipoprotein (VLDL) metabo-
lism. APOC1 is a very potent and highly selective inhibitor 
of cholesteryl ester transfer protein (CETP) in plasma [26, 
27]. Transgenic analysis revealed that increased expression 

Table 1  Mean methylation levels (%) of candidate genes in cases and 
controls
Gene CAD Non-CAD P value
ANGPTL4 57.42 ± 3.72 56.93 ± 2.68 0.233
APOC3 66.75 ± 3.14 71.84 ± 1.99 1.17E-26
APOA5 85.07 ± 2.03 84.5 ± 1.76 0.022
APOB 27.78 ± 7.06 28.77 ± 6.24 0.258
LIPC 61.37 ± 7.07 54.35 ± 6.11 1.59E-15
CETP 48.7 ± 4.58 62.13 ± 4.69 1.33E-49
PCSK9 21.46 ± 2.48 21.33 ± 1.86 0.672
APOC1 55.95 ± 3.94 59.05 ± 2.41 8.40E-12
Methylation levels (%) are reported as the means ± SDs, and P values 
less than 0.05 are shown in bold
Furthermore, subgroup analyses based on sex were carried out, 
which demonstrated that the results for APOC3, LIPC, CETP and 
APOC1 remained significant in both males and females, those for 
while APOA5 remained significant only in males (Table 2). ANG-
PTL4 was hypermethylated in males but not in females. No signifi-
cant association was identified for APOB or PCSK9 methylation in 
the stratified analysis

Table 2  Mean methylation levels (%) of candidate genes in males and females
Males Females

Gene CAD Non-CAD P value CAD Non-CAD P value
ANGPTL4 57.76 ± 3.98 56.61 ± 2.59 0.024 56.47 ± 2.71 57.55 ± 2.76 0.089
APOC3 66.68 ± 3.28 71.67 ± 1.98 1.40E-18 66.96 ± 2.79 72.19 ± 1.99 1.62E-12
APOA5 85.16 ± 1.98 84.47 ± 1.59 0.015 84.84 ± 2.21 84.55 ± 2.07 0.587
APOB 27.68 ± 7.51 28.1 ± 6.14 0.697 28.04 ± 5.89 30.11 ± 6.3 0.168
LIPC 62.05 ± 6.69 54.01 ± 5.78 5.23E-15 59.55 ± 7.82 55.02 ± 6.74 0.008
CETP 48.3 ± 4.38 61.5 ± 4.36 1.44E-37 49.9 ± 4.99 63.54 ± 5.13 4.25E-14
PCSK9 21.51 ± 2.32 21.09 ± 1.94 0.252 21.35 ± 2.89 21.8 ± 1.58 0.488
APOC1 55.74 ± 4.09 58.46 ± 2.28 3.51E-07 56.54 ± 3.48 60.23 ± 2.25 7.93E-06
Methylation levels (%) are reported as the means ± SDs, and P values less than 0.05 are shown in bold
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addition to genetic variants, environmental and lifestyle 
modifications are also considered to be potential causes 
of DNA methylation diversity [47–49]. Previous reports 
showed that a high-fat diet introduced DNA methylation 
changes in skeletal muscle and subcutaneous adipose tissue. 
Consumption of a high-fat diet is also associated with an 
increased risk of metabolic diseases [50, 51]. Hahn found 
that dietary restriction remodels DNA methylation patterns 
and gene expression, particularly of genes involved in lipid 
metabolism [52]. In addition, physical activity, smoking and 
drinking also induce DNA methylation variations [53–56].

In conclusion, targeted bisulfite sequencing was used to 
assess the methylation status of 8 lipid metabolism-related 
candidate genes in patients diagnosed with CAD and con-
trol subjects without CAD. We revealed that the methylation 
levels of the APOC3, CETP and APOC1 gene promoters 
were lower in the CAD group than in the control group. The 
methylation levels of the APOA5 and LIPC gene promoters 
were higher in the CAD group than in the control group. 
Our findings support the hypothesis that DNA methylation 
of lipid-related genes plays a role in the development of 
CAD and provide some new insight for the prevention and 
treatment of CAD. However, there are some limitations to 
this study. The expression levels of the target genes were not 
investigated, so we could not determine whether promoter 
methylation affects gene expression. Moreover, variations 
in the gene regions and DNA methylation might have dual 
effects on disease development. Further study of a larger 
sample with expression and genotyping data is needed to 
confirm our results.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s11033-
022-07789-0.
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