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Abstract
Subarachnoid hemorrhage (SAH) is a worldwide devastating type of stroke with high mortality and morbidity. Accumulating 
evidence show early brain injury (EBI) as the leading cause of mortality after SAH. The pathological processes involved in 
EBI include decreased cerebral blood flow, increased intracranial pressure, vasospasm, and disruption of the blood–brain 
barrier. In addition, neuroinflammation, oxidative stress, apoptosis, and autophagy have also been proposed to contribute to 
EBI. Among the various processes involved in EBI, neuronal apoptosis has been proven to be a key factor contributing to 
the poor prognosis of SAH patients. Meanwhile, as another important catabolic process maintaining the cellular and tissue 
homeostasis, autophagy has been shown to be neuroprotective after SAH. Studies have shown that enhancing autophagy 
reduced apoptosis, whereas inhibiting autophagy aggravate neuronal apoptosis after SAH. The physiological substrates and 
mechanisms of neuronal autophagy and apoptosis by which defects in neuronal function are largely unknown. In this review, 
we summarize and discuss the role of autophagy and apoptosis after SAH and contribute to further study for investigation 
of the means to control the balance between them.
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Introduction

Subarachnoid hemorrhage (SAH), a disease that primarily 
occurs secondary to aneurysm rupture, affects 1 in 10,000 
people annually, and is one of the most severe types of brain 
hemorrhage [1, 2]. Early brain injury (EBI) and delayed 
cerebral vasospasm are the main contributors impacting 
the poor outcomes of SAH patients [3]. However, treat-
ments toward ameliorating cerebral vasospasm outcomes 
after SAH have been underwhelming. Recent studies have 
shifted focus from cerebral vasospasm to EBI which was 
first coined in 2004 to explain the acute pathophysiologi-
cal event that occurs within the first 72 h after SAH. EBI 
accounts for brain injury, and is characterized by elevated 
intracranial pressure, autoregulation dysfunction, and brain 
edema within the first 72 h after SAH.

Autophagy is a cellular defense and survival mechanism 
under physiological conditions. The autophagy pathway is 
activated and lasts up to 3 days after SAH [4]. Meanwhile, 
the activation of the autophagy process has been shown to 
be neuroprotective [5]. Apoptosis is the most well-charac-
terized type of programmed cell death. Apoptosis after SAH 
is one kind of important intracellular pathways, which leads 
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to cell death in EBI [6]. Compelling evidence indicated that 
autophagy and apoptosis play important roles in EBI after 
SAH [7, 8]. Autophagy can precede apoptosis, and exerts a 
protective role in the early stages of programmed cell death 
[9, 10]. However, it can promote apoptosis under some cir-
cumstances [11].

In this review, we attempt to emphasize autophagy and 
apoptosis interplay after SAH, and we discuss several molec-
ular and cellular mechanisms that are potential candidates 
for novel treatment options.

The autophagic process

Autophagy is a programmed cell death pathway in mamma-
lian cells that is essential for elimination of obsolete cellular 
proteins and damaged organelles to maintain homeostasis 
[12, 13]. There are three primary types of autophagy pro-
cess: macroautophagy chaperone-mediated autophagy, and 
microautophagy [14, 15].

Macroautophagy is the most demonstrated pathway in 
SAH and intracerebral hemorrhage [16, 17]. There are five 
stages in the macroautophagy process, including initiation, 
elongation, closure, maturation, fusion, and degradation 
(Fig. 1). To begin, an isolation membrane called the pha-
gophore engulfs a portion of the cytoplasm, resulting in the 
formation of a double-membrane known as the autophago-
some. After autophagosome formation, the autophago-
some will deliver its cargo to the lysosome and the outer 
autophagosomal and lysosomal membranes will fuse [18]. 
Macroautophagy is regulated by evolutionarily conserved 
autophagy related genes (ATG) in yeast. There are more 
than 40 ATG genes identified in yeast. Of which, 15 are 
known for their core ATG genes. They are involved in both 
selective and nonselective autophagy [19]. ATG1-ATG13-
ATG17-ATG31-ATG29 assemble into a kinase complex to 
induce the formation of the autophagosome. In mammalian 

cells, the UNC-51-like kinase family comprise a complex, 
which includes ULK1, ATG13, ATG101, and FIP200. It 
plays a critical role in the induction of autophagy [20, 21]. 
Under nutrient-rich conditions, the serine/threonine kinase 
mammalian Target of rapamycin (mTOR) associates with 
the complex and phosphorylates, as well as inactivates 
ULK1/2 and ATG13. Meanwhile, when cells are starved 
for nutrients, the mTOR complex 1 dissociates, leading to 
the dephosphorylation of ULK1/2 and ATG13 and initiation 
of macroautophagy [22, 23].

The apoptotic process

Apoptosis is a programmed cell death process by which a 
cell ceases to grow and enters a controlled cell death stage 
without any spillage of its contents into the surround-
ing environment. There are two main apoptotic pathways: 
the intrinsic or mitochondrial pathway and the extrinsic 
or death receptor pathway [17, 24] (Fig. 2). The intrinsic 
pathway, which is mediated by the mitochondrial release of 
cytochrome c, activates different caspases as downstream 
signals [25, 26]. The extrinsic pathway originates from the 
activation of cell death receptors [27, 28]. Both pathways 
share the final caspase activation step after the activation of 
different intermediate molecules by the signaling cascade, 
leading to the cleavage of different proteins.

The intrinsic pathway involves a series of molecular 
events occurring entirely within cells. Many stimuli, such 
as toxins, DNA damage, trophic factor deprivation, ionizing 
radiation, and other cellular stress, could trigger the intrinsic 
pathway. As the core of the intrinsic pathway, mitochondria 
release a number of pro-apoptotic factors into the cytoplasm 
to induce or regulate the intrinsic apoptosis pathway [25, 
29]. Among the pro-apoptotic factors, the most impor-
tant is cytochrome c. In normal cells, the mature form of 
cytochrome c is remained in an enclosed space between the 

Fig. 1  The autophagic process. Five stages in the macroautophagy process, including initiation, elongation, closure and maturation, fusion, and 
degradation
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inner and outer mitochondrial membranes (IMM and OMM) 
where it functions to remove electrons from respiratory com-
plex III (BCL complex) to complex IV (cytochrome oxidase) 
in the electron-transport chain. The release of cytochrome c 
is positively regulated by pro-apoptotic BCL-2 family mem-
bers, including BAX (BCL-2 associated X protein), BAK 
(BCL-2 antagonist killer 1), BID, BIM, and PUMA, and is 
negatively regulated by anti-apoptotic BCL-2 family mem-
bers, including BCL-XL, BCL-2, BCL-W, and MCL1. Once 
they receive the apoptotic signals, the pro-apoptotic BCL-2 
family oligomerizes and inserts into the outer mitochon-
drial membrane, leading to permeabilization of the outer 
mitochondrial membrane and allowing the redistribution of 
cytochrome c into the cytoplasm [30, 31]. Cytochrome c 
binds to APAF-1 in the cytoplasm and induces oligomeriza-
tion of APAF1 molecules. This binding induces the confor-
mational change in APAF1, exposing its caspase recruitment 
domain (CARD domain) and its oligomerization domains, 
thereby assembling APAF1s and caspase-9 into a complex 

known as the apoptosome [32]. Caspase-9 cleaves and acti-
vates the downstream effector caspases, such as caspases-3 
and -7, which will cleave many protein substrates and cause 
cell death [33]. The activation of caspase-3 is negatively 
regulated by the inhibitory apoptosis (IAP) protein family, 
such as XIAP, c-IAP1, and c-IAP2. Other proteins released 
from mitochondria, such as apoptosis-inducing factor (AIF) 
and SAC, also have pro-apoptotic functions [34].

The extrinsic pathway is also called the death recep-
tor pathway. The pro-apoptotic death receptors include 
TNFR1, TNFR2, Fas, and TRAIL receptors, DR4 and DR5 
[35]. When pro-apoptotic ligands bind to cell surface death 
receptors, the extrinsic pathway is activated. There is one 
conserved protein–protein interaction domain, known as 
the death domain, in the intracellular domains of the proa-
poptotic death receptors. Upon binding to the ligands, the 
adaptor protein, FADD (Fas-associated protein with death 
domain), forms a complex with the initiator 8 or 10, called 
the DISC (death-inducing signaling complex) [36]. The 

Fig. 2  The apoptotic process. 
Two main apoptotic pathways: 
the intrinsic or mitochondrial 
pathway and the extrinsic or 
death receptor pathway
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formation of this complex activates caspase-8, which in turn, 
cleaves and activates downstream effector caspases-3, -6, 
and -7, as well as BID cleavage [37].

The relationship between autophagy 
and apoptosis

The relationship between autophagy and apoptosis is rela-
tively complex, including the physical and functional inter-
actions between the several proteins (Fig. 3). Autophagy 
and apoptosis are regulated by various transcription factors 
[38]. They share some same triggering by different protein 
kinase cascades. While apoptosis is invariably involved in 
cell death, autophagy plays dual roles in cell death and sur-
vival, depending on the cellular context [39].

As important regulatory factors in cell apoptosis, an 
increasing number of studies have revealed the importance 
of BCL-2 family members in autophagy. As pro-apoptotic 
proteins, BCL-xl and BCL-2 can bind to the BCL-2 homol-
ogy (BH) 3 domain of Beclin 1 through their BH3 recep-
tor domain [40, 41]. The regulation of the BCL-2-Beclin 
1 has been demonstrated by the competitive substitution 
of the Beclin 1 BH3 domain by other BCL-2 family pro-
teins, such as BNIP and BAD, but not by BAK and BAX 
[42, 43]. When the BH3 domain of Beclin 1 or the BH3 
receptor domain of BCL-xl is mutated, BCL-xl is unable to 
inhibit Beclin 1-induced autophagy [44]. The phosphoryla-
tion of BCL-2 blocks its binding to Beclin-1, meaning that 
phosphorylated BCL-2 loses its ability to inhibit autophagy 

[45]. AMPK can dissociate the BCL-2-Beclin 1 complex 
and promote the formation of the Beclin 1- PI3K complex 
to enhance autophagy [46]. Phosphorylation of BCL-2 at 
multiple sites by c Jun N terminal protein kinase 1 (JNK1) 
and extracellular signal related kinase (Erk) has been shown 
to reduce binding of BCL-2 to Beclin, causing the activation 
of autophagy [46–48]. There are two cellular resources of 
BCL-2, the endoplasmic reticulum and the mitochondria, 
and both can regulate apoptosis and autophagy. Endoplasmic 
reticulum proteins and nutrient deprivation autophagy fac-
tor 1 facilitate the binding of BCL-2 to Beclin at the endo-
plasmic reticulum to inhibit autophagy, while endoplasmic 
reticulum localized BH3-only protein and B cell interacting 
killer (BIK) [49].

There is another regulation between apoptosis and 
autophagy in spatial separation of proteins to cellular com-
partments. MCL1, the anti-apoptotic protein, has been 
proven to regulate autophagy. The degradation is an early 
event in nutrient deprivation condition and apoptosis induc-
tion. Under nutrient deprivation conditions, MCL1 levels 
regulate activation of autophagy [50, 51]. The mammalian 
target of rapamycin (mTOR) kinase plays an important role 
in the interplay between apoptosis and autophagy as well. 
The deletion of Raptor, a positive regulator of mTOR, pro-
motes both apoptosis and autophagy by activating caspase-3, 
leading to abnormal mitochondria [52, 53]. Under hypoxic 
conditions, the mTOR pathway is inhibited by BNIP3, which 
directly binds to and inactivates Rheb. Therefore, mTOR 
induces a positive relationship of apoptosis and autophagy in 
a caspase-dependent manner [54, 55]. The death-associated 

Fig. 3  The relationship between autophagy and apoptosis. The physical and functional interactions between autophagy and apoptosis
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protein kinase (DAPK) is a calcium/calmodulin-regulated 
Ser/Thr kinase that mediates cell death induced by diverse 
death signals. DAPK has also been proven to be related to 
cellular autophagy and apoptosis [56]. DAPK is activated in 
ER stress conditions to trigger a mixed reaction of cellular 
autophagy and apoptosis [57]. In times of ER stress, DAPK 
integrates signals from apoptotic and autophagic pathways 
to induce cell death [58]. As a classic ligand that participates 
in activation of the extrinsic apoptotic pathway, TRAIL 
promotes an autophagic program while activating caspase-
mediated apoptosis during the process of lumen formation 
in human mammary epithelial cells [59]. Moreover, TRAIL 
induces FADD, which in turn activates cellular apoptosis 
and autophagy. TRAIL supports the positive relationship 
between apoptosis and autophagy [60].

Reactive oxygen species (ROS) are classified as a het-
erogeneous group of molecules naturally generated in cel-
lular metabolism of diatomic oxygen [61]. The relationship 
between ROS and autophagy represents an adjusted nega-
tive feedback mechanism by which autophagy eliminates the 
source of oxidative stress and protects the cells from oxida-
tive damage [62]. ROS induces cellular autophagy, whereas 
autophagy reduces the levels of ROS as it consumes the 
major source of ROS, damaged mitochondria. Many fac-
tors, including hypoxia, TNF-α, starvation, and nerve growth 
factor deprivation, simultaneously trigger both autophagic 
flux and an increase in intracellular ROS [63, 64]. Several 
environmental endocrine-disruptors can increase oxidative 
stress and ROS production, which can ultimately lead to 
the activation of cell death processes, such as apoptosis. 
Several apoptotic effectors, including caspases, BCL-2, 
and cytochrome c, are significantly regulated by cellular 
ROS [65, 66]. Licarin A induces autophagy and apoptosis 
in non-small cell lung cancer cells by ROS. Furthermore, 
upregulation of autophagy by mTOR-dependent pathways 
appears to be cytoprotective in preventing CYT997-induced 
excessively high levels of ROS [67].

To sum, autophagy and apoptosis are connected by sev-
eral molecules in order to keep the coordinate regulation in 
survival and death.

The roles of autophagy and apoptosis 
interplay in SAH

The pathophysiological mechanism of SAH is complicated 
and remains incompletely understood. SAH causes a sudden 
increase in intracranial pressure, which causes a decrease 
in blood perfusion pressure. The following events, such as 
acute hydrocephalus, platelet aggregation, microvascular 
alterations, reperfusion injury, and acute vasospasm, may 
contribute to EBI after SAH [68–70]. Cellular apoptosis may 
be seen in endothelium, cortical, subcortical, or hippocampal 

neurons after SAH [71–73]. The mechanisms, that initiate 
apoptosis after SAH, include global ischemia, decreased 
cerebral perfusion pressure, microcirculatory disturbance, 
transient global ischemia, and blood toxicity [68–70]. 
There are several apoptotic pathways that are believed to 
be important in relation to SAH. First, the death receptor 
pathway: SAH can activate many death receptors including 
Fas, P2X7R, TNF receptor, and death receptor 4/5, leading 
to the activation of caspase-3, and thus activating apoptosis 
[74, 75]. Second, the mitochondrial pathway: after SAH, 
mitochondrial matrix releases cytochrome c, which binds 
with APAF-1 and pro-caspase-9 to form the apoptosome 
[76]. The Cytochrome c-procaspase-9-APAF-1 complex 
further activates downstream effector molecules to trigger 
apoptosis. Third, the p53 pathway in response to SAH: p53 
regulates the apoptotic cascade [77–79]. Last, the caspase-
independent pathway: after SAH, p53 regulates the release 
of apoptosis-inducing factor in the absence of APAF-1, and 
then activates the caspase-independent pathway [30]. Inhibi-
tion of apoptosis has been proven to have a neuroprotective 
effect after SAH, and has become a key target in preventing 
and treating EBI after SAH.

After SAH, the levels of the autophagy marker proteins, 
such as Beclin-1 and LC3, were significantly increased in 
the ipsilateral region and persisted for 3 days. It was shown 
that autophagy activity peaks at 24 h after SAH. However, 
the role of autophagy remains controversial. After SAH, 
autophagic activation is accompanied by inhibition of apop-
tosis and improvement of EBI [80, 81]. Study has reported 
gradually increased levels of autophagy-related proteins, 
such as Beclin-1 and LC3- II, over 24 h after SAH. The 
expression of Beclin-1 and LC3- II in the basilar artery 
wall is upregulated during the first 48 h after SAH [82, 83]. 
Lee et al. found out that Beclin-1, LC3- II, and cathepsin-d 
gradually increased within 24 h after SAH induction, but 
decreased at 72 h. Beclin-1 and cathepsin-d are expressed 
in neurons, but not in astrocytes [84].

Shao et al. reported that 3-MA inhibition of class III PI3K 
activity and autophagy activation resulted in increased cell 
apoptosis after SAH [85, 86]. In contrast, treatment with 
RAP, inducing autophagy by inhibiting mTOR, significantly 
reduced apoptosis in the EBI phase [87, 88]. To investigate 
the interaction or balance between autophagy and apoptosis 
after SAH at the histological level, dual immunofluorescence 
staining was performed with apoptotic marker, cleaved cas-
pase-3, and autophagy marker, p62 to show that resveratrol 
could upregulate autophagy while inhibiting apoptosis after 
SAH in rats [87]. Sun et al. found that after SAH, caspase-3 
expression was concentrated closely around the injured core, 
whereas Beclin 1 expression could only be observed at a 
small distance from the blood clot area, but not at the injured 
core [89]. They also found that cells were either stained 
with caspase-3 or with Beclin 1, but not both. This led to 
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the observation of a “confrontation line” between caspase-
3-positive cells and Beclin 1-positive cells, suggesting that 
when a cell expressed a large amount of autophagy-initiating 
protein, Beclin 1, it would not enter late phase apoptosis 
[90]. In conclusion, autophagy and apoptosis might be two 
opposing processes for individual cells after SAH. In addi-
tion, administration of osteopontin improved neurobehav-
ioral dysfunction, enhanced autophagy while inhibiting 
apoptosis, and regulated autophagy-apoptosis interaction 
[91, 92].

Conclusion

Autophagy exerts critical roles in maintaining intracellular 
homeostasis within the brain in the setting of SAH. Proper 
functioning of autophagic mechanisms has a pro-survival 
effect and reduces apoptotic cell death after SAH. However, 
if SAH exceeds a certain stress threshold, autophagic mecha-
nisms lead to increased apoptotic cell death. Therefore, regu-
lation of the autophagic and apoptotic interplay processes in 
the setting of SAH will likely lead to a beneficial effect that 
will allow us to develop effective therapeutic strategies for 
SAH patients.
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