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classes, including Type 1 diabetes mellitus (T1DM), Type 
2diabete Mellitus (T2M), and Gestational diabetes melli-
tus (GDM). Those types are created from various causes. 
T1DM is usually observed in people lower than 30 years 
old. However, it may affect older people [4]. T1DM does 
not fully understand but is known for failing in insulin 
secretion via various causes such as an autoimmune or idio-
pathic attack, which destroys beta cells of Langerhans islets 
located in the pancreas [5]. Hence, curing it is principally 
accomplished by insulin replacement. Another diabetes type 

Introduction

Diabetes, a multifactorial disorder in metabolism, occurs 
when the insulin production by the pancreas is insuffi-
cient, or the body cannot effectively use the insulin [1]. The 
common characteristic of this condition is hyperglycemia 
chronically because of fault in carbohydrates, fat, and pro-
tein metabolism. Persistent hyperglycemia causes multiple 
organ dysfunction, including bone, nerves, blood vessels, 
eyes, kidneys, and heart [2, 3]. Diabetes has three main 
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Abstract
Diabetes is a complex of genetic, metabolic, and autoimmune disorders that are characterized by hyperglycemia. Elevated 
apoptotic cell count following defective clearance of dead cells that can cause chronic inflammation is a hallmark of the 
diabetic wound. Effective dead cell clearance is a prerequisite for rapid inflammation resolution and successful recovery. 
Efferocytosis is a multistep process in which phagocytes engulf the dead cells. Cell body elimination is of great signifi-
cance in disease and homeostasis. Recent research has clarified that diabetic wounds have an enhanced load of the apop-
totic cell, which is partly attributed to the dysfunction of macrophages in apoptotic clearance at the site of the diabetic 
wounds. In the current work, we highlight the pathways implicated in efferocytosis, from the diagnosis of apoptotic cells to 
the phagocytic swallowing and the homeostatic resolution, and explain the possible pathophysiological episodes occurring 
when the proceeding is abrogated. Also, we describe the last development in the management of inflammation in diabetes 
wound and future directions of surveillance.
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The dead cells are swallowed, and (4) the swallowed cells 
are destroyed [16].

Find-me signals

Apoptosis is physiological programmed cell death. Encap-
sulation of apoptotic cells in apoptotic bodies aid in the pro-
hibition of diffusion of pro-inflammatory and inflammatory 
cell contents, subsequently recycling and excreting them via 
neighboring scavenger cells [17]. During programmed cell 
death, the signals are liberated by the cell into the environ-
ment to absorb the macrophages and agitate their scaveng-
ing potential of them. In this process, signaling molecules 
from apoptotic cells are released into the environment 
[18]. Apoptotic cells emit two categories of signals: extra-
cellular vesicles and soluble molecules. ‘find-me’ Signals 
emitted from apoptotic cells include nucleotides, modified 
membrane lipids, and chemokines. The most well-known 
find-me are nucleotides such as uridine triphosphate and 
adenosine triphosphate.Apoptotic cells release these nucle-
otides into the environment via the pannexin-1 channel [19]. 
Sphingosine-1-phosphate (S1P), ATP / UTP, Lysophospha-
tidylcholine (LPC), and chemokines (Fractalkine) are other 
signals emitted by apoptotic cells [18, 20]. It should be noted 
that the signals of find‐me fall into four basic categories: 
lysophosphatidylcholine (LPC), sphingosine-1-phosphate 
(S1P), CX3CL1, and nucleotides [21] (Fig. 1-A).

The efficiency and role of any find-me signal depend 
on the type of dead cell and phagocyte [22], as well as the 
diversity of find-me signals, suggests inherent redundancy, 
thereby ensuring the macrophages to recognize dead cell 
bodies.

Eat me signals

Cells that are dying display the signals of eat-me on their 
surface, considered as the signals of ‘eat-me’ include a. lack 
of phospholipid asymmetry in the cell membrane [23], b. 
displayed LPC to the surface of dying cells attaches to Fc 
receptors on scavenger cells like macrophages[24], c. Dis-
play of proteins in the endoplasmic reticulum (ER) lumen 
on the dying cell surface and the absence of " don’t-eat-me 
" signals act as the signal of ‘eat-me’ [25]. Phagocytes dis-
criminate dying cells from healthy neighbors through the 
signals of ‘eat-me’, which neighbors cells have the signals 
of ‘don’t-eat-me’. In other words, apoptotic cells issue the 
signals of find-me and eat‐me to detect these signals via 
phagocytes can accelerate their ingestion; Reciprocally, 
the signals of don’t‐eat‐me emitted by apoptotic cells can 
block their swallowing. Many investigations scrutinized the 

(T2M) is characterized by relative insulin deficiency caused 
by the defect in the beta-cell of the pancreas and insulin 
resistance [6]. Cardiovascular disease (CVD) is the main 
etiology of T2M-related diseases and deaths and requires 
severe management of blood pressure, glucose, and fat to 
minimize the risk of disease progression [7, 8]. Gestational 
diabetes is becoming more prevalent, together with type 2 
diabetes and fatness [9]. Hyperglycemia, which develops 
during pregnancy, has been known for more than 50 years, 
but there is no universal consensus on high blood sugar lev-
els that can be used to diagnose and treat “gestational dia-
betes” (GDM). Nowadays, GDM has been found to be the 
most prevalent medical complication during pregnancy, and 
the hyperglycemia outbreak has not been distinguished, and 
reports show that the number of young women with overt 
diabetes is increasing [10].

Apoptosis is a highly regulated cell death process. Both 
necrosis and apoptosis are the main cell death types. While 
necrosis is a traumatic version and accidental of cell death, 
apoptosis is a predefined cell suicide to particular victim 
cells for the greater profit of the organism. It is an ordinary 
physiologic process carried out in multicellular organisms 
[11]. Today, it has been well established that apoptosis 
brings benefits to the survival of multicellular organisms, 
whereby organisms maintain homeostasis and regulate the 
life cycle. Nevertheless, the remains many mysteries remain 
in the relevant research areas [12].

Macrophages engulf apoptotic cells in a process called 
efferocytosis[13]. Elimination of cellular corpses is criti-
cal in the treatment of disease and homeostasis. Through 
engulfment of dead cells, phagocytes, known as efferocyto-
sis, help recycle cellular components in multicellular organ-
isms. Autoimmune and other conditions can develop when 
the disposal of cell corpses is faulty. This attempt briefly 
reviews the relationship and mechanism of efferocytosis 
associated with diabetes disease. We first discuss the mecha-
nism of efferocytosis and then explain related to diabetes in 
various aspects.

Mechanism of efferocytosis

Billions of cells die in the body of human beings to regulate 
immune responses, cell homeostasis and wound healing. 
Dying cells must be effectively removed to perform all these 
processes [14]. The clearance of dead cells, which usually 
occurs during human life, is termed efferocytosis [15]. Alto-
gether, the processes of efferocytosis possess four phases: 
(1) The dead cells issue a “find me” signal, (2) the phago-
cytes are identified, and their contribution is determined in 
the liberation of the “eat me” signal on the cell body, (3) 
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wound healing, and M2-like macrophage polarization, 
which significantly affects the local tissue microenviron-
ment. Several nuclear receptors (NR), particularly liver 
X receptor (LXR) and peroxisome proliferator-activated 
receptor (PPAR), are stimulated in reaction to efferocytosis. 
In this process, apoptotic cells are immersed in LC3-asso-
ciated phagocytosis (LAP) [34]. Subsequently, it fused with 
lysosomes and degraded efficiently. Then fatty acids pro-
ductions such as 25-hydroxysterol active PPAR and LXR. 
This nuclear receptor induces the transcription of immu-
nosuppressive cytokines, including TGF-beta1, IL-13, and 
IL-10. They also indicated that transcribed pro-efferocytosis 
machinery comprises Gas6, MertK, and Rac1 (Fig. 2) [34].

Impact of abnormal efferocytosis on 
diabetes

One of the major sources of autoantigens in diabetes is 
apoptotic β-cells. Autoimmune is facilitated by a high inci-
dence of β-cell apoptosis or deficiencies in the clearance of 
apoptotic cells in pre-diabetes [35]. These cells transform 
into late apoptotic bodies and secondary necrotic cells, 
increasing insulitis, inflammation, and autoimmunity. If 
apoptotic β-cells are not removed quickly enough, they 
clump together, causing autoantigens to be released and 
inflammatory signals to be activated. On the other hand, loss 
of pancreatic β-cells due to abnormal efferocytosis might 
cause hyperglycemia and insulin insufficiency, which has 
been linked to the etiology of diabetes (Fig. 3) [36]. Several 
animal researches indicated that abnormal efferocytosis had 
been associated with diabetes [37, 38]. In table 1, we sum-
marise the researches accomplished on efferocytosis and 
diabetes.

Factors contributing to the efferocytosis 
process in diabetes

Until now, numerous factors have been proposed as possible 
causes of diabetes. The following are some of the factors 
that contribute to this process:

Phagocytic oxidative stress can result in defective effe-
rocytosis, impairing phagocytes’ ability to engulf apoptotic 
cells [39]. The phagocytic dysfunction in macrophages has 
been found as a known property of diabetes [40, 41]. Macro-
phages are involved in tissue regeneration and repair, which 
is impaired in diabetes, resulting in poor regeneration and 
delayed repair. This process is also affected by the microen-
vironment [42]. Efferocytosis is a critical cellular procedure 
for immune response and maintaining tissue homeosta-
sis [43]. When tissue is injured, phagocytes swallow and 

stages of phagocytosis, and each stage is specifically identi-
fied [26, 27].

Engulfment of dead cells

When a phagocyte detects a dying cell, the dead cell engulf-
ment needs quick plasma membrane detection, and the dead 
cell must be encapsulated quickly in phagocytes [28]. A 
dynamic network of actin under the cell membrane moti-
vates phagocytes to environmental sampling. The phago-
cyte begins to rearrange the actin by detecting an apoptotic 
cell, allowing the plasma membrane to penetrate and 
localize, eventually forming the phagosome. Coordinated 
activation of kinases, like Srk, Syk, and protein kinase C 
(PKC) families, and phosphatase inactivation, like SHP-1, 
are signaling mechanisms that differentiate the receptor by 
activating actin regeneration and relevant pathways based 
on the involved receptor [29]. The two main mechanisms 
involved actin reorganization within spherocytosis, con-
verging in the major regulator, Rac1, a member of the Rho 
family of GTPases. Rac1 activation is mediated in the first 
system through LDL receptor-related protein 1 (LRP1) and 
adapter protein GULP [30]. Overall, several important sig-
nals contribute to the Eat-me process: phosphatidylserine 
(PtdSer), which interacts with BAI1 and av-beta3. Another 
one is calreticulin (Calr) which interacts with lipoprotein 
receptor-related protein 1 (LRP1) (Fig. 2-B) [31]. However, 
healthy cells for shielding from phagocytosis express sev-
eral signals called “Don’t eat me” including CD24, CD47, 
and CD31. These signals could bind to several receptors on 
phagocytes (Siglec-10, CD31, SIRP) and prevent the effero-
cytosis process (Fig. 2-C) [31].

Degradation of the engulfed cells

After recognizing and trapping the dying cell, the cell body 
and phagosome are well organized for a ruinous ending. 
Following the uptake of dying cells by the scavenger cells, 
the phagosome incorporates with the lysosomes. Because 
liposomes involve many types of lipases, proteases, and 
nucleases, this fusion causes the digestion of phagosome 
cargo [32].

When phagosomes ingest dead cells, they are targeted 
with lysosomes via a multi-stage maturation process. Imme-
diately after phagosome formation, a dynamin-dependent 
membrane fracture begins, accompanied by numerous bio-
chemical changes in the phagosome membrane [33].

After engulfment, several signals related to efferocyto-
sis and wound-healing are promoted and cause a change in 
the metabolism of the immune system, immunosuppression, 
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diabetes and insulin resistance. The efferocytosis can be 
reinforced by the developmental endothelial locus-1 (DEL-
1) via macrophage, suppressing the inflammation [58].

MERTK  it was shown that Mer tyrosine kinase (MERTK) 
mediates efferocytosis in atherosclerotic lesions. This gene 
encoded Proto-oncogene tyrosine-protein kinase MER that 
engulfs apoptotic cells by interacting with the phosphatidyl-
serine-binding proteins Gas6 or Protein S, which are bridg-
ing molecules [59].

MFG-E8  A study showed that a lake MFG-E8 gene in mice 
causes impairment in efferocytosis. Mice deficient in MFG-
E8 receiving wild-type bone marrow revealed it resolved 
inflammation, supported angiogenesis, and improved 
wound closure [50].

Erythropoietin (EPO) signaling defective is a significant 
cause of abnormal efferocytosis leading to type 2 diabetes. 
S1P generated by apoptotic cells binds to the cognate recep-
tor on macrophages, facilitating efferocytosis via the EPO-
EPO receptor-peroxisome proliferator-activated receptor-γ 
signaling pathway [60].

Role of interventional treatment on 
efferocytosis

A diabetes case report showed that administration of Ritux-
imab could induce efferocytosis in diabetic patients. It was 
reported that clearance is effective in tissue B-cell [61]. 
Rituximab, as an anti-CD20 antibody, might accomplish 
its effect by inducing the effect of Fc receptor-dependent 
phagocytosis [62]. The multifunctional molecule of the 
cluster of differentiation 36 (CD36) possesses separate 
binding sites for various ligands like modified phospholip-
ids, free fatty acids, and thrombospondins. The CD36 serves 
as a scavenger receptor on phagocytes, thereby recognizing 
and internalizing apoptotic cells and erythrocytes infected 
with falciparum malaria [63, 64]. In diabetic patients, a high 
concentration of LDL causes a block in the cd36 receptor, 
which inhibits efferocytosis [65].

The phagocytosis of apoptotic cells can be suppressed 
by anti-tTG (tissue transglutaminase antibody) through 
peritoneal macrophages extracted from the pregnant non-
obese diabetic (NOD) mouse model of type I mice express-
ing the surface enzyme. The anti-tTG antibodies can act via 
a decrease in the transamidation performance and declined 
apoptotic cell removal via the macrophages from the preg-
nant diabetic mice [66].

Defective efferocytosis is associated with T1D and other 
autoimmune conditions [67]. The main objective of T1D 

clear dead cells, resulting in an efficient resolution of the 
inflammation [44]. Numerous studies have shown that mac-
rophage function is impaired in diabetes and is related to 
prolonged inflammatory response and harmful alteration in 
heart regeneration, thus increasing the risk of heart defeat 
and altering the outcome of the disease [45]. Efferocyto-
sis decreased in diabetic wound macrophages, resulting in 
the apoptotic cell accumulation in inducing inflammation 
response.

Efferocytosis enhancers  administering specialized pro-
resolving mediators, such as maresin 1, LXA4, resolvin 
D1, or resolvin D2, which act as efferocytosis enhancers, 
improves efferocytosis while decreasing the incidence of 
phagocytic inflammation [46–48].

High glucose  high glucose is one of the key characteristics 
of diabetes that can lead to efferocytosis dysfunction [49].

Mannan-binding lectin (MBL) as a serum protein can 
trigger the complement system and reinforce the phago-
cytic removal of different inflammatory parameters [51]. 
The oligomeric C-type lectin of MBL detects specific sugar 
patterns on the surface of apoptotic cells [52]. In a cross-
sectional study to reveal a relationship between MBL with 
nephropathy among T1D subjects, the concentrations of 
MBL were greater in the study cases suffering from mac-
rovascular disease.As well as, the MBL has been reported 
to increase apoptotic cell clearance in diabetic patients [53].

Adiponectin is a hormone derived from adipocytes that 
exerts anti-inflammatory and anti-diabetic performances. It 
employs the macrophages to facilitate the early apoptotic 
cell uptake that is substantial for the activity of immunity 
[54]. Mice deficient in adiponectin (APN-KO) showed 
impairment in their capacity for apoptotic thymocyte clear-
ance. This hormone opsonizes the apoptotic cells, and the 
adiponectin-mediated phagocytosis causes the attachment 
of cell corpses to calreticulin located on the surface of mac-
rophages. In this way, adiponectin enhances its anti-diabetic 
properties [55].

Apolipoprotein (apo) E4  One of the pivotal risk factors 
is apolipoprotein (apo) E4 for diverse inflammations and 
metabolic problems, like Alzheimer’s disease (AD), ath-
erosclerosis, and diabetes. The secretion of apoE4 promotes 
macrophage dysfunction and apoptosis by decreasing ER 
stress. The inflammatory responses and relevant metabolic 
disorders associated with polymorphism in apoE4 may be 
decreased by reducing ER stress in macrophages [56].

ER stress has the potential to impede the efferocytosis pro-
cess [57]. In addition, it was shown that stress could develop 
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Fig. 1  Mechanisms of signaling in efferocytosis via different signals of (A) Find me (B) Eat me and engulfment (C) Don’t eat me
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and phenotypic alterations in human DCs responsible for 
the induction of tolerance [70].

Activating resting T lymphocytes initiate apoptotic death 
of activated T lymphocytes. In the onset of T1D, apoptosis 
resistance is of great importance in the activated autoreac-
tive T lymphocytes, which move to the pancreas from the 
circulation and actively destroy the insular pancreatic struc-
tures. The apoptotic reaction to Phytohemagglutinin (PHA) 
was the strongest for T1DM decompensation [71]. Given 
that T cells are mainly exposed to apoptosis in reaction to 
the stimulation of PHA, we can speak of the great sensitivity 
of active T lymphocytes to induce apoptosis in T1DM sub-
jects. The development of autoimmune conditions has links 
with increased target cell apoptosis, and a defect in phago-
cytic removal of apoptotic cells because of a dysfunction in 
efferocytosis, meaning phagocytosis of apoptotic cells [72].

In the apoptosis process, a large number of apoptotic 
vesicles were produced [73]. In a recent study in 2021, 

prevention is to stop the autoimmune response to β-cells. 
Surface alterations can occur following the apoptotic β-cells 
in T1D, in particular exposure to the phosphatidylserine 
(PS) of the inner leaflet of the plasma membrane, which 
differentiates them from living cells and allows them to be 
detected by efferocytotic receptors [26, 68]. Accordingly, a 
synthetic protocol to stop autoimmunity against β cells has 
been designed, including liposomal microparticles for mim-
icking apoptotic cells by detecting PS and full of insulin 
peptides. These liposomes inhibit T1D by re-establishing 
specific tolerance [69].

Liposomes that mimic apoptotic β-cells inhibited βcell-
related autoimmunity and impeded the experimental T1D by 
producing tolerogenic DC. Such liposomes are composed of 
the PS- a key signal of the apoptotic cell membrane, and the 
β-cell autoantigens. To conclude, efferocytosis can be mim-
icked by PS-liposomes phagocytosis, resulting in functional 

Fig. 2  Mechanism of signaling in post-engulfing which increases several functions such as efferocytosis, immunosuppression, wound healing, and 
M2-like Mφ, inducing cytokines
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type 2 diabetes characteristics such as insulin resistance and 
glucose intolerance. Their data show that apoV functional 
efferocytosis improves type 2 diabetes by restoring hepatic 
macrophage homeostasis [74].

Inhibition of efferocytosis diabetic 
osteoporosis

DM is a persistent and chronic epidemic with associated 
complications increasing unabated, especially osteoporosis, 
which is broadly considered a new health concern world-
wide [75]. A defect in bone regeneration that reduces bone 
mass increases bone fragility, decreases bone strength and 
microstructural changes in bone tissue, and leads to a high 

Mesenchymal stem cells (MSCs)-derived apoptotic ves-
icles were employed to treat type 2 diabetes mice. They 
discovered that apoptotic vesicles were efferocytosed by 
macrophages and effectively controlled hepatic macro-
phage homeostasis to prevent type 2 diabetes [74]. In type 
2 diabetes liver, apoptotic vesicles can promote macrophage 
reprogramming at the transcriptional level efferocytosis-
dependent, resulting in macrophage accumulation suppres-
sion and macrophage transformation to an anti-inflammation 
phenotype. These authors also observed that calreticulin 
was exposed on the surface of apoptotic vesicles and acted 
as a crucial ‘eat-me’ signal driving apoptotic vesicles effero-
cytosis and macrophage regulatory effects at the molecular 
level. Notably, CRT-mediated efferocytosis of MSC-derived 
apoptotic vesicles aids type 2 diabetes therapy by reducing 

Fig. 3  The activation of antigen-presenting cells (APCs) is caused by an increase in the rate of β-cell apoptosis and/or deficiencies in efferocytosis, 
which contributes to inflammation. In contrast, pancreatic B cell death leads to hyperglycemia and insulin insufficiency
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moderating the inflammation in phagocytes to enhance 
inflammation resolution [80, 81].

Role of efferocytosis in wound healing in 
diabetic

The intractability of diabetic wounds can be attributed to 
complex parameters like prevention of angiogenesis, abnor-
mal inflammatory responses, and dysfunction of phagocy-
tosis by macrophages [101]. Efferocytosis is an intrinsic 
activity of wound macrophages [102]. Faulty efferocytosis 
during a diabetic situation enhances inflammatory responses 
and necrotic core formation, finally leading to atheroscle-
rosis, autoimmune problems, and delayed wound healing 

risk of fracture, known as diabetic osteoporosis [76]. Tis-
sue-specific polykaryon macrophage that attaches to or near 
a bone surface is constructed via differentiating macrophage 
progenitor cell or a monocyte called an osteoclast (OC). As 
a heterogeneous cluster of immune cells, Tissue-resident 
macrophages have performances such as iron process-
ing, clearance of cellular debris, and critical roles in tissue 
immune supervision, inflammation resolution, and infec-
tion response. Also, they play an acritical role in recruiting 
granulocytes into the tissue from the circulation [77, 78]. 
Depending on the damage grade, neutrophils cumulate in 
the tissue and quickly undergo apoptosis [79].

In vivo failure to remove dead cells aggravates inflam-
mation, suggesting a prominent role of efferocytosis in 

Table 1  Different studies related to efferocytosis in diabetes
Diabetes 1/2 Animal/cell line/ 

human
gene function Efferocytosis Professional/

nonprofessional
phagocyte

ref

Diabetes 
Type 2

diabetic (db/db) 
mice

ADAM9 miR-126 direct target ADAM9 Increased Macrophage [95]

Diabetes 
Type 2

C57BL/6 mice
diabetic (db/db) 
mice

MFG-E8 bridging molecule between apop-
totic cells and macrophage

Increased Macrophage [50]

Diabetes 
Type 1

diabetes-prone 
(NOD) mice
normal (Balb/c) 
mice

mechanism of disposal of 
self-antigen

Decreased Macrophage [41]

type 2 
diabetes

Human/ diabetic 
(db/db) mice

FasL elevated apoptotic cell burden at the 
wound site

Decreased Macrophage [102]

Diabetes 
Type 1

MBL trigger the complement system and 
enhance phagocytic removal

Increased [53]

Diabetes 
Type 2

adiponectin-defi-
cient (APN-KO) 
mice

adiponectin binding to calreticulin on the macro-
phage cell surface

Increased [55]

Diabetes 
Type 1

Human Rituximab Increased [61]

Diabetes 
Type 2

Human LDL a block in the cd36 receptor Decreased [65]

Diabetes 
type 2

C57BL/6 mice apoE4 cholesterol transport Decreased Macrophage [56]

Leprdb/db diabetic 
mice

CCN1 a bridging molecule attaching with 
apoptotic cells, and macrophages to 
trigger efferocytosis .

Increased Macrophage [119]

diabete type 1 NOD mice Insulin peptides(A,B) are epitopes targeted in autoimmune 
diabetes and specific β-cell.

Increased T cell [69]

diabetes 
type 1

diabetic db/db mice MFG-E8 bridging molecule between the mac-
rophage and apoptotic cells

Increased peritoneal 
macrophages

[101]

diabetes 
type 1

Human Phosphatidylserine the key signal of apoptotic cell 
membrane—and β-cell autoantigens

decreased tolerogenic den-
dritic cell (DC)

[70]

Diabetes 
Type 2

J774a.1 macro-
phage-like cells
MIN6

NLRP3
IL-1β

Inflammation mediator
pro-inflammatory cytokines

decreased Macrophage [140]

C57BL/KsJ-db/db 
mice

Annexin A1-Derived 
Peptide Ac2-26

high activity in declining inflamma-
tion and improving

Increased Macrophage(M2) [122]

C57BL/6J (B6) mice DEL-1/SIRT1 suppressive performances in inflam-
mation, ER stress and oxidative stress.

Increased Macrophage [58]
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protein kinase C (PKC), and the acceleration of apoptosis 
affected via advanced glycation end-products (AGEs) [105, 
106]. The incremental count of apoptotic cells enhanced 
the inflammatory response in wounds in diabetic wounds. 
Accurate apoptotic cell removal through the macrophages 
at the wound site causes the decreased secretion of diabetic 
wound macrophages and inflammatory cytokines [107]. 
Fundamental changes in bone marrow precursors, as well 
as pro-inflammatory wounds, cause a steady increase in 
the count of wound monocytes (Mo) / macrophages (Mφ) 
and dysregulate their phenotype, thereby resulting in faulty 
wound healing during diabetic situations [108, 109]. Factors 
involved in the normalization of macrophages’ non-healing 
wounds include: targeting the RAGE pathways and NLRP3 
inflammasome/IL- 1β [110], and changing epigenetic modi-
fications in the genes related to dysregulated macrophage 
phenotype [111]. Numerous studies showed that targeting 
monopoiesis can help to improve diabetic wound healing 
and normalize wound Mφ accumulation because increased 
steady-state diabetes-related monopoiesis help increase the 

[102]. Previously data indicated that defective efferocytosis 
in a mouse model of diabetes resulted in the apoptotic cell 
accumulation in the wounds in a maintained pro-inflamma-
tory microenvironment [102]. In addition, it was showed 
hatThe efferocytosis can be successful in the progression 
of pro-inflammatory M1 to reparative M2 macrophage [87, 
88].

As stated earlier, macrophage alteration has a pivotal 
performance in the induction of efferocytosis. Diabetic 
wounds develop a variety of inflammatory cytokines and 
chemokines like AGE, MCP-1, DAMPs, and IL-1β in the 
wound microenvironment that mutually induce NLRP3 
and IL-1R1 signal pathways. These events prevent the 
polarization of macrophages and directly affect the effero-
cytosis process [103, 104] (Fig.  4). Impaired phagocytic 
function of macrophages (apoptotic removal performance) 
at the diabetic wound site; is associated with an increased 
count of apoptotic cells[102]. Other effective factors that 
increase the apoptotic cell load in the diabetic wound are 
the elevated level of oxidative stress, the induction of 

Fig. 4  Efferocytosis impairment in the diabetic wound. Reduction of PPAR-γ and elevation of RAGE signaling could decrease the performance 
of phagocytosis in wound diabetes. Therefore, the accumulation of necrotic and neutrophils increased. On the other hand, elevated inflammatory 
chemokines and cytokines in wound diabetes promote IL-1R1 and NLPR3 signaling to dysregulate macrophage polarization
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Studies stated that insulin increased neutrophil apoptosis 
and subsequently induced macrophage polarization. Insu-
lin re-established phagocytosis performance and enhanced 
the phagocytosis-induced apoptosis process in neutrophils 
[120]. Moreover, it is shown that insulin therapy increased 
efferocytosis of apoptosis neutrophils by macrophages and 
therefore triggered macrophages to change their polariza-
tion state to M2 from M1 [124]. To conclude, investiga-
tions confirmed that the exogenous insulin accelerated 
diabetic wound healing through restoration of inflammatory 
response.

Resolution of inflammation in efferocytosis 
in diabetes

T1D or insulin-dependent diabetes is an autoimmune condi-
tion in which the pancreas yields low or no insulin. Because 
the immune system targets the pancreatic islets and elimi-
nates insulin-producing cells, the pancreas produces little 
or cannot produce insulin [125]. It has been proven that an 
abnormal immune response to healthy cells, tissues, and 
organs leads to autoimmune disease. Some of the factors 
that cause the breaking of tolerance in pancreatic beta-
cells include Neoantigens (defective ribosomal products 
(DRiP), hybrid insulin peptides (HIP), posttranslational 
modifications(PTM), Splicing), endoplasmic reticulum 
(ER) stress, type 1 interferon(IFN) signature, CXCLl0, HLA 
upregulation, metabolites (adenosine, nutrients), hypoxia, 
innervations, ECM small pancreas, gluten, inflammation, 
Age, genetics [126, 127]. Central and peripheral tolerance 
are two main categories of Immune tolerance, with numer-
ous layers of active regulation. Immature T-cells in central 
tolerance with very low affinity for human leukocyte anti-
gen A (HLA) and very high reactivity to self-proteins in the 
thymus are removed [128]. Immune cells in peripheral tol-
erance may ignore and not respond to the particular antigen. 
The existence of molecules like PD-L1, PD-1, and CTLA-4 
on self-tissue or immune cells can regulate the immune 
response and reduce the activation of immune cells. Other 
mechanisms that lead to immune tolerance include regula-
tory T cells (Tregs), tolerogenic dendritic cells (tolDC), and 
suppressing the effector immune cells [126, 129]. Tissue is 
damaged following the presence of autoantibodies and auto-
reactive B cells and T cells implicated in the pathological 
inflammatory response [127]. Autoimmune conditions like 
T1DM are developed by activating inflammatory media-
tors [130]. Resolvins can favorably impact this process 
via the stimulation of several signaling pathways. As well 
as resolvins can prevent the uptake of leukocytes to the 
inflammation site by triggering non-inflammatory mono-
cyte employment and inducing macrophages to elevate the 

accumulation of Mφ in diabetic wounds [112, 113]. Addi-
tionally, it revealed that PPAR-γ in wound healing via the 
clearance of apoptotic wound neutrophils has a significant 
role[114, 115]. Another research RAGE receptor regulates 
the count of neutrophils in diabetic wounds, reduces mac-
rophage phagocytes’ ability, and is strictly related to defect 
diabetic wound healing [116] (Fig. 4).

The wound healing can be accelerated by mesenchymal 
stem cells (MSCs) in diabetic mice[101, 117]. Large quan-
tities of MFG-E8 are produced by MSCs [118]. It should 
be noted that the secretion of MFG-E8 in granulation tis-
sue was significantly decreased in diabetic mice when com-
pared with healthy mice. The MFG-E8 derived from MSCs 
may speed the healing of diabetic wounds through the pro-
motion of angiogenesis, the apoptotic cell removal, and the 
M2 macrophage infiltration, thereby blocking inflammatory 
cytokines at the wound site [101].

The infiltration of neutrophils is the first phase in healing 
the wounds, although the timely removal via macrophage 
engulfment, or efferocytosis, is important for effective tissue 
regeneration. The certain pathway for removing neutrophils 
in wound healing is not clear. CCN1 plays an important 
role in the efferocytosis of neutrophils as a bridging mol-
ecule that links phosphatidylserine, the signal of ‘eat-me’ 
on apoptotic cells, and αvβ3/αvβ5 integrins in macrophages 
to induce efferocytosis [119].

Failed wound healing is a common side effect of diabe-
tes. The macrophages of diabetic wounds show abnormal 
phenotypes and dysfunctional efferocytosis that can lead 
to excessive accumulation of neutrophils and long-term 
inflammation, thus impairing wound healing [120]. Great 
potential can be seen for the ANXA1 N-terminal derived 
peptide Ac2-26 in reducing the inflammatory response and 
facilitating repair. Following the Ac2-26 treatment, the 
closure of diabetic wounds can be accelerated, the neutro-
phil count can be down-regulated, the angiogenesis can be 
improved, and the deposition of collagen can be seen [121]. 
Moreover, the use of Ac2-26 accelerated the recruitment of 
macrophages and up-regulated the number of macrophages 
secreting CD206 as a marker for M2 macrophages. In addi-
tion, the Ac2-26 impeded the TNF-α and IL-6 expression 
levels and up-regulated the TGF-β, IL-10, and VEGFA 
expression levels in diabetic wound healing. Accordingly, 
the use of Ac2-26 in diabetic wounds displays the pro-repair 
and anti-inflammatory impacts through a decrease in the 
accumulation of neutrophils and an increase in the develop-
ment of M2 macrophage [122].

Insulin act as a modulator of inflammatory reactions. The 
insulin-degrading enzyme overexpression results in inad-
equate insulin levels in diabetic skin within wound healing, 
thereby decreasing the recovery rate of diabetic wounds 
[123].
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Rol of microRNAs in controlling efferocytosis 
in diabetes

The microRNAs (miRNAs), or short non-coding RNA, 
can regulate the gene expression and exhibit the function 
in the development of various types of diabetes mellitus. 
It is reported that miRNAs regulate several critical genes 
in beta-cells and insulin. Furthermore, their level changes 
were introduced as a novel biomarker for diagnosing long-
term diabetes complications [82, 83]. Recently, miRNAs 
possess pivotal performances in developing immune condi-
tions by regulating macrophage performances. The miRNAs 
are complexly implicated in fine-tuning basic macrophage 
activities like efferocytosis, phagocytosis, inflammation, 
tumor progression, and tissue repair [84–86, 141, 142].

miR-21 is one of the miRNAs mentioned to impact effe-
rocytosis effectively. Elevation in the level of miR-21 can 
convert macrophages to fibroblast-like cells. In the crosstalk 
of keratinocytes with myeloid cells, the extracellular ves-
icle (EV)-packaged miR-21 is substantial for cell conver-
sion (Fig. 5). Fluid-derived EV in patients with the healing 

efferocytosis capacity towards apoptotic neutrophils [131, 
132]. Following the prevention of leukocyte recruitment, 
inflammation resolution, pain relief, and regeneration and 
repair of damaged tissue can occur [133–135]. The risk of 
autoimmune diseases increases with defects in the inflam-
mation resolution and inflammatory signals [67, 136].

Pancreatic β cells have specialized functions in the secre-
tion and release of insulin in response to glucose. The inner 
environment of insulin granules causes an acidic environ-
ment that is maintained by ATPases and allows insulin to 
crystallize around zinc molecules [137]. Insulin crystals 
in lysosomes break down slowly. Following the engulf-
ment, pathogenic crystals (calcium pyrophosphate dihy-
drate, monosodium urate, cysteine, and cholesterol crystals) 
penetrate the lysosomal membrane and induce NLRP3 
inflammasome [138, 139]. Insulin crystals from β-cell effe-
rocytosis activate the inflammasome and liberate IL-1β 
from the macrophages. Based on this content, preservation 
of macrophage lysosomal performance has been highlighted 
as a therapeutic intervention for the progression of diabetes 
[140].

Fig. 5  miRNAs have a role in the efferocytosis process in diabetes. miR-21 with promoting macrophage conversion help to efferocytosis in diabetes 
mellitus. miR-126 is a direct inhibitor of ADAM9. ADAM9 with cleavage merTK to sMer and subsequently contributes to hindering efferocytosis
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their contents are not released, the tissue is damaged, and 
prolonged inflammation occurs. It is clear that defective 
phagocytosis of dead cells in the pancreas leads to the 
onset and progression of chronic diabetic inflammation. 
In recent years, information on the pathways implicated in 
efferocytosis and potent pharmacological targets has been 
significantly enhanced, increasing the clearance efficiency 
of apoptosis. Because reduced phagocytosis is associated 
with an increase in inflammation, targeting efferocytosis 
to increase dead cell clearance may contribute to diabetic 
wound healing.
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