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Abstract
Conventional agricultural practices rely heavily on chemical fertilizers to boost production. Among the fertilizers, phosphatic 
fertilizers are copiously used to ameliorate low-phosphate availability in the soil. However, phosphorus-use efficiency (PUE) 
for major cereals, including maize, is less than 30%; resulting in more than half of the applied phosphate being lost to the 
environment. Rock phosphate reserves are finite and predicted to exhaust in near future with the current rate of consump-
tion. Thus, the dependence of modern agriculture on phosphatic fertilizers poses major food security and sustainability 
challenges. Strategies to optimize and improve PUE, like genetic interventions to develop high PUE cultivars, could have 
a major impact in this area. Here, we present the current understanding and recent advances in the biological phenomenon 
of phosphate uptake, translocation, and adaptive responses of plants under phosphate deficiency, with special reference to 
maize. Maize is one of the most important cereal crops that is cultivated globally under diverse agro-climatic conditions. It 
is an industrial, feed and food crop with multifarious uses and a fast-rising global demand and consumption. The interesting 
aspects of diversity in the root system architecture traits, the interplay between signaling pathways contributing to PUE, and 
an in-depth discussion on promising candidate genes for improving PUE in maize are elaborated.
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Introduction

Phosphorus (P), being an essential macronutrient, plays a 
vital role in plant growth and development. It is one of the 
most limiting nutrients for crop productivity. It is absorbed 
by the root and transported to the younger leaves and other 
parts via xylem and phloem tissues. P plays a vital role in 
cellular physiology by assimilating into key cellular con-
stituents, viz., nucleic acids, phosphoproteins, membrane 
phospholipids, and energy-rich compounds like adenosine 
triphosphate (ATP). It participates in enzymatic reactions 
(e.g., phosphorylation and de-phosphorylation) and cell 
signaling (phosphatases). Since P is part of the building 
blocks for nucleic acid, therefore, an adequate supply of 
P is essential for cell division and plant growth. It is also 
essential during the reproductive phase of plants for seed 
formation and development. Interestingly, seeds contain a 
large quantity of P in the form of phytin or phytic acid. More 
than 60% of P in cereal grains is stored as phytin [1].

Owing to its pivotal role in plant growth and develop-
ment, deficiency of P usually results in diminished crop 

 * Krishan Kumar 
 krishan.kumar6@icar.gov.in

 * Sujay Rakshit 
 s.rakshit@icar.gov.in

1 Delhi Unit Office, ICAR - Indian Institute of Maize 
Research, Pusa Campus, New Delhi 110012, India

2 ICAR - Indian Agricultural Research Institute, Pusa Campus, 
New Delhi 110012, India

3 ICAR - Indian Institute of Maize Research, PAU Campus, 
Ludhiana 141004, India

4 School of Agriculture and Environment, The University 
of Western Australia, Perth, WA 6009, Australia

5 Mountain Research Center for Field Crops, Sher-e-Kashmir 
University of Agricultural Sciences and Technology, 
Khudwani, Srinagar, Jammu and Kashmir, India

6 Dryland Agriculture Research Station, Sher-e-Kashmir 
University of Agricultural Sciences and Technology Srinagar, 
Khudwani, Srinagar, Jammu and Kashmir, India

http://orcid.org/0000-0003-3474-6188
http://orcid.org/0000-0001-6139-7943
http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-022-07679-5&domain=pdf


12092 Molecular Biology Reports (2022) 49:12091–12107

1 3

growth and lower yield. Further, a low supply of P during 
the grain filling stage results in decreased seed number and 
less carbon deposition leading to reduced seed size, and 
reduction in yield [2]. P deficiency is a major constraint 
to achieving optimum crop yield in approximately 50% 
of global agricultural soils. External application of phos-
phate  (PO4)3− based fertilizers is necessary for optimum 
production. P-based fertilizers are manufactured from rock 
phosphate reserves, which are non-renewable and confined 
to a few countries like Morocco, China, and the USA [3]. 
There is a prevailing concern that the global rock phosphate 
reserves may exhaust in a century or two at the current con-
sumption rates, posing a major threat to global food security 
[4]. Cereals, like maize, are capable of utilizing less than 
30% of the applied P fertilizer. The unutilized phosphate 
results in environmental degradation via eutrophication. 
Hence, the imminent danger of phosphate reserve depletion 
and low phosphorus-use efficiency are major challenges for 
a sustainable cropping system.

One of the strategies to improve PUE is to develop P-effi-
cient genotypes. Although good progress has been made in 
the recent past in the identification and characterization 
of genes and miRNAs playing a pivotal role in P uptake, 
translocation, and homeostasis in Arabidopsis and rice, 
relatively lesser research has been carried out in maize in 
this direction. The potential candidate genes/miRNAs from 
Arabidopsis and rice or their maize orthologs might be uti-
lized and explored for improving PUE in maize. The goal 
of the present review is to narrow down potential genetic 
targets and thereby, summarize the major molecular play-
ers contributing to P uptake and transport, and regulatory 
components playing a crucial role in maintaining P levels in 
plants, particularly maize. The adaptive strategies to enhance 
P availability under P-deficiency stress are also discussed.

P uptake and translocation

In the soil, P exists as inorganic form (Pi; usually 10–15%), 
organic form (20–80%), and mineral precipitates (5–7%) 
[5]. The inorganic phosphate  (H2PO4

−) form is acquired 
by plants through the root, while the organic form (mainly 
phytic acid, but depends on soil type also) often forms salts 
with different ions rendering them insoluble or precipitated 
and unavailable for uptake by plants. Inorganic phosphate 
(Pi) strongly reacts with oxides and hydroxides of Al and Fe 
in acidic soil and cations in alkaline soil (like  Ca2+,  Mg2+) to 
form insoluble precipitates, thereby further limiting its bio-
availability to the plant [6]. The concentration of inorganic 
phosphate in soil (0.1–10 μM) is thousand fold lower than 
in plant cells (5–20 mM) [6] implying that Pi uptake and 
transport have to be done against electrochemical potential.

Pi is absorbed by roots through low- and high-affinity 
phosphate transport systems. The low-affinity phosphate 
transport system is expressed constitutively while the high-
affinity phosphate transport system is down-regulated at 
high-P availability to avoid P toxicity or induced mainly 
under P-deficiency conditions i.e., regulated by Pi avail-
ability [7]. Pi acquisition from the soil is an energy-medi-
ated process and relies primarily on the plasma membrane-
localized phosphate transporters (PHT such as PHT1 family 
members) functioning as Pi/H+ symporters [8]. The phos-
phate transporters are not only involved in Pi uptake by root 
but also in its distribution from root to shoot. The Pht genes 
are mainly classified into four families, viz., Pht1, Pht2, 
Pht3, and Pht4 that are localized on the plasma membrane, 
plastidial membrane, mitochondrial membrane, and Golgi-
compartment, respectively [9, 10]. The Pht1 family mem-
bers express in the root-soil interface (root hairs and root 
epidermal cells) [11] and symbiotic root-fungus (arbuscular 
mycorrhiza) interface i.e., root cortical cells harboring the 
fungal arbuscules [12]. In several plants, including maize, 
root colonization by symbiotic mycorrhizal fungi plays a 
crucial role in Pi uptake from the soil [13]. Some Pht1 fam-
ily members have also been detected in other tissues, like 
leaves, stems, cotyledons, phloem, anthers, pollens, flowers, 
and seeds, suggesting that Pht1 family genes are not only 
involved in direct Pi uptake but also its subsequent distribu-
tion within the plant [11, 14]. Pht1 family genes are also 
involved in Pi remobilization during leaf senescence (Pht1;5 
gene in Arabidopsis) and fruit maturation [15]. The mem-
bers of the PHT2, PHT3, and PHT4 transporters participate 
in Pi translocation into sub-cellular organelles, viz., plastids, 
mitochondria, and Golgi, respectively [9, 10, 16].

In maize, five Pht1 genes (ZmPht1;1–5) exhibit differ-
ential and diverse expression patterns under Pi-deprived 
conditions [17]. Subsequently, thirteen putative Pht1 genes 
(ZmPht1;1–1;13) have been reported [18]. Under suffi-
cient Pi supply, only six out of thirteen ZmPht genes are 
expressed in at least one tissue. Among them, ZmPht1;1 
expresses in roots, leaves, stems, anthers, pollen, cobs, 
silks, and seeds, which indicates its role in both Pi uptake 
and translocation. ZmPht1;3 expresses predominantly in 
anther and pollen [17, 18] (Fig. 1). However, under Pi-
deprived conditions, twelve out of thirteen ZmPht genes 
are induced significantly in root tissue [18]. Among 
them, expression of ZmPht1;3, ZmPht1;5, ZmPht1;8 and 
ZmPht1;13 are up-regulated in response to low-Pi without 
arbuscular mycorrhizal fungi (AMF), but down-regulated 
in response to AMF thereby, indicating that these are 
involved in the direct Pi uptake pathway [18]. ZmPht1;2, 
1;4, 1;6, 1;7, 1;9 and 1;11 are up-regulated in roots colo-
nized by AMF under low-Pi conditions, indicating their 
probable involvement in indirect Pi uptake through AMF-
colonized roots (symbiotic pathway) [17–19]. Among 
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these, ZmPht1;6 is the best characterized mycorrhizal-
inducible Pi transporter whose transcript level signifi-
cantly and positively correlates with the level of AMF 
biomarkers in roots and AMF colonization rate [20]. It is 
implicated in Pi-uptake in symbiotic mycorrhizal maize 
roots and has shown to be vital for maize growth (biomass 
increase) and cob development under nutrient deficiency. 
Recently, ZmPht1;9 was characterized as a mycorrhizal 
induced phosphate transporter gene in maize [21]. Het-
erologous expression of this maize gene in Arabidopsis 
and rice resulted in more Pi accumulation, indicating its 
involvement in Pi uptake [21, 22]. Further, ZmPht1;2,1;3 
and 1;6 are also expressed in old leaves and young leaves, 
suggesting their involvement in P re-mobilization from 
old leaves (source) to young leaves (sink) (Fig. 1). Besides 
Pht1s identification and expression analysis, studies on 
testing the affinities towards Pi and cellular/subcellular 
localization of PHT1s are lacking in maize [23]. Further 
research focusing on delineating molecular mechanisms 
of PHTs in maize might be useful in the development of 
alternate strategies for better P management.

Apart from PHT, another phosphate transporter-like 
SPX domain (characterized by the presence of the SPX 
domain at the N-terminal)-containing proteins has been 
implicated in phosphate sensing and transport. These 
proteins are grouped further into four subfamilies based 
on the presence or absence of a secondary domain at the 
C-terminal such as EXS, RING (Really Interesting New 
Gene), or MFS (Major Facilitator Superfamily) domain. 
SPX-EXS subfamily members such as Pho1 (Phosphate 1) 
and its homologs are implicated in Pi loading into the root 
xylem and transport/export from roots to shoots [10, 24]. 
The SPX-MFS subfamily members such as VPT1 (Vacu-
olar Phosphate Transporter 1, also named as Pht5;1) and 
OsSPX-MFS3, a low-affinity Pi transporter, have been 
implicated in Pi transport into the vacuole and efflux from 
the vacuole, respectively [25], which act as Pi storage 
compartment in the plant cell. Thus, the concerted action 
of the above-mentioned various phosphate transporters 
warrants proper Pi distribution to specific cells, tissues, 
and organelles in the plant.

Fig. 1  Overview of phosphate (Pi) uptake, export, and re-mobiliza-
tion in maize plant via PHT1 family transporters. Site-specific expres-
sion of Pht1 genes in various tissues, viz., roots, shoots, and leaves 
in maize are listed. Pht genes with black, red, and purple font colors 
represent different Phts expressed under sufficient-Pi, low-Pi, and in 

response to arbuscular mycorrhizal fungi (AMF) inoculation under 
low-Pi supply conditions, respectively (expression data utilized from 
[17, 18]). Maize plant adaptation under phosphorus (P)-limiting con-
ditions is also enlisted in the box
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Plant adaptation under Pi‑limiting 
conditions

The availability of Pi greatly affects the plant’s growth 
and productivity. Maize plants grown under low-Pi condi-
tions exhibit visual symptoms of P deficiency like purple 
coloration in the root, shoot, and old leaves. Further, Pi-
deficiency also results in a reduction in various morpho-
logical parameters, such as plant height, root and shoot 
weight, biomass accumulation, etc. as compared to the 
Pi-sufficient conditions (Supplementary Fig. S1). To cope 
with Pi-deficiency, crop plants (including maize) undergo 
diverse morphological, biochemical, physiological, and 
molecular adaptations, which in turn, result in enhanced 
Pi availability in the rhizosphere and hence its increased 
uptake from the soil. These adaptations are-modifying 
root morphology and architecture, increased root absorp-
tive surface area via an increasing number of root hairs, 
induction of secretory protein extrusion by roots [induc-
tion of acid phosphatases (APases), organic acid and ribo-
nucleases (RNase) secretion into the rhizosphere to release 
available P from the soil], obtaining Pi via arbuscular myc-
orrhizal association, remobilization of Pi from old leaves/
tissue to young leaves/tissue, anthocyanin accumulation, 
etc. [6, 10, 26] (Fig. 1). Low-Pi tolerant maize genotypes 
have a higher shoot-to-root ratio, higher anthocyanin accu-
mulation, larger root length, root surface area, and root 
volume, and secrete more APases and organic acids in 
roots compared to sensitive ones under P-limiting condi-
tions [26, 27].

At the molecular level, the plant responds to Pi defi-
ciency by altering the expression levels of Pi deficiency-
associated genes including transcription factors, many 
PHTs (mostly high-affinity transporters; discussed above), 
and miRNAs [28]. Under Pi limitation, some transcription 
factors (TFs) control the expression of a set of phosphate 
starvation-induced (PSI) genes by binding to cis-elements 
present in their promoter. The regulatory TFs implicated 
in phosphate starvation signaling are—phosphate star-
vation response 1 (PHR1), ZAT6, WRKY6, WRKY42, 
WRKY45, WRKY75, MYB26, and bHLH32 in Arabi-
dopsis; OsPHR2 and OsPTF1 in rice; TaPHR1 in wheat; 
ZmPTF1 in maize [29–34], etc. Among these, PHR1/
PTF1, a MYB domain-containing TF, is a central regula-
tor of Pi signaling and is involved in phosphate starvation 
response (PSR) [16, 35]. Under low-P stress, it regulates 
the expression of various PSI genes such as Pht1s (high-
affinity  H+/Pi co-transporter; preferentially expressed in 
epidermal/cortical cells of the root), Pho1 (high-affinity 
Pi transporter expressed in root pericycle), and miR399 
through binding to the P1BS sequence, GNATATNC, pre-
sent in the promoter region of PSI genes [28]. PHR1 is a 

direct target of SIZ1, a SUMO E3 ligase, which positively 
regulates it post-translationally. In Arabidopsis, PSI genes 
are repressed in siz1 mutant even in Pi deficiency. Pho1 
and some other SPX domain-containing proteins exhibit 
a major role in controlling PSR. Under Pi starvation, 
WRKY45 and WRKY75 are up-regulated while WRKY6 
and WRKY42 are down-regulated. WRKY45/75 positively 
regulates Pht1;1 [16, 29], while WRKY6/42 negatively 
regulates/ repressed Pho1 expression [31]. Under P starva-
tion conditions, degradation of WRKY42 happens, which 
in turn, implies lesser suppression of Pho1 [34].

A few SPX domain-containing proteins act as important 
feedback regulators of OsPHR2 in rice. Under Pi starva-
tion, PHR2 activates SPX domain-containing proteins in 
Arabidopsis and rice [36]. Pho2, a ubiquitin E2 conjugase, 
is implicated in controlling the degradation of transporters 
by the ubiquitination process. The miRNA399 controls the 
expression of Pho2 and results in its post-transcriptional 
degradation [28]. Apart from miR399, miR827 is the other 
conserved small non-coding RNA family characterized in 
plants under P deficiency stress [37].

Acid phosphatases (APases) are also PSI genes that play 
a crucial role in the mobilization and utilization of organic P 
under Pi-deprived conditions [38]. The APases are secreted 
externally in the root zone and help in the release of Pi from 
organophosphates. Several APases have been characterized 
in vascular plants, like lupin, tomato, tobacco, common 
bean, Arabidopsis and soybean [38]. So far, 29 Purple Acid 
Phosphates (PAP) have been identified in Arabidopsis [39], 
26 in rice [40], 35 in soybean [41], 33 in maize [42] and 25 
in chickpea [43]. In Arabidopsis, 11 out of 29 members of 
PAP are up-regulated by Pi stress [39].

In maize, transcriptomic studies in response to the low-Pi 
conditions have identified a set of differentially expressed 
Pi-responsive genes, that are mainly involved in numerous 
metabolic pathways, phytohormone regulation, ion trans-
port, redox homeostasis, transcriptional regulation, and pro-
tein synthesis and degradation [26, 44]. Among Pi-respon-
sive genes, five maize Pht1s, eight Pho/SPX/EXS domain 
encoding genes, APases, phytase, peroxidase, RNase, and 
various TFs are up-regulated in the root tissue of P-efficient 
genotypes under low-phosphate stress [26, 44]. The P1BS 
motif—a binding site of the central regulator—is present in 
the promoters of 8 of 13 ZmPht1s [25]. However, it is not 
always necessary that P1BS containing Pht1s are involved 
in Pi starvation. For instance, ZmPht1;1 gene contains P1BS 
in its promoter but, is not induced by Pi starvation hence not 
involved in Pi starvation [18]. Recently, 18 ZmPhr genes 
were identified in the maize genome that exhibits differen-
tial and diverse expression patterns [45]. Under the low-
Pi conditions, eight (ZmPhr3, ZmPhr4, ZmPhr6, ZmPhr7, 
ZmPhr9, ZmPhr13, ZmPhr17, and ZmPhr18) and two 
(ZmPhr5 and ZmPhr10) genes are up-and down-regulated 
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in leaf, respectively, indicating their probable involvement 
in the regulation of Pi translocation in leaves under differ-
ent Pi level. Besides Pi-starvation responsive genes, differ-
entially expressed miRNAs that include miR156, miR166, 
miR169, miR393, miR395, miR398, miR399, miR528, and 
miR827 family members have also been identified in maize 
subjected to the low-Pi conditions [37, 46]. Pi starvation-
dependent induction/up-regulation of miR399 family mem-
bers and miR827, and down-regulation of miR827 targets 
(such as SPX domain-containing protein, and ubiquitin E3 
ligase containing the RING and SPX domains) suggest their 
role in Pi homeostasis and hence Pi starvation adaptation in 
maize [37]. Owing to conservation in Pi-starvation response 
in plants, the known mechanism of Pi starvation signaling 
in Arabidopsis and rice, and the above-mentioned studies 
in maize, we propose a putative transcriptional regula-
tory model for Pi-starvation responses in maize (Fig. 2). In 

summary, plants show a remarkable adaptation response to 
low-Pi stress, which is manifested in terms of differential 
expression of genes and non-coding RNAs. Unraveling this 
natural response of the plant could potentially open a win-
dow for the identification of key candidate genes for improv-
ing PUE.

Root system architecture for PUE in maize: 
genetic variation

Root system architecture (RSA) is a key trait that confers 
better PUE to crops under Pi-deficient soils. The P-efficient 
cultivars can be developed through ideotype breeding via 
integrating a favorable combination of RSA traits for tar-
get environments. The wild relatives and landraces are the 
best resource to explore the RSA-associated traits as most 

Fig. 2  Transcriptional regulatory model for phosphate (Pi)-starvation 
responses in maize. The hypothesis is derived from the fact that the 
Pi deficiency response is quite conserved in plants [110]. Hence, the 
knowledge about the regulation of Pi starvation signaling  in Arabi-
dopsis and rice is utilized and extrapolated for maize considering 
transcriptomic studies in response to the low-Pi condition in maize 
[26, 37, 44, 111, 112]. Red-colored boxes and down arrows denote 
down-regulation (negative effect) while green boxes and up arrows 
represent up-regulation (positive effect). Redline ending with a short 
bar indicates inhibition. A small orange circle denotes for sumoyla-

tion (represented by the letter ‘S’) of PHR (phosphate starvation 
response), a transcription factor. P1BS (PHR1 binding sequence; 
GNATATNC) is the cis-regulatory element found in the promoter 
region of many Pi-starvation-induced genes, where the PHR tran-
scription factor binds and regulates their expression. ZmPho2—Zea 
mays phosphate overaccumulator 2; ARF—Auxin Response Fac-
tor; ERF—ethylene response factor; ABA-REBF—ABA-respon-
sive element binding factor; PHR—phosphate starvation response; 
ZmPTF1—Zea mays phosphate starvation-induced transcription fac-
tor 1; P1BS—PHR1 binding sequence on the target gene promoter
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modern cultivars have been selected through extensive 
selection in optimal or nutrient-rich environments [47]. The 
favorable RSA for imparting better PUE in maize includes 
a higher number of hypocotyl-borne roots and basal root 
whorls, greater lateral root branching density (LRBD), 
longer but denser root hairs, shallow root growth angles, 
more production of crown roots, higher axial roots, higher 
root cortical aerenchyma (RCA), greater cortical cell size 
and greater root cortical senescence [47–49]. Maize geno-
types with greater production of crown roots exhibit better 
capture of P, growth, and yield in low-P soil as compared 
to those with fewer crown roots [50]. The greater number 
of hypocotyl-borne roots imparts better PUE because of 
their shallow growth angles and less metabolic cost [51]. 
Although the shallow roots and steeper angles are important 
to extract the water, nitrogen (N), and P during the seedling 
stage, deep architectural roots are essential to explore the 
fertile soils [47]. Densely spaced (more than 9 branches/
cm), short laterals, fine roots (provides more surface area for 
uptake) and shallow rooting are desirable for P acquisition 
in maize [52, 53]. Maize genotypes possessing enhanced 
lateral rooting exhibit up to 100% higher P accumulation 
and growth rate [52].

Maize possesses ample genetic variation for RSA-asso-
ciated traits related to PUE [47]. The genetic gain depends 
upon the genetic control of traits; complex traits are difficult 
to improve. Root hairs (longer, denser hairs) are preferred 
traits for RSA improvement due to their greater role in PUE, 
presence of enormous genetic variation in root-hair length 
and density, and simpler genetic control [54]. RCA is an 
important trait for PUE because it decreases the respiration 
and P cost of maintaining root tissue. There is a significant 
variation in RCA formation in maize cultivars [55]. Fur-
thermore, SimRoot modeling in maize revealed the role of 

RCA in enhancing growth up to 70% under P-deficient soil 
stress [56]. In maize, enormous genetic variation exists for 
LRBD [48]. The high LRBD favors the roots to be shallower 
and higher root sink strength (more lateral roots), but breed-
ers need to be cautious as sometimes high LRBD results in 
trade-off effects by restricting the growth rate of the lateral 
roots (resource limitations). Thus, the genetic diversity in 
RSA could be harnessed to enhance PUE in corn.

Genomic regions/QTLs mapped for RSA 
in maize

A few mapping studies mapped several genomic regions i.e., 
quantitative trait loci (QTL) governing the RSA for better PUE 
(Table 1). A major QTL for lateral root number (LRN) on 
chromosome 2 has been identified under low-P using recom-
binant inbred lines (RILs), in addition to QTL for plasticity of 
LRN on chromosome 4 [57]. Similarly, a major QTL for root 
hair length has been mapped on chromosome 9 [53]. Later, 
in the same population, one major QTL each for seminal root 
length (SRL) and seminal root number (SRN) was mapped on 
chromosomes 2 and 6, respectively, and epistatic interaction 
QTLs were detected [58]. Later, a stable or consistent QTL 
for root weight (dupssr15 locus), detected across four environ-
ments was identified [59]. Major QTLs for root diameter and 
surface area of fine roots on chromosomes 7 and 10, respec-
tively in L22 × L3 based RILs were also detected [60]. Further-
more, by utilizing the multiple interval mapping approaches 
with multiple traits (root length, root surface area, root:shoot 
ratio, and P content) a major QTL has been mapped on chro-
mosome 8 that co-localized with the ZmPSTOL candidate 

Table 1  The details of major quantitative trait loci (QTLs) for root system architecture (RSA) associated traits in maize

PVE Phenotypic variance explained

Trait QTLs Chr Mapping population (type) Markers PVE (%) References

Lateral root number under low-P QTL 2 B73 × Mo17
(RILs)

umc131/nc003 10.4 [53]
Plasticity of lateral root number QTL 4 nc005/umc66a 10.2
Root hair length under low-P QTL 9 csu093/bn114.28 10.4 [57]
Seminal root length QTL 2 umc34/bn112.09 11 [58]
Seminal root number QTL 6 phi126/rxo1 11.3
Root diameter qRD7.02 7 L22 × L3

(RILs)
PZA01690_7 10.0 [60]

Surface area of fine roots qSA2_10.03 10 PHM2770_19 15.1
Root dry weight, phosphorous 

uptake efficiency (PUpE) and 
phosphorous use efficiency 
(PUE)

Cl-bin3.04a(qRWD3-2, 
qPupE07N3, qPu-
pE08L3, qPUE07N3-1)

3 Ye478 × Wu312
(RILs)

phi036 34.7 [68]

Seminal root length, seminal 
root number,PUE and PUpE, 
response to low-P for PUpE

Cl-bin3.04b(qSRL3,qSRN3, 
qPupE07L3, qPUE07N3-
2,qIRLP-PupE07-3)

3 umc1773 48.3
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gene, the higher expression of this candidate gene being veri-
fied in the roots of L22.

Root exudates also play an important role in improv-
ing PUE. A major QTL for  H+ secretion on chromosome 1 
(bnlg2228-bnlg100) was detected [61]. Qin et al. [62] used 082 
(P-efficient genotype) and Ye107 based  F2 population to map 
a major and consistent QTL for acid phosphatase, AP1-KXNP 
(between bnlg1268a-umc1290a) on chromosome 1. Later, 
using the same population, Qiu et al. [63] mapped two stable, 
but minor effects QTLs for acid phosphatase activity (exudates 
in rhizosphere) on chromosome 1 (umc2083-umc1972) and 5 
(umc2111 to dupssr10). Such inconsistency in QTL effects 
can be attributed to the significant influence of the environ-
ment [59, 61–63]. The study also identified a major and stable 
QTL for acid phosphatase activity in the root on chromosome 
3 (bnlg1350–bnlg1449).

Phosphorous uptake efficiency (PUpE) has been shown as 
the main determinant of PUE in tropical maize under low-P 
soil conditions as evident from the co-localization of approxi-
mately 80% of the QTLs for PUpE with those for PUE [64]. 
The same study has mapped QTLs for PUE and PUpE on 
chromosome 1 (qPUE1 and qPAE1), flanked by root-related 
genes rth1 and bk213, previously associated with lateral root 
length [65] and with root hair elongation [66], respectively. 
Furthermore, the mapped region has been found to contain 
QTLs for root development under P-deficient conditions 
[53, 67]. QTLs for PUE, PUpE, and Phosphorous utiliza-
tion efficiency (PUtE) exhibit dominance effects, and hence 
heterotic combinations can be helpful to generate P-efficient 
maize hybrids. QTLs related to RSA, PUE, and PUpE in RILs 
derived from Ye478 × Wu312 have been mapped [68]. The 
study identified two major QTL clusters for root system archi-
tecture, Cl-bin3.04a and Cl-bin3.04b (Table 1). The marker-
assisted selection (MAS) based development of nine advanced 
backcross-derived lines carrying Cl-bin3.04a or Cl-bin3.04b 
displayed mean increases of 22–26% in PUE under low-P 
field evaluations. Furthermore, a line L224 pyramiding both 
Clbin3.04a and Cl-bin3.04b showed enhanced PUpE, mainly 
due to effects on changes in root morphology, rather than 
root physiology, under both hydroponic and field conditions. 
Hence, this study has demonstrated the potential of MAS in 
exploring the physiological and genetic contributions of RSA 
to maize PUE [68]. Development of multi-lines with identical 
shoot architecture but contrasting RSA traits can be helpful to 
get better performance under P-deficient, optimum and mois-
ture stress [69]. Furthermore, the independent major QTLs 
can be stacked together through pyramiding to develop PUE 
efficient maize cultivars.

Harnessing crosstalk between signaling 
pathways related to other nutrients 
for improving PUE

As we know plants are not challenged by only one stimulus 
at a time i.e., plants are dealing with more than one fac-
tor at a time. Particularly, most of the plant responses to 
Pi deficiency are also regulated by the levels of nitrogen. 
Thus, it is imperative to discuss how other nutrients [e.g., 
nitrogen (N), and potassium (K)], interplay in signaling 
pathways contributing to PUE.

Crosstalk between P and N signaling pathways

In nutrient-signaling pathways, both N and P are impor-
tant constituents of the protein phosphorylation process. 
In Arabidopsis, an E3 ligase AtNLA (Arabidopsis nitrogen 
limitation adaptation) has been reported as the first protein 
that participates during the interaction between these two 
nutrients. Both AtNLA and miR827 had been observed 
as P-uptake repressors but did not affect the N uptake 
[70]. The antagonistic interaction between  NO3

−(nitrate) 
and Pi can be explained by the AtPHT1’s vacuolar deg-
radation mediated through AtNLA [71]. The TF AtHRS1 
(Arabidopsis hypersensitive to low Pi-elicited primary 
root shortening 1) has been annotated as N and P signal-
ing integrator and its homolog, named as HRS1 HOMO-
LOGUE 1 to 6 (AtHOH1 to AtHOH6), has been identified. 
The Arabidopsis lines overexpressing these TFs show the 
root phenotype of hypersensitivity to low-Pi [72]. These 
both kinds of TFs (AtHRS1and AtHOH) are induced in 
the presence of nitrate and repress the growth of the root 
as a P-deficiency response [73]. Both AtHRS1and AtHOH 
homologs 1 to 3 (known as NIGT1.1 to NIGT 1.4) are 
regulated by Pi starvation response TF i.e., AtPHR1 [74].

NRT1.1(Nitrate transporter 1.1)/CHL1(nitrate tran-
sceptorchlorina 1), TF that is involved in  NO3

− sensing 
in Arabidopsis, has also been reported as a component 
of crosstalk between N and P signaling networks whose 
activity is reliant on PHR1 turnover [75]. In addition to 
this, the role of PHO2, as an integrator of N signals and 
P starvation has been described. The effect of N on PSR 
is evident, as the majority of PSI genes such as PHT1-1, 
IPS1, and SPX1 are repressed in pho2 mutant. PHO2 and 
NRT1.1 affect the transcripts level of each other and this is 
well conserved in the case of wheat and rice also [75]. The 
downstream pathway of PHR1/PHL1 is somewhat depend-
ent on N uptake and signals mediated by the NRT1.1 sen-
sor. Additionally, HRS1/HHOs and NLA TFs contribute 
significantly as an integrator between both networks for 
uptake of N/P and RSA of plants [75]. Previous studies 
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also confirmed that OSNRT1.1B  (NO3
− sensor) degrades 

the OsSPX4 (Pi signaling repressor) through an E3 ubiq-
uitin ligase NBIP1 (NRT1.1B interacting protein 1) [76]. 
This OsSPX4 interacts with OsNLP3  (NO3

− signaling 
TF) and negatively regulates the OsPHR2 (regulator of Pi 
signaling) in rice. Regardless of available Pi, under lower 
 NO3

− conditions, SPX protein accumulates at a higher 
level and represses the phosphate and nitrate responsive 
genes due to retention of TFs NLP (NIN-like protein) and 
PHR in the cytoplasm. The NRT1.1-NBIP1 mediated deg-
radation of OsSPX4 resulted in the expression of nitrate 
and PSI genes due to the release of PHR and NLP from the 
cytoplasm to the nucleus leading to higher PUE and better 
RSA in the plant [76, 77]. These studies suggested that 
under the Pi-starvation conditions, expression of PSI genes 
is greatly regulated (mostly enhanced) due to  NO3

− induc-
tion i.e., N actively controls the PSR in plants. It can be 
utilized to modulate N and P concentrations precisely 
and to enhance PUtE under a low-Pi environment [78]. 
Recently, under Pi-deficient and  NO3– sufficient condi-
tions, NIGT1.1 (AtHHO2) and NIGT1.2 (AtHHO3) TFs 
have been shown to enhance Pi acquisition while reducing 
 NO3

− uptake by up-regulating and down-regulating the 
expression of Pi transporter and nitrate transporter genes, 
respectively [79]. In this study, a similar regulatory path-
way was observed in maize also. This study has confirmed 
that NIGT1 TF plays a central role in maintaining P and N 
balance in plants during Pi starvation. Further, it should be 
noted that ammonium  (NH4

+) is also a major N source of 
plants. So, the regulation of N/P networks through ammo-
nium sensing needs to be explored [80].

These kinds of responses directly represent the tight link-
age between N and P signaling networks. Therefore, detailed 
investigations on NRT1.1-SPX mediated PHR cascade, Pi 
starvation-induced expression of NIGT1 resulting in higher 
expression of Pi transporter genes and molecular mechanism 
regulating NIGT1 level under various P/N supply conditions 
might be helpful to gain more understanding of the crosstalk 
between P and N signaling pathways in maize. This would 
lead to identifying novel targets for improving PUE in maize 
and other crop plants.

Cross talk between P and K signaling pathways

The crosstalk between P and K signaling pathways has been 
observed in plants although little is known about it. Previ-
ously, rapid induction of TFs such as MAPK, MAPKK, etc. 
has been reported due to changes in the concentration of 
external P or K in tomato [81]. Further, induction of High-
affinity K uptake (HAK5)-transporter has been demonstrated 
under Pi-deficient conditions [82]. Recently, the cross-talk 
between K and P has been demonstrated in Arabidopsis 
and tomato as deficiency of Pi results in transcriptional 

repression of AKT1-type channel forming genes which 
results in reduced K-uptake and its translocation to shoots. 
This has also been observed that external higher K con-
centration inhibits the Pi uptake which, in turn, results in 
the induction of PSR (responsible TFs: PHR1 and PHL1) 
and phosphate-responsive genes [83]. More recently, an 
ionome and transcriptomic study in sorghum identified two 
HAKs (Potassium high-affinity transporter from KT/HAK/
KUP family gene) which might be involved in root-to-shoot 
translocation of K under a Pi-deficient environment [84]. 
Although, various TFs, transporters, and nutrient-responsive 
genes have been identified and characterized in the recent 
past but P and K sensors are not identified yet. The research 
on the interaction between multiple nutrient signaling net-
works is still in its infancy stage that needs to be explored 
meticulously which would help target nutrient-signaling 
networks for better PUE.

Prime molecular targets for improving PUE in maize

PUE in maize is a complex trait-mediated by a coordinated 
action of a set of genes encoding for Pi transporters and 
regulatory components [TFs and miRNAs), whose expres-
sion alters (either induce or suppress) in response to Pi 
deficiency. Further, abundance, localization, and activi-
ties of these transporters are regulated at transcriptional 
(by TFs), post-transcriptional (by miRNAs), translational 
and post-translational level [by PHF1, Pho2, SPX-RING 
domain protein, etc.] via ubiquitination, phosphorylation, 
and sumoylation [16, 85]. In this context, Pi-uptake and 
utilization efficiency may be improved by modulating 
the expression level of key regulatory components and 
phosphate transporters [few root-specific high-affinity 
transporters (PHT1s), like Pho1] through a transgenic 
(over-expression and/or RNAi) approach which could 
enhance crop productivity under Pi-deprived conditions. 
It has been shown that many times constitutive promoter-
driven over-expression of promising PHTs and regulatory 
factors might negatively affect transgenic plant growth 
under P-deficient conditions while leading to P toxic-
ity symptoms under P-sufficient conditions [16, 86]. To 
minimize these unintended effects, P starvation-inducible 
and tissue-specific promoters such as shoot-specific, root-
specific, root-hair specific, and others should be utilized 
while harnessing over-expression strategy using these 
key molecular targets for improving PUE in maize. Apart 
from P toxicity, sometimes over-expression of high-affinity 
transporter (PHT1s involved in Pi uptake in P deficiency) 
may not result in enhanced tolerance to P deficiency [87]. 
Furthermore, few studies in rice indicated that soil sub-
strate (Pi) availability rather than high-affinity transporter 
activity may be the limiting step in Pi-deficient soil [88]. 
These findings suggest the need to explore genes encoding 
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intracellular Pi transporters (PHT2, PHT3, PHT4 families 
that are involved in proper P distribution, re-mobilization, 
and maintaining cytosolic P homeostasis) for improving 
PUE in crops.

In acidic soils, Aluminium toxicity (due to the pres-
ence of solubilized ionic form i.e.,  Al3+) and P-deficiency 
(due to P-fixing/complexation by clay minerals like iron 
oxides and kaolinite) both stresses occur at a time. Exces-
sive  Al3+ stress inhibits root growth/elongation by destroy-
ing the cell structure of the root apex and thereby, majorly 
reducing immobile nutrient (i.e., Pi) uptake. Thus, in such 
soil types, PUE can only be improved if maize plants are 
also tolerant of Al toxicity. To date, few genes such as 
TaALMT1 and SbMATE imparting  Al3+ tolerance in wheat 
and soybean, respectively, have been well characterized 
[89]. TaALMT1 encodes an anion channel located at the 
plasma membrane (malate transporter) that is responsible 
for malate efflux from root apices while SbMATE encodes 
a member of the Multidrug and Toxic Compound Extru-
sion (MATE) transporter family that facilitates citrate 
efflux from roots. Efflux of malate and citrate from root 
might result in enhanced Pi uptake by improving root 
growth or by enhancing the dissolution of Pi from com-
plexes [89]. Thus, improvement of PUE in maize under 
acidic soil conditions can be achieved by utilizing genes 
conferring tolerance against high levels of toxic  Al3+ along 
with genes having a role in imparting higher PUE.

The key useful candidates (targets) proven for improv-
ing P uptake and/or utilization in various crop plants are 
enlisted in Table 2. These genes [viz., ZmPTF1, ZmPHRs, 
Pi transporters involved in Pi mobilization and re-mobi-
lization (ZmPht 1;2 and 1;3), miR399, and miR827, etc.] 
and/or their maize ortholog (such as ortholog of OsPS-
TOL1, AVP1, OsPHF1, OsMYB2P-1, OsPht1;6, OsPht2;1, 
etc.) may be potentially useful for improving PUE in maize 
(Table 2). Being a complex and polygenic trait, engineer-
ing multiple molecular targets simultaneously such as 
TFs, key high-affinity Pi transporters, and/or intracellular 
Pi transporters would be important. Genetic engineering 
approaches, like transgene stacking, knockdown via RNA 
interference (a negative regulator of PUE), and/or highly 
efficient targeted mutation(s) in the promoter(s)/gene(s) 
aimed to alter expression levels via genome editing meth-
ods (e.g., PHO2 ortholog, WRKY46 ortholog) might serve 
as a better strategy to improve PUE successfully. Apart 
from genetic engineering approaches, a pyramiding of 
multiple genes could also be achieved utilizing marker-
assisted selection. The natural allelic variation within the 
PHT gene families and their regulatory genes (PHR1, 
PTF1, etc.) could also be explored to identify superior 
alleles with higher PUE, and thus, the same may be uti-
lized for improving PUE in maize through a breeding 
approach.

Introducing phosphite metabolizing ability: 
an alternative strategy for improving PUE

Phosphate is the only chemical form of P that can be 
metabolized and assimilated by all plants and most micro-
organisms. However, a few species of bacteria such as 
Pseudomonas stutzeri WM88 strain have the natural abil-
ity to utilize phosphite  (PO3

−3) as a sole P source [106]. 
These bacteria utilize phosphite by converting /oxidizing 
it into phosphate with the help of the phosphite dehydro-
genase (PTDH; NAD-dependent oxidoreductase class of 
enzyme that catalyzes the oxidation of reduced phosphite 
into Pi, with a consequent reduction in NAD to NADH) 
enzyme encoded by ptxD gene present in them. Phosphite 
is a reduced form of P which is easily absorbed by plants 
via phosphate transporters. The fertilizer use efficiency 
for phosphite is much higher due to its high solubility 
and less reactivity with soil components and soil bacteria 
which provide an advantage over inefficient phosphate fer-
tilizer. However, plants cannot metabolize and assimilate 
phosphite which limits its use as a fertilizer. However, the 
introduction of the ptxD gene into the plant genome should 
impart phosphite metabolizing ability to them.

This novel strategy has been proved in model plants 
(Arabidopsis and tobacco) via heterologous expression of 
the ptxD gene [107]. These transgenic tobacco and Arabi-
dopsis plants require 30–50% lesser P input with phosphite 
fertilizer to produce similar productivity achieved using 
phosphate fertilizer [107]. Recently, the ptxD gene has 
been introduced into the Nipponbare cultivar of Japonica 
rice and the transgenic rice plants were able to metabolize 
phosphite as the sole P source without any yield penalty 
[108]. As non-transgenic plants and weeds (that compete 
with crop plants for resources, viz., nutrients) could not 
metabolize phosphate, hence, it could also act as an effec-
tive pre-and post-emergent systemic herbicide having 
an entirely different mode of action from the currently 
used herbicides [109]. The robustness of the phosphate-
based farming system has been demonstrated using ptxD 
expressing tobacco transgenic plants at two different loca-
tions having different soil types i.e., under field conditions 
in Argentina [89]. These recent findings indicate that het-
erologous expression of the codon-optimized ptxD gene 
can improve P utilization by plants as well as inhibit the 
growth of weeds. However, to avoid any deleterious effects 
of phosphite, it is essential to engineer maize plants for 
phosphite oxidation as well as subsequent metabolism; 
which in turn would support its sustainability as fertilizer. 
As a result, imparting phosphite metabolizing ability in 

PO3−
3

+ NAD+ + H2O
PTDHenzyme

⟶

(encoded by ptxD gene)
PO3−

4
+ NADH + H+
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maize might aid in the development of maize cultivars 
with improved PUE (phosphite as a P source) and effective 
weed management, resulting in sustainable maize produc-
tion with a minimal environmental impact.

Conclusions and future perspectives

A comprehensive understanding of Pi-starvation signaling 
may lead to the development of improved maize cultivars 
requiring a lesser amount of external fertilizers which, in 
turn, would be beneficial to achieve sustainable and profit-
able agriculture. PUE can be effectively boosted in maize by 
exploiting the existing genetic diversity for RSA-associated 
traits. MAS can be employed to generate the PUE efficient 
maize ideotype by combining favorable RSA traits via stack-
ing/pyramiding major QTLs. Further, considering the avail-
able research findings related to P uptake and translocation 
in plants (mainly Arabidopsis, rice, and maize) under suf-
ficient- and low-P conditions, an array of molecular targets, 
viz., key regulatory components such as transcription fac-
tors (PHR1/PTF1/PHO2 homolog; these are the essential 
regulator of PSR and are also involved in N/P crosstalk) 
and miRNAs (mainly miR399, miR827 family members), 
crucial phosphate transporters [few transporters involved in 
Pi mobilization and re-mobilization (ZmPht 1;2 and 1;3), 
Pho1 orthologs] and ZmPSTOL have emerged as promising 
candidates for manipulation to improve Pi-acquisition and-
use efficiency. Further, intracellular phosphate transporters 
and natural allelic variation within transporters and key 
regulators might be explored for improving PUE in maize. 
Being a complex trait, tissue-specific modulation of multi-
ple targets/genes simultaneously might be more beneficial 
in enhancing maize productivity under phosphate-deprived 
conditions. For acidic soils, engineering maize plants for 
combined tolerance to P deficiency and Al toxicity could be 
a viable approach for achieving high PUE as excessive  Al3+ 
inhibits root growth and development. On the other hand, 
engineering maize plants for phosphite oxidation (through 
heterologous expression of the ptxD gene) as well as subse-
quent metabolism, could potentially address the problem of 
low fertilizer usage efficiency and effective weed manage-
ment in maize. However, utilizing a marker-assisted molecu-
lar breeding approach and/or targeted knocking out major 
negative regulators via genome-editing tools (so that the 
final edited plant should be transgene-free) to achieve high 
PUE might be good strategies to avoid deploying genetically 
modified (GM) plants in the field. Further studies focusing 
on decoding the molecular mechanisms of PHTs in maize 
and cross-talk between P and other nutrients (N, K, etc.) 
signaling pathways would pave the way to identify novel 
targets and strategies for better P management.
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