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Abstract
Sepsis-associated encephalopathy is a common neurological complication of sepsis and is responsible for higher mortality 
and poorer long-term outcomes in septic patients. Sepsis-associated encephalopathy symptoms can range from mild delirium 
to deep coma, which occurs in up to 70% of patients in intensive care units. The pathological changes in the brain associated 
with sepsis include cerebral ischaemia, cerebral haemorrhage, abscess and progressive multifocal necrotic leukoencepha-
lopathy. Several mechanisms are involved in the pathogenesis of sepsis-associated encephalopathy, such as blood–brain 
barrier dysfunction, cerebral blood flow impairment, glial cell activation, leukocyte transmigration, and neurotransmitter 
disturbances. These events are interrelated and influence each other, therefore they do not act as independent factors. This 
review is focused on new evidence showing the pathological process of sepsis-associated encephalopathy.
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Abbreviations
SAE  Sepsis-associated encephalopathy
CNS  Cerebral blood flow
CSF  Cerebrospinal fluid
BBB  Blood–brain barrier
LPS  Lipopolysaccharide
GABA  Gamma-aminobutyric acid
AChE  Acetylcholinesterase
5-HIIA  5-Hydroxyindoleacetic acid

Introduction

Sepsis and severe sepsis (sepsis accompanied by acute 
multiple organ dysfunction syndrome) are defined as life-
threatening organ dysfunction caused by a dysregulated host 
response to infection [1]. This condition is the most common 
and leading cause of intensive care unit mortality world-
wide. According to a recent international study, approxi-
mately 31.5 million sepsis deaths, 19.4 million severe sepsis 
deaths, and 5.3 million deaths have been reported annually 
[2]. Therefore, sepsis, especially severe sepsis, is an impor-
tant public health problem and frequently a fatal condition 
of patients in intensive care units. Multiple organ system 
dysfunction, especially in the nervous system, occurs with 
sepsis. This indirectly increases the risk of sepsis-associated 
encephalopathy (SAE). A retrospective analysis showed that 
the incidence of neurological dysfunction in patients with 
sepsis is as high as 48.9%, second only to cardiac dysfunc-
tion [3].

Sepsis-associated encephalopathy, considered multifocal 
brain dysfunction because of a dysregulated host response 
without primary central nervous system (CNS) infection, is 
the most common cause of encephalopathy in intensive care 
units [4]. Survivors of SAE exhibit long periods of neurolog-
ical sequelae, particularly neurocognitive deterioration [5], 
and the principal clinical manifestations of SAE may range 
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from mild symptoms, such as aprosexia and disorientation 
to delirium or coma [6]. Due to the lack of early diagnostic 
criteria, SAE patients are more serious, have a higher risk of 
death, and are prone to long-term cognitive dysfunction than 
non-SAE patients [7]. However, the pathogenesis underlying 
SAE remains unclear. Emerging evidence shows that some 
mechanisms, such as blood–brain barrier (BBB) dysfunc-
tion [5], cerebral blood flow (CBF) impairment [8], glial 
cell activation [9], leukocyte transmigration [10], and neu-
rotransmitter disturbances [11], have been considered poten-
tial causative factors. The combination and synergism of all 
these contributors could be the underlying mechanism of 
SAE, but the exact interplay and connection between them 
is unclear.

BBB dysfunction

The BBB is a regulated interface separating the CNS from 
the peripheral circulation, which prevents the entry of toxic 
substances into the CNS and maintains CNS homeostasis 
[12]. The BBB is composed of vascular endothelial cells 
surrounded by the basal membrane, tight junction proteins, 
pericytes, end-feet of astrocytes and microglia [13]. During 
the early stages of sepsis, BBB alterations were observed 
among septic animal models [14]. Systemic inflammation 
and oxidative stress are crucial in mediating BBB integrity 
loss during sepsis.

Under septic conditions, inflammatory cytokines such as 
IL-1β and TNF-α are systemically elevated [15]. Moreo-
ver, BBB damage and tight junction protein downregulation 
are closely related to the severity of sepsis and systemic 
inflammation [16]. The interaction of lipopolysaccharide 
(LPS) with TLR4 in endothelial cells can activate NF-κB 
through the MyD88 signalling pathway and GEF-H1-RhoA 
signalling pathway [17], and NF-κB is responsible for the 
activation of genes that encode proinflammatory cytokines 
and chemokines, such as TNF-α, IL-1β, and IL-6 [18]. LPS 
and proinflammatory cytokines can result in a significant 
decrease in occludin expression via the p38MAPK/JNK 
pathways and induce alterations in cell morphology and per-
meability [19]. Moreover, polymerase δ-interacting protein 2 
has been reported to mediate LPS-induced BBB disruption 
by regulating NF-κΒ subunit p65 activation and Cox-2 as 
well as prostaglandin E2 induction [5]. In response to sys-
temic inflammation, inflammatory mediators can disrupt the 
BBB and enter the brain to promote the activation of micro-
glia [20]. Persistent microglial activation contributes to the 
generation of inflammatory cytokines and reactive oxygen 
species, which perpetuates a vicious cycle and aggravates 
BBB dysfunction in patients with sepsis [21] (Fig. 1).

In addition to the abovementioned factors, there are many 
other contributors to BBB failure under sepsis conditions, 

such as Drp1-Fis1-mediated mitochondrial dysfunction [22], 
alteration of sphingolipid metabolism in endothelial cells 
[23], tight junction downregulation mediated by matrix met-
alloproteinases [24] and detachment of pericytes from the 
basal lamina [14]. There is other evidence to indicate that 
the Omi/HtrA2 pathway manipulates LPS-induced endothe-
lial cell apoptosis by translocating from mitochondria to the 
cytosol and inducing X-linked inhibitor of apoptosis protein 
degradation. In addition, Omi/HtrA2 also participated in the 
decline of occludin, claudin-5 and ZO-1 expression [25].

Taken together, various factors can result in BBB dys-
function, whereas BBB abnormalities in turn change amino 
acid transportation [26] and promote neuronal damage, 
apoptosis and brain oedema [27]. In addition, SAE can occur 
in the absence of BBB breakdown and is accompanied by 
increased water diffusion anisotropy and altered glial cell 
morphology in the white matter of the brain [28].

CBF impairment

CBF is strictly regulated to ensure energy and oxygen sup-
ply in the brain, which is determined by cerebral perfusion 
pressure, cardiac output and small cerebral vascular tone 
[29]. In the early phase of sepsis, cerebral microcirculatory 
impairment occurs even after restoration of adequate global 
haemodynamics [30]. Hypotensive episodes and dysregu-
lated autoregulation also contribute to cerebral hypoper-
fusion [31], which occurs first in the cerebral cortex [28]. 
Decreased cerebral oxygenation leads to neuronal anoxia 
and apoptosis [32]. Furthermore, hypoperfusion of the brain 
can cause elevated  PaCO2. In hypercapnia, extracellular pH 

Fig. 1  Proposed pathological process of BBB dysfunction during 
SAE. The BBB plays an integral role in separating the CNS from the 
peripheral circulation under healthy conditions. In sepsis, systemic 
inflammation can destroy barrier functional integrity and promote the 
activation of microglia. Activation of microglial cells and astrocytes 
induces the generation of inflammatory cytokines and reactive oxy-
gen species to aggravate BBB dysfunction. In addition, proteolytic 
enzymes derived from leukocyte transmigration into the brain paren-
chyma can induce BBB impairment



10093Molecular Biology Reports (2022) 49:10091–10099 

1 3

is reduced, and acid-sensing ion channel-1 A is activated 
by extracellular acidosis. The activation of acid-sensing ion 
channel-1 A is associated with  CO2-induced NO production 
as well as vasodilation and subsequent increases in CBF [33, 
34]. Increased vascular bed perfusion leads to increased vas-
cular hydrostatic pressure, which leads to cerebral oedema 
and aggravates brain injury [35]. In addition, studies have 
shown that severe hypercapnia  (PaCO2 100-120 mmHg) can 
result in higher AQP4 levels and brain oedema, ultimately 
aggravating brain damage [36]. Cerebrospinal fluid (CSF) 
decreases to maintain stable intracranial pressure when CBF 
increases during hypercapnia [37]. CSF plays a vital role in 
transporting nutrients and protein clearance in the CNS [38]. 
Therefore, we hypothesized that decreased CSF in hypercap-
nia may lead to the accumulation of metabolites and ulti-
mately aggravate the formation of encephalopathy (Fig. 2).

Glial cell activation

The neurovascular unit is composed of neurons, capillaries, 
microglia, oligodendrocytes and extracellular matrix [39]. 
In particular, microglia play an important defensive role 
in response to various pathogens and neuronal injury and 
are resident and immunocompetent cells of the CNS [40]. 
Increasing evidence indicates that endothelium–microglia 
interactions are associated with a variety of inflammation-
associated brain diseases [41]. When the BBB is destroyed, 
resting microglia are activated swiftly after cellular damage 

appears, and subsequently some inflammatory cytokines 
such as TNF-α, IL-6 and IL-1β are released to eliminate 
toxins from the extracellular space [42]. This part mainly 
focuses on the mechanism of glial cell activation and its 
effect on brain dysfunction in sepsis.

Microglial cells, acting as antigen-presenting cells, 
express a variety of receptors, such as TLRs, major histo-
compatibility complex, CX3CR1 chemokine receptor and 
CD11b/CD45 [43]. Therefore, LPS, other pathogen compo-
nents and inflammation in the peripheral blood can activate 
microglia when they pass through the increased permeability 
of the BBB [44] and then increase the levels of inflammatory 
factors in sepsis [45]. The combination of LPS and TLR4 
on microglia can trigger a proinflammatory program, which 
includes the production of TNF-α and the increased secre-
tion of glutamate through connexin channels and the cystine/
glutamate antiporter system, finally promoting the deregu-
lation of calcium influx and inducing neuronal dysfunction 
[46]. Moreover, TNF-α and glutamate can enhance the pro-
duction of each other [47]. Microglial cell activation also 
induces the synthesis and upregulation of IL-6 and IL-1β 
via the expression of CD40 and ligand [48] as well as the 
activation of transcription factors such as NF-κB, contribut-
ing to the perpetuation of the inflammatory challenge [49]. 
IL-1β secreted by activated microglia might suppress axon 
development and synapse formation through activation of 
the p38-MAPK signalling pathway associated with memory 
impairments in septic patients [50]. Additionally, Rachid 
et al. showed that LPS could induce endothelial cell death 

Fig. 2  Schematic view of 
pathological changes observed 
in SAE. They include BBB 
dysfunction, CBF impairment, 
glial cell activation, leukocyte 
transmigration and neurotrans-
mitter disturbances
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and increase BBB permeability by activating microglia. The 
mechanism of this effect appears to be mediated by NF-kB, 
JAK-STAT and JNK. These factors could then lead to the 
upregulation of iNOS and NADPH oxidase, which then gen-
erate NO and superoxide, respectively. These factors alone 
or together with peroxynitrite are cytotoxic to endothelial 
cells [51]. Therefore, inhibiting microglial activation could 
improve long-term cognitive performance in sepsis survivors 
[52].

In addition to microglia, astrocytes also play an impor-
tant role in the onset of SAE. Under experimental sepsis 
conditions, mitochondrial biogenesis and ATP levels of 
astrocytes were significantly elevated to be suitable for the 
high-energy requirement and recover the ultrastructure of the 
mitochondria [53], which was mediated via the IL-6/AMPK 
signalling pathway [54]. Previous studies have clearly dem-
onstrated that sepsis impaired astrocytic clearance of dehy-
droascorbic acid from the extracellular fluid and decreased 
the intracellular ascorbate concentration, which could 
upregulate iNOS and decrease glutamate uptake by astro-
cytes [55]. Hasegawa-Ishii et al. uncovered cytoskeletal and 
morphological alterations in hippocampal astrocytes after 
LPS injection, so astrocytes prepare for receiving cytokine 
signals via receptors expressed on the end-feet and then 
produce their own cytokines, including CXCL10, CCL11, 
and G-CSF, to change the hippocampal microenvironment 
[56]. For instance, astrocyte-derived CCL11 and G-CSF 
may stimulate microglia [57] and enhance the proliferation 
of microglia [56] in the hippocampus, resulting in learning 
and memory impairment [58]. Furthermore, the increased 
release of TNF-α and IL-1β by astrocytes aggravates inflam-
matory injury after the injection of LPS [59]. In the context 
of systemic inflammation, astrocytes can also regulate the 
phenotype of microglia. TLR4 stimulation and the costimu-
lation of dopamine receptor D3 in astrocytes can promote 
the acquisition of proinflammatory features, ultimately pro-
moting microglial activation (M1 microglia increase) and 
neuroinflammation [60].

Leukocyte transmigration

The transmigration of inflammatory leukocytes is a signifi-
cant element of the innate immune response. Neutrophils 
are the predominant immune cells mediating much of the 
tissue injury during the progression of inflammation [61]. 
In the normal brain, there are no neutrophils in the brain 
parenchyma [62]. Under septic conditions, blood-borne 
proinflammatory mediators are produced, along with 
the activation of endothelial cells and the expression of 
ICAM-1 and VCAM-1; these outcomes contribute to neu-
trophil adhesion and recruitment into brain microvessels 

[63, 64]. The CXCR2 is a G-protein-coupled receptor 
for the well-known studied CXC chemokines including 
CXCL1, CXCL2, and CXCL5. It is widely expressed on 
hematopoietic cells and non-hematopoietic cells such as 
endothelial cells. Interactions between CXCR2 and its 
ligands play essential roles in leukocyte recruitment cas-
cade in cerebral microvessels [65]. During CNS inflam-
mation, astrocytes secrete significantly higher levels of 
CXCL1. Both endothelial CXCR2 and astrocyte-derived 
CXCL1 are crucial effectors mediating adhesion molecules 
expression on endothelial cells, resulting in robust neu-
trophil infiltration and leukocyte–endothelial cell inter-
actions in the brain [66]. In addition, KC or MIP-2 pro-
duced by microglia also guide neutrophil transmigration 
into the brain parenchyma [67]. Subsequently, neutrophils 
accumulating in CNS jeopardize brain cells by increasing 
in cytokine levels, MPO activity and promoting oxida-
tive damage [68]. Furthermore, neutrophils also generate 
many pro-inflammatory cytokines, ROS and proteolytic 
enzymes, including NOX, MPO, MMPs, elastase and cath-
epsins, which have hazardous effects on BBB integrity 
and allow passage of neutrophils into the brain [69]. It 
has been shown that ROS lead to junction proteins down-
regulation and the endothelial cytoskeleton reorganization 
through MLCK, PKC, MAPK, and Rho GTPases signal-
ing pathways [70]. MMPs can dissolve the extracellular 
matrix, basal lamina and potentiate BBB disruption [71]. 
Persistent accumulation of neutrophils is related to cell 
death, brain oedema and tissue loss [72]. Therefore, the 
vicious cycle between neutrophil recruitment and BBB 
impairment aggravates neuronal dysfunction in sepsis.

In addition to neutrophils, other immune cells, such as 
inflammatory monocytes, are also recruited through the 
chemokine receptor CCR2, which plays an important role 
in SAE-induced long-term cognitive impairment [73].

Neurotransmitter disturbances

Most physiological and pathological processes in the brain 
involve multiple neurotransmitters. Inflammatory and 
metabolic alterations have been perceived as contribut-
ing to changes in cerebral neurotransmitters [74]. Thus, 
elucidating the role of different neurotransmitters could be 
beneficial to better therapeutic approaches to treat related 
diseases. Disorders of multiple neurotransmitters underlie 
the pathobiology of SAE. In the current research, a causal 
relationship has been demonstrated between the develop-
ment of SAE and changes in neurotransmitter release or 
concentrations, such as acetylcholine [75], dopamine [76], 
serotonin [77], norepinephrine [78], gamma-aminobutyric 
acid (GABA) and its derivatives [79].
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Acetylcholine dysfunction

Cholinergic signals mainly regulate cognitive function, 
movement, learning and memory by both nicotinic and 
muscarinic receptors [80]. The dysfunction of choliner-
gic signals could contribute to the occurrence of delir-
ium, including inattention, confusion and perceptual 
disturbances [81]. Cholinergic signals also play a critical 
anti-inflammatory role, mainly suppressing endotoxin-
inducible proinflammatory cytokines and TNF through 
interaction with peripheral α7 subunit-containing nicotinic 
acetylcholine receptors expressed on macrophages [82]. In 
2010, Willem and colleagues demonstrated that peripheral 
inflammation could degenerate cholinergic neurons in the 
basal forebrain by activating microglia, while cholinergic 
inhibition of microglia could reduce neuronal dysfunction 
[74]. To study the effect of neuroinflammation on cholin-
ergic transmission in the basal forebrain of sepsis patients, 
researchers examined cholinergic neuronal bodies in the 
basal forebrain and molecular cholinergic components in 
the cortex and hippocampus. They found that microglia 
were activated, and Iba1, IL-1β, and IL-6 gene expres-
sion in the cortex and hippocampus was upregulated. Cho-
line acetyltransferase-positive neurons were significantly 
decreased in the basal forebrain of sepsis survivors. In the 
hippocampus, acetylcholinesterase (AChE) activity was 
enhanced, and the expression of the gene encoding the M1 
muscarinic acetylcholine receptor, Chrm1, was decreased 
[75, 83]. As expected, microglial activation was associ-
ated with choline acetyltransferase protein expression 
and AChE activity. Consistent with a sepsis-induced cho-
linergic deficiency in the CNS, increasing acetylcholine 
receptor activity or using AChE inhibitors can prolong 
the lifetime of acetylcholine, thus attenuating proinflam-
matory cytokine release by microglia and improving the 
survival of sepsis patients [84]. The underlying mechanism 
is that increasing cholinergic activity can restore endotox-
aemia-induced deficits in synaptic plasticity by decreasing 
small conductance calcium-activated potassium channels 
or decreasing calcium influx [85]. Therefore, cholinergic 
hypofunction and microglial activation may be significant 
underlying events leading to cognitive dysfunction among 
sepsis survivors. Furthermore, cholinergic signalling can 
protect neurons in the striatum, hippocampus, and cortex 
from neurotoxicity triggered by excitotoxic amino acids 
and other toxic substances [86]. Notably, plasma AChE 
activity can reflect acetylcholine levels in the brain; how-
ever, some studies have previously shown that serum 
AChE activity is not related to delirium in septic patients, 
and there are no clinical trials demonstrating the beneficial 
role of cholinergic agonists in the treatment of delirium 
[87].

Amine abnormalities

Dopamine is a neurotransmitter with multiple functions, 
and it is considered a major regulator of inflammation via 
D1-like DA receptors (D1 and D5) and D2-like receptors 
(D2, D3 and D4) [88, 89]. In the brain, dopamine is critical 
for the maintenance of working memory and the regulation 
of emotion [90], and substantial evidence demonstrates that 
an overdose of dopamine has been associated with the devel-
opment of SAE [91]. In 1985, Freund et al. observed high 
levels of dopamine in the hippocampus, striatum and pons-
medulla, along with low levels of breakdown products (HVA 
and 3MT), suggesting decreased turnover of dopamine dur-
ing sepsis [77]. Compared with non-SAEs, severely septic 
animals and encephalopathy exhibited obviously lower lev-
els of dopamine [92]. In contrast, the findings of the Oytun 
Erbass study exhibited an evident increase in brain HVA 
levels in septic animals compared with the sham group, 
confirming an increase in brain dopamine turnover dur-
ing sepsis. It was also indicated that there was a significant 
positive correlation between brain dopaminergic activity and 
stereotypic behavioural scores [76]. Shimizu found that the 
concentrations of dopamine in the hypothalamus and stria-
tum did not differ significantly between the septic group and 
the control group. Striatal dopamine metabolites tended to 
decrease 48 h after the induction of sepsis [93]. In addition, 
dopamine receptor D3 expressed in astrocytes but not micro-
glia can regulate the dynamics of the acquisition of pro-
inflammatory and anti-inflammatory phenotypes by astro-
cytes and microglia. Upon systemic LPS challenge, TLR4 
stimulation and the costimulation of dopamine receptor D3 
induced astrocyte activation and decreased the production of 
the anti-inflammatory protein Fizz1 by M2 microglia, thus 
favouring the function of M1 microglia and promoting neu-
roinflammation [60]. The data in Nolan’s study showed that 
dopamine could activate the NF-κB pathway in macrophages 
and prime the NLRP3 inflammasome, eventually inducing 
the production of inflammatory cytokines. These effects may 
be a vital mechanism for neuroplasticity in dopaminergic 
brain regions [94]. Additionally, recent research suggested 
that administration of a small dose of l-dopamine at an early 
stage in sepsis can limit neuroinflammation, improve neuro-
plasticity and reverse sepsis-induced decreases in hippocam-
pal dopamine levels [95]. Clearly, there are inconsistent 
opinions on changes in dopamine activity in sepsis pathol-
ogy. It is possible that dopamine activity may be related to 
the severity of sepsis. Combined with the above findings, 
these findings indicate that dopaminergic alterations are at 
least partly responsible for the progression of SAE.

Serotonin, or 5-hydroxytryptamine, a modulator of 
various functions in the CNS, is associated with prosocial 
behaviour and affective disorders [96]. The role of serotonin 
in the pathogenesis of encephalopathy has been extensively 
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studied. According to reports, concentrations of brain and 
plasma tryptophan were increased in septic rats, which is 
the basis of increased brain serotonin metabolism in sepsis 
[92]. In addition, Herbert R. Freund et al. discovered that 
concentrations of the serotonin precursor and its metabolite 
5-hydroxyindoleacetic acid (5-HIIA) were initially increased 
in most tissues in mild septic animals. The 5-HIIA/serotonin 
ratio was also increased significantly, indicating an increased 
turnover of serotonin [77], but eventually declined with the 
progression of severe sepsis [92]. In 1999, Shimizu also 
proposed that the level of 5-HIIA and the 5-HIIA/serotonin 
ratio were increased in sepsis compared with the sham group 
in the cortex, striatum, and hippocampus both 24 and 48 h 
after the operation, whereas the hypothalamic 5-HIIA did 
not change significantly [93]. In addition, in contrast to the 
increase in the serotonin synthesis rate observed in the above 
reports, Finn Bengtsson’s experiment demonstrated that 
there were no major changes in the CNS serotonin synthe-
sis rate following 12 or 24 h of sepsis [97], and it has been 
demonstrated that serum serotonin levels can be used as a 
peripheral indicator for central serotonin levels, but there are 
no correlations of serum serotonin levels with delirium [87]. 
It is difficult to explain why there are regional differences in 
changes in serotonergic activity.

Norepinephrine, acting as a critical neuromodulator, 
is known to play important roles in regulating multiple 
brain functions, including attention, learning, and memory. 
The hippocampus receives noradrenergic innervation and 
expresses β-adrenergic receptors, which are involved in 
modulating the induction of long-lasting forms of synap-
tic potentiation [98]. Dysfunctional noradrenergic signal-
ling is correlated with a number of cognitive impairments, 
such as Alzheimer’s disease [99] and depression [100]. In 
1984, Freund found that brain norepinephrine decreases with 
sepsis and SAE [92]. Instead, in 1985, he discovered that 
most of the dopamine in the striatum is converted to norepi-
nephrine, which leads to high levels of norepinephrine [77]. 
As with serotonin, there were also regional differences in 
norepinephrine expression. Hypothalamic norepinephrine 
was decreased at 24 h after septic operation. Cortical nor-
epinephrine was increased 48 h after the septic operation; 
however, there was no significant change in hippocampal 
norepinephrine [93]. Research shows that both increases 
and decreases in norepinephrine might cause dysregula-
tion of norepinephrine-dependent functions and lead to a 
pathological state under sepsis conditions [78]. On the other 
hand, researchers observed that the levels of hippocampal 
β2-adrenoceptor were significantly decreased after sepsis, 
accompanied by increased proinflammatory cytokines and 
downregulated CREB/BDNF and synaptic protein expres-
sion; eventually, septic mice exhibited cognitive deficits. 
Intriguingly, β2-adrenoceptor activation alleviates sepsis-
induced cognitive impairments by modulating microglial 

phenotypes and reversing neuroinflammation and synaptic 
plasticity [101]. In summary, abnormalities in the noradren-
ergic transmission system play a vital role in SAE.

GABA alteration

GABA, a nonprotein amino acid formed by decarboxylation 
of glutamic acid [102], is the principal brain inhibitory neu-
rotransmitter that regulates inflammatory and neurodegen-
erative diseases [103]. In a previous study, it was reported 
that GABA receptor density in the brain was altered in ani-
mal studies of metabolic encephalopathy [104]. In septic 
patients, elevated IL-1β together with a reduced release of 
IL-1α increases Akt-mediated GABAergic activity, which 
contributes to the alteration of synaptic strength and cog-
nitive dysfunction [105]. In an acute inflammation model, 
increased tonic α5  GABAAR current and surface levels in 
hippocampal neurons by IL-1β through a p38-MAPK signal-
ling pathway are critical for inflammation-induced memory 
deficits [106].

In summary, these alterations in neurotransmitter metabo-
lism may be an important reason for the development of 
SAE. Notably, it would probably be incorrect to interpret 
that any single neurotransmitter dysfunction should be 
responsible for SAE, which involves multifactorial mecha-
nisms and multiple neurotransmitter interactions [77].

Conclusions

Sepsis-associated encephalopathy is a common and detri-
mental neurological complication of sepsis but lacks diag-
nostic criteria and target-directed treatments, additionally, 
it is prone to be overlooked in clinical practice. The patho-
genesis of SAE is complex and multifactorial. The increased 
understanding of pathogenesis is beneficial for developing 
new preventive and therapeutic strategies to reduce sequelae 
of sepsis. This paper summarizes the pathogenesis of SAE 
as mentioned above. The pathomechanisms of SAE are par-
allel, influence each other, and contribute to neuronal dys-
function. A thorough understanding of the pathogenesis of 
CNS dysfunction is helpful to reduce the incidence of SAE. 
Future efforts should be directed towards understanding the 
crosstalk of these mechanisms, not each of them alone.
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