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Abstract
Background Wheat (Triticum aestivum L.) powdery mildew (Pm), which caused by Blumeria graminis f. sp. tritici (Bgt), is 
a destructive disease worldwide that causes severe yield losses in wheat. Resistant wheat cultivars easily lose their ability to 
effectively resist newly emerged Bgt strains; therefore, identifying new resistance genes is necessary for breeding resistant 
cultivars.
Methods and Results Guizi 1 (GZ1) is a Chinese wheat cultivar with moderate and stable resistance to Pm. Genetic analy-
sis indicated that the Pm resistance of GZ1 was controlled by a single dominant gene, designated PmGZ1. In total, 110 F2 
individual plants and their 2 parents were subjected to genotyping by sequencing (GBS), which yielded 23,134 high-quality 
single-nucleotide polymorphisms (SNPs). The SNP distributions across the 21 chromosomes ranged from 134 on chromo-
some 6D to 6288 on chromosome 3B. Chromosome 6A has 1866 SNPs, among which 16 are physically located between 
positions 307,802,221 and 309,885,836 in an approximate 2.3-cM region; this region also had the greatest SNP density. The 
average map distance between SNP markers was 0.1 cM. A quantitative trait locus (QTL) with a significant epistatic effect 
on Pm resistance was mapped to chromosome 6A. The logarithm of odds (LOD) value of PmGZ1 was 34.8, and PmGZ1 
was located within the confidence interval marked by chr6a-307802221 and chr6a-309885836. Moreover, 74.7% of the 
phenotypic variance was explained by PmGZ1. Four candidate genes (which encoded two TaAP2-A and two actin proteins) 
were annotated maybe as resistance genes.
Conclusions The present results provide valuable information for wheat genetic improvement, QTL fine mapping, and 
candidate gene validation.

Keywords Wheat powdery mildew · Genotyping by sequencing · Single-nucleotide polymorphisms · Quantitative trait 
loci · Resistance

Introduction

Wheat (Triticum aestivum L.), which plays an important 
role in fulfilling the food demand of humans, is a widely 
cultivated crop species worldwide [1, 2]. Wheat powdery 

mildew (Pm), which is caused by Blumeria graminis f. sp. 
tritici (Bgt), is a destructive wheat disease worldwide that 
causes severe yield losses, particularly under humid, rainfed 
conditions [3]. The increased use of nitrogen fertilizers has 
resulted in Pm becoming a progressively more important 
problem in wheat production [3, 4]. Breeding resistant cul-
tivars is the most economical, effective, and environmen-
tally safe strategy to control Pm [5, 6]. However, resistant 
wheat cultivars easily lose their ability to effective resist 
newly emerged Bgt strains [6, 7]. Therefore, it is necessary 
to identify new resistance genes to continue breeding resist-
ant cultivars.

The first Pm resistance gene, named Pm1, was discovered 
in 1953 [8]. To date, more than 70 Pm resistance genes/
alleles (Pm1 to Pm68, with Pm8 being allelic to Pm17; 
Pm16 and Pm30 being the same; and with Pm18 = Pm1c, 
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Pm22  = Pm1e ,  Pm23  = Pm4c ,  Pm31  = Pm21 ,  and 
Pm46 = Pm48) have been identified at 63 loci, and new 
resistance genes are continually discovered in common 
wheat and its relatives [9–14]. Among these Pm resistance 
genes/alleles, only two temporarily designated Pm resistance 
genes (Pm21 and Pm56) have been reported on chromo-
some 6A [15, 16]. Pm21, which results from a 6AL·6VS 
translocation in Haynaldia villosa, was identified in 1995 
[15]. Afterward, varieties carrying Pm21 were developed 
and have been widely cultivated in China. Many are still 
resistant against prevailing Bgt isolates, whereas some Pm 
resistance genes (including Pm2 and Pm4) have gradually 
lost their resistance to Bgt [17, 18]. Recently, the Pm21 gene 
was cloned and confirmed to encode a single coiled-coil, 
nucleotide-binding site-containing, leucine-rich repeat pro-
tein, in which the coiled-coil domain’s activity was closely 
related to Pm21 resistance to Pm [19–21]. Pm56, which 
results from the 6AL·6RS translocation of Secale cereale 
L., was mapped to the sub-telomeric region of the arm [16].

Guizhou Province, located in southwestern China, has 
a complex and dynamic climate that is favorable to the 
pathogenesis of Pm. Therefore, wheat Pm is a very serious 
problem, and an epidemic occurs every year. On the basis 
of many years of field observations, wheat landrace Guizi 1 
(GZ1) is highly resistant to Pm [22]. In this study, genotyp-
ing-by-sequencing (GBS) technology was used to identify 
and map the Pm resistance genes in GZ1. A resistance gene, 
PmGZ1, was located on chromosome 6A, and a high-density 
genetic linkage map was produced for GZ1, which will be of 
great value to molecular breeding and gene cloning in wheat.

Materials and methods

Plant materials and sample preparation

Triticum aestivum L. cv. Guizi 1 (Certificate No. 
Qian2015003) [23] was developed from complex wide-
crossing hybrids of Triticum dicoccoides/Triticum 
durum//Aegilops ventricosa Tausch/Aegilops tauschii 
Coss. Both GZ1 and Zhongyang 96-3 (ZY96-3) were grown 
and housed at the Guizhou Sub-Center of the National 
Wheat Improvement Center at the College of Agriculture 
in Guizhou University. GZ1 showed moderate and stable 
resistance to Pm for many years according to field observa-
tions that began in 2010, whereas ZY96-3 was susceptible 
to Pm. Both varieties were planted at an experimental farm 
in accordance with the protocol of Li et al. [23], and field 
management practices (including watering, weeding, and 
fertilizing) were carried out in a unified manner. In total, 206 
 F2 and  F2:3 plants were obtained from GZ1/ZY96-3 crosses.

Evaluation of powdery mildew reactions

The resistance of the  F2 and  F2:3 plants to Pm were assessed 
by inoculation with a mixture of Bgt isolates (which are 
prevalent in Guizhou Province) and Bgt E20 independently. 
The mixture of Bgt isolates was inoculated onto wheat plants 
at the tilling stage. The E20 isolate was inoculated onto 
wheat plants at the one-leaf stage, and then the inoculated 
plants were grown under a photoperiod of 16 h of light and 
8 h of darkness at 20 ± 2 °C with 75% relative humidity 
in a greenhouse. When the susceptible controls were fully 
infected, the infection types (ITs) were scored in accord-
ance with the methods of Xue et al. [24]. There were six IT 
scores (0, 0;, 1, 2, 3, and 4): “0” indicates immune, with no 
lesions on the plants; “0;” indicates nearly immune, with 
hypersensitive necrotic flecks being on the leaves; “1” indi-
cates highly resistant, with small colonies less than 1 mm in 
diameter being present and few conidia on the leaves; “2” 
indicates moderately resistant, with the leaves having mod-
erately developed hyphae, the diameters of colonies being 
less than 1 mm, and with some conidia being present; “3” 
indicates moderately susceptible, with separate non-joined 
colonies with well-developed hyphae and abundant conidia 
being present; and “4” indicates highly susceptible, with 
mostly joined colonies with well-developed hyphae and 
abundant conidia being present [24, 25].

DNA extraction and GBS analysis

Leaf tissue (0.5–1.0 g) was collected from  F2 plants and 
the two parents and immediately frozen in liquid nitrogen. 
Genomic DNA was extracted using the cetyl-trimethylam-
monium bromide (CTAB) method [26]. The DNA quality 
was checked via electrophoresis involving 1% agarose gels 
and quantified using a Genova Nano microvolume spec-
trophotometer (Jenway, England). Then, the DNA samples 
were normalized to 30 ng/µL for GBS library construction.

The GBS libraries from 110  F2 plants and the 2 parents 
were generated in accordance with the Elshire et al. method 
[27]. The DNA was processed for GBS through the Illu-
mina HiSeq™ platform. The clean reads, adapter reads 
with > 10% N content, and reads of low quality (in which 
the base number of mass value Q ≤ 10 accounted for more 
than 50% of the whole read) were deleted. The second two 
read types were filtered to obtain high-quality clean reads 
for subsequent analyses. The high-quality clean reads were 
subjected to a BLAST search against the Chinese Spring 
genomic database (IWGSC RefSeq v1.0 assembly) via 
BWA-MEM BLAST software [28], and then, the detection 
and selection of single-nucleotide polymorphisms (SNPs) 
were carried out using SAMtools MPileup in accordance 
with the methods of Li et al. [29]. SNPs with separation type 
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“aaxbb” were retained, and SNPs with partial segregation 
p values less than 0.0001, deletion percentages greater than 
30%, or heterozygosity percentages greater than 75% were 
deleted. Additionally, genotype correction was performed 
using the SMOOTH statistical method [30].

Linkage map construction and quantitative trait 
locus (QTL) analysis

The Kosambi mapping function of the quickEst function in 
ASMap software was used to calculate genetic distances in 
accordance with the analysis method of Taylor et al. [31], 
and then, a genetic map was constructed using R/qtl soft-
ware. Composite interval mapping (CIM) was performed to 
detect QTLs using WinQTLCart software v2.5 [32]. QTLs 
were scanned within a 1-cM window and considered to be 
significant when the logarithm of odds (LOD) score was at 
least 7.07.

Mixed linear CIM was performed in QTLNetwork v2.1 
software to determine epistatic effects among identified 
QTLs [33, 34]. Multiple linear regression (with p = 0.05) 
was used to select parameters in the model with a window 
size of 10 cM [35]. A threshold calculated after 1000 per-
mutations with a genome-wide error rate of 0.10 was con-
sidered a significant QTL interaction [36].

Results

Genetic characteristics of Pm resistance in wheat 
GZ1

We carried out field observations of wheat resistance to Pm 
caused Bgt for many years. The wheat cultivar GZ1 showed 
moderate and stable resistance (IT = 1) to a mixture of Bgt in 
field observations; however, ZY96-3 was completely suscep-
tible (IT = 4). Moreover, GZ1 was highly resistant (IT = 0) to 
E20 in incubator observations; however, ZY96-3 was com-
pletely susceptible (IT = 4) (Fig. 1). Then, wheat GZ1 was 
crossed with ZY96-3; all F1 plants showed high resistance 
(IT = 0) to mixed strains prevalent in Guizhou Province, and 
the F2 individual plants showed resistance or susceptibility 
at the IT = 0–4 levels to the mixture of strains. Among the 
206 F2 plants, the segregation ratio of the resistant (150) 
and susceptible (56) individuals fit the 3:1 theoretical Men-
delian segregation ratio (χ2 = 0.4143, p = 3.84) (Table 1). 
Furthermore, the resistance of F2:3 individual plants to E20 
Bgt were measured, and there were 57 homozygous resistant 
plants, 103 segregating plants, and 46 homozygous suscepti-
ble plants, which fit the theoretical 1:2:1 ratio (χ2 = 1.1748, 
p = 5.99) (Table 2). Our results therefore demonstrated that 
the Pm resistance of GZ1 was controlled by a single domi-
nant gene.

GBS analysis of Pm resistance genes in wheat GZ1

The 110 individual F2 plants and parents were subjected to 
GBS, and 1,684,236,264 total clean reads were obtained. 
After strict filtering, we obtained 1,673,889,294 high-quality 
clean reads, which were mapped to the genome of Chinese 
Spring Wheat (IWGSC RefSeq v1.0 assembly), and 311,065 
SNPs were identified. The SMOOTH statistical method was 
used for genotype correction, which yielded 23,134 high-
quality SNPs that covered a genetic linkage map of the 21 
chromosomes (5402.12 cM in total) (Fig. S1). The number 
of SNPs per chromosome ranged from 134 on chromosome 
6D to 6288 on chromosome 3B, and 1866 SNPs were located 
on chromosome 6A (8.1% of the total) (Fig. 2A). Among 
these SNPs, 16 were located in a physical region between 
positions 307,802,221 and 309,885,836 in an approximately 
2.3-cM region (58.6–60.9 cM) (Figs. S1, 2B). In addition, 
we found that chromosome 6A possessed the greatest SNP 
density, and the average map distance between SNP markers 
was 0.1 cM.

QTL analysis

QTL analysis was used to map the resistance genes via CIM, 
and one Pm-related QTL was detected on chromosome 6A 
(Fig. 3A). This QTL was designated as PmGZ1. The LOD 
value of PmGZ1 reached 34.8, and PmGZ1 was located 
within the confidence interval marked by chr6a-307802221 

Fig. 1  Resistance of GZ1 and ZY96-3 to Bgt E20, with Huixianhong 
used as a susceptible control. Wheat GZ1, ZY96-3, and Huixianhong 
plants at the single-leaf stage were inoculated with Bgt E20. Repre-
sentative leaves were taken and imaged when Huixianhong showed 
complete susceptibility
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and chr6a-309885836 (Table S1), which corresponded to the 
genetic position of 58.6–60.9 cM (2.3 cM) in the Chinese 
Spring reference genome. PmGZ1 accounted for 74.7% of 
the phenotypic variance (Fig. 3B). Thus, the Pm resistance 
gene PmGZ1 in GZ1 was mapped to chromosome 6A.

Then, 27 putatively annotated genes within the 2.3 cM 
candidate interval (chr6a-307802221 to chr6a-309885836) 
of PmGZ1 were identified via comparisons with IWGSC 
RefSeq v1.0 (IWGSC et al. 2018) (Table S2). Among the 
candidate genes, four were annotated as resistance genes, 
including two genes encoding a TaAP2-A protein and two 
encoding an actin (ACT-1) protein (Table S2).

Discussion

Wheat Pm resistance genes mainly provide resistance to 
specific Bgt races; however, different Bgt races can easily 
generate novel viral Bgt isolates through virulent mutations 
to escape recognition of resistance genes, resulting in the Pm 
resistance genes losing their ability to generate resistance to 
Pm [5, 37, 38]. Therefore, there is a vital need to discover, 
identify, and utilize new and effective Pm resistance genes 
for wheat production [39]. GZ1, which is highly resistant to 
Bgt, was determined to be controlled by a single dominant 
gene (Fig. 1, Tables 1 and 2), and GZ1 wheat has exhibited 
a stable resistant phenotype in field observations since 2010.

Here, GBS was used for genetic analysis and mapping of 
Pm resistance genes of GZ1 wheat. SNPs, which are pre-
ferred over other marker systems, are the most commonly 
used DNA markers for genetic studies in wheat [40, 41]. 
Compared with that via GBS, genotyping populations via 
SNPs may produce less accurate and biased results, which 
is possible because of the identification of high-quality pop-
ulation-specific SNPs [42, 43]. The GBS protocol involves 
the use of two restriction enzymes (PstI/MspI) for targeting 
and reducing complex genomes, thereby achieving a more 
unified sequencing library [27, 44]. GBS has been used for 
genotyping wheat to identify high-quality SNPs. In total, 
133,039 and 24,767 SNPs were identified after sequencing 
369 Iranian hexaploid wheat accessions and 180 common 
wheat accessions originating from Asia and Europe, respec-
tively [45, 46]. Recently, 1576 high-quality SNPs were 
obtained for the precise mapping of Hessian fly resistance 
genes in wheat through GBS, and two QTLs (QHf.hwwg-3B 
and QHf.hwwg-7A) were mapped [35]. For wheat Pm resist-
ance genes, Wiersma et al. mapped Pm58 to chromosome 
2DS [47], Li et al. developed 165 new Thinopyrum elong-
atum-specific markers [48], and Pang et al. identified one 
QTL (qPm6A.3) associated with Pm resistance [49]. Here, 
23,134 high-quality SNPs, which covered 21 chromosomes, 
were identified after individual F2 plants and parents (wheat 
GZ1 and ZY96-3) were sequenced via GBS (Figs. S1, 2). In 
addition, PmGZ1 was detected on chromosome 6A (with a 

Table 1  Genetic analysis of Pm resistance of parents and different populations at the seedling stage to a mixture of Bgt 

χ2 represents the chi-square value of 3:1, x2
0 = 0.4143 < x2

0.05,1 = 3.84

Parents Generation Total number Phenotype and number of tested plants Expected ratio χ2

Resistant Segregating Susceptible

Guizi1 Resistant par-
ent

30 30

Zhongyan96-3 Susceptible 
parent

30 30

F1 15 15
F2 206 150 56 3:1 0.4143

Table 2  Genetic analysis of Pm mildew resistance of parents and an  F2:3 population at the seedling stage to Bgt E20

χ2 represents the chi-square value of 1:2:1, x2
0 = 1.1748 < x2

0.05,2 = 5.99

Parents Generation Total number Phenotype and number of tested plants Expected ratio χ2

Resistant Segregating Susceptible

Guizi1 Resistant par-
ent

30 30

Zhongyan96-3 Susceptible 
parent

30 30

F2:3 206 57 103 46 1:2:1 1.1748
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high LOD value of 34.8) through CIM, which demonstrated 
that PmGZ1 was located on chromosome 6A (Fig. 3).

To date, only Pm21 and Pm56 have been mapped to chro-
mosome 6A [15, 16]. SM142 and KU.962 markers that are 
linked to Pm21 and Pm56, respectively, were used for poly-
morphism analyses and both markers showed no polymor-
phism. PmGZ1 was located on the long arm of chromosome 

6A, which indicated that PmGZ1 is not Pm56. Distant 
hybridization of T. dicoccoides, T. durum, A. tauschii, and 
A. ventricosa was used for GZ1 wheat breeding. However, 
Pm21 originated from the 6AL·6VS translocation of H. vil-
losa. Additionally, wheat varieties carrying Pm21 are report-
edly immune and/or highly resistant to Bgt isolates [21, 50]. 
Many years of field observations have indicated that GZ1 is 

Fig. 2  GBS. A Percentage of candidate SNPs per chromosome. B Distribution the 23,134 high-quality SNPs per chromosome
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moderately and stably resistant to Pm. Therefore, PmGZ1 
may be a new Pm resistance gene.

PmGZ1 was located in the 6A:307802221–6A:309885836 
confidence interval of Chinese Spring chromosome 6A, 
which contained 27 putatively annotated genes, includ-
ing 4 that may be associated with disease resistance 
(Table  S2). The genes TraesCS6A02G326500LC and 
TraesCS6A02G326600LC are predicted to encode TaAP2-
A proteins that are involved in resistance against the causal 
pathogen of Fusarium head blight [51]. Similarly, the genes 
TraesCS6A02G326700LC and TraesCS6A02G327000LC 
encode actin (ACT-1) proteins, which can stimulate depo-
lymerization to increase plant resistance against pathogens 
[52]. Nonetheless, further studies are needed to determine 
the relationships between these genes and Pm resistance and 
to precisely map PmGZ1 in GZ1 wheat.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11033- 022- 07287-3.
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