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Abstract
N6-methyladenosine  (m6A), the methylation targeting the  N6 position of adenosine, is the most common internal modification 
of mRNA in eukaryotes. Considering the roles of  m6A in regulating gene expression, the investigation of  m6A roles in the 
biological processes including cell renewal, differentiation, apoptosis, and invasion of cancer cells has become a hot research 
topic. There are three kinds of protein involved in  m6A regulation. The methyltransferases and demethylases cooperatively 
regulate the  m6A levels, while the  m6A reading proteins recognize the  m6A sites and mediate multiple  m6A-dependent 
biological functions including mRNA splicing, transfer, translation, and degradation. At present, a large number of studies 
have found that the changes of  m6A levels in tumor cells play a very important role in the occurrence and development of 
tumors, as well as metastasis and invasion of tumor cells. This review summarizes the different roles of  m6A modification 
in the occurrence and development of various cancers, and discusses the possibility of choosing the  m6A related proteins 
as potential therapeutic targets.
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Introduction

The posttranscriptional modifications of mRNA play impor-
tant roles in regulating a series of physiological processes 
and disease development, and thus the studies about their 
function have become the hot topics. Currently, more 
than 100 RNA modifications have been identified [1]. 
 N6-methyladenosine  (m6A) is the most common meth-
ylation modification in eukaryotic mRNA and long non-
coding RNA, and is found in ribosome-related mRNA as 
well [2]. In addition,  m6A is identified in more than 25% of 

human mRNAs [3]. As the most common internal modifi-
cation in mRNA,  m6A modification is generally enriched 
in 3′-untranslated terminal regions (3′-UTRs) and near stop 
codons [4]. Zhang et al., developed a new FunDMDeep-m6A 
algorithm to detect the dynamic  m6A levels in cells, and con-
firmed that  m6A modifications could target many important 
genes involved in biological processes including embryonic 
development, stem cell differentiation, cell apoptosis, as well 
as proliferation and metastasis of cancer cells [3].

There are three types of regulatory proteins involved in 
 m6A occurrence, elimination and function exertion; the 
methyltransferases (writers) are involved in catalyzing 
methyl transfer; the demethylase (erasers) can remove  m6A 
modification; various  m6A reading proteins can recognize 
and bind to  m6A-modified mRNAs to mediate correspond-
ing functions [5]. It is noted that three kinds of regulatory 
proteins constitute the molecular basis for  m6A regulation 
in multiple metabolic processes of RNA.
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The molecular basis for the occurrence, 
elimination and function of  m6A

The occurrence of  m6A:  m6A writers

The  m6A methyltransferase complex is composed of 
METTL3, METTL14, WTAP, and other auxiliary subu-
nits including VIRMA [6, 7], RBM15 [8], and ZC3H13 [9] 
(Fig. 1). METTL3 is the catalytic part of the methyltrans-
ferase complex, and catalyzes the modification of  m6A by 
cross-linking with S-adenosylmethionine [10]. METTL14, 
one of the most important auxiliary subunits in the meth-
yltransferase complex, combines with METTL3 to form a 
heterodimer to activate the catalytic function of METTL3. In 
addition, METTL14 can recognize RNA substrates and then 
mediate the binding of methyltransferase complex to RNA 
substrates [6]. WTAP acts as a regulatory subunit to recruit 
METTL3/14 to the mRNA for subsequent  m6A methylation 
[11]. Previous studies have reported that VIRMA mediates 
preferential methylation of mRNA near the 3’-UTR and stop 
codons [7]; RBM15 and RBM15B mediate  m6A modifica-
tion in long non-coding RNA X-inactive specific transcripts 
(XIST) [8]. Moreover, ZC3H13 has been proved to guide 
the binding of RNA-binding protein Rbm15 to mamma-
lian WTAP [9]. In addition to the METTL3/14 complex, 
METTL16 is also one kind of  m6A methyltransferases, 
which mainly functions on a large number of pre-mRNAs 
and various non-coding RNAs [12].

Elimination of  m6A:  m6A erasers

m6A modification is actually a dynamically reversible pro-
cess, as the modification on mRNA can be eliminated via 
 m6A demethylases. There are two known common demethy-
lases of  m6A: fat mass and obesity-associated protein (FTO) 
and AlkB homolog 5 (ALKBH5) (Fig. 1). As a member 
of the AlkB family, FTO has a highly conserved catalytic 
domain, which mainly acts on 3′-untranslated region of tran-
scripts to regulate the  m6A level. FTO has been found to 
be of great significance to the  m6A modification of whole 
transcriptome mRNA [13], and closely related to metabolic 
diseases such as diabetes [14], obesity [15], and ischemic 
heart failure [16]. ALKBH5, a member of the AlkB family, 
has been proved to be another one mammalian demethyl-
ase [17]. By regulating the  m6A levels, ALKBH5 performs 
biological functions including regulating cell proliferation, 
migration, invasion, and ossification [18]. Another demeth-
ylase ALKBH3, which is relatively less reported, usually 
preferentially exhibits demethylation activity in ssDNA, and 
there are also recent studies reporting that it exhibits dem-
ethylation activity in tRNA [19].

Recognition of  m6A modification:  m6A readers

After specifically recognizing the  m6A sites of RNA,  m6A 
reading proteins mediate a series of biological functions by 
modulating splicing, translation, transport, and enhancing or 

Fig. 1  Functions of  m6A effectors. The writers are involved in catalyzing methyl transfer. The erasers remove  m6A modification. Reading pro-
teins can recognize and bind to  m6A-modified mRNAs to mediate corresponding function



4931Molecular Biology Reports (2022) 49:4929–4941 

1 3

reducing the stability of target mRNAs. The YTH protein 
family proteins, including YTHDF1, YTHDF2, YTHDF3, 
YTHDC1 and YTHDC2, have been confirmed as  m6A 
reading proteins. YTHDF1 promotes translation of target 
mRNAs, while YTHDF2 reduces the stability of the tar-
get transcripts (Fig. 1) [20]. YTHDF3 assists YTHDF1 
and YTHDF2 to promote RNA translation and modulate 
RNA degradation, respectively [21, 22]. YTHDC1, the  m6A 
reading protein in nucleus, promotes the transport of mRNA 
from the nucleus to the cytoplasm [23], and also mediates 
RNA splicing in a concentration-dependent manner [24]. 
YTHDC2 is also the member of the YTH protein family, 
which can improve the translation efficiency or reduce the 
mRNA abundance of target genes [25].

The insulin-like growth factor 2 mRNA-binding proteins 
(IGF2BPs) is a newly discovered  m6A reading proteins. 
Different from the YTH protein family, IGF2BPs promote 
expression of target genes by increasing the stability of tar-
get mRNAs [26]. Studies have confirmed that eukaryotic 
initiation factor 3eIF3 can get rid of the assistance of cap 
complex and independently recruit the 43S ribosomal com-
plex to start translation after binding to the  m6A sites in 
5'-UTR of mRNAs, indicating that eIF3 regulates mRNA 
cap-independent translation after recognizing and binding to 
 m6A-modified mRNAs [27]. Moreover, METTL3 was also 
observed to enhance the translation of target mRNAs by 
activating translation process in human cancer cells [28].

m6A regulation in the tumors

Acute myeloid leukemia (AML)

Acute myeloid leukemia (AML) is an aggressive and fatal 
hematological malignancy, characterized by abnormal pro-
liferation of primitive and naive myeloid cells in the bone 
marrow and the periphery. Epigenetic modifications includ-
ing DNA methylation and histone modifications play impor-
tant roles in phenotype maintenance of leukemia cells [29]. 
METTL3 and METTL14 have been reported to be highly 
expressed in AML cells relative to hematopoietic progeni-
tor cells, and both exhibit carcinogenic effects [30, 31]. 
METTL3 induces enhanced expression of SP1 by upregu-
lating the  m6A methylation levels on the oncogenes SP1 
and SP2 mRNAs, and SP1 promotes the differentiation of 
hematopoietic stem cells into AML cells [32]. In addition, 
METTL3 can promote the expression of c-MYC, BCL-2 and 
PTEN in AML cells to increase intracellular p-AKT level, 
thereby promoting proliferation of cancer cells and exert-
ing carcinogenic effects [30]. Weng et al. identified that the 
SP1-METTL14-MYB/MYC signal axis regulates myeloid 
differentiation of normal cells and participates in malignant 
hematopoiesis [31]. In addition, Bansal et al., identified that 

WTAP plays an important role in the proliferation and dif-
ferentiation of leukemia cells, and thus WTAP is expected to 
become a new target for the treatment of AML [33].

Similar to  m6A writers,  m6A erasers also play a role in 
regulating the occurrence and development of AML, among 
which FTO and ALKBH5 are abnormally active in various 
karyotypes of AML [34, 35]. Mechanism studies have found 
that FTO reduces the  m6A levels of target mRNAs, such as 
tumor suppressor genes ASB-2 and RARA in the untrans-
lated region, resulting in downregulation of their mRNA 
stability and thus promoting the AML development [34]. 
Shen et al. found that ALKBH5, overexpressed in AML, 
functions as an oncoprotein, and its upregulated expression 
is associated with poor prognosis of AML [35]. By con-
trast, Kwok’s study indicated that ALKBH5 is reduced in 
AML cells and suggested that it exhibits a tumor suppressor 
effect [36]. In another one study, ALKBH5 and YTHDF2 
cooperatively regulate the mRNA stability of the receptor 
tyrosine kinase AXL in a  m6A-dependent manner [37]; AXL 
overexpression promotes cancer cell proliferation, survival, 
migration, and invasion by activating PI3K/Akt and MAPK/
Erk pathways [38].

Glioblastoma (GBM)

Glioblastoma, originating from poorly differentiated glial 
cells, is one of the most common malignant tumors in the 
central nervous system. Cai et al., showed that  m6A methyla-
tion modification is involved in the self-renewal of glioblas-
toma stem cells (GSCs), and pathogenesis and development 
of tumors. Moreover, Cui et al., further proved that METTL3 
and METTL14 can regulate growth of GSCs and GBM pro-
gression by down-regulating the expression of oncogenes, 
such as ADAM19, EPHA3, and KLF4 [39]. However, 
contradictory results about METTL3 in GBM progression 
were obtained, which suggested that METTL3 promotes 
the growth of GSCs by up-regulating SOX2 expression 
when these cells are exposed to radiation [40]. In addition, 
METTL3 has also been found to function as a regulator of 
nonsense-mediated mRNA decay (NMD) to maintain the 
aggressiveness of tumor [41]. These results suggest that the 
effects of METTL3 on the pathogenesis and development 
of GBM are diverse and complex, thus further investiga-
tion about METTL3 roles in GBM progression is needed. 
In glioblastoma, overexpressed ALKBH5 is associated with 
enhanced ability of tumor stem cells to resist radiation and 
invasion [42]; mechanistically, ALKBH5 reduces the level of 
intracellular  m6A methylation and thus promotes the expres-
sion of the oncogene FOXM1 to enhance the self-renewal 
ability and tumorigenicity of GSCs [43]. Moreover, the  m6A 
reading protein IGF2BP2 is observed to be upregulated in 
GBM tissues, which promotes the proliferation, migration, 
invasion and epithelial-mesenchymal transition of GBM 
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cells by upregulating insulin-like growth factor 2 (IGF2) 
and then activating PI3K/AKT signaling pathway [44]. As 
predicted, inhibition of PI3K/AKT pathway can increase 
the sensitivity of GBM to temozolomide (TMZ) treatment 
[45]. Collectively, these results suggest that  m6A modifica-
tion mediates the occurrence and migration of GBM, which 
provides insight into therapeutic strategies by exploiting 
 m6A RNA methylation as targets for treating GBM.

Hepatocellular carcinoma (HCC)

Hepatocellular carcinoma (HCC), a primary liver cancer 
with high mortality, is the third most common cause of 
cancer-related high mortality in the world [46]. Increasing 
evidences show that HCC is closely related to  m6A. The 
TCGA analyses indicate the overall survival and disease-free 
survival rate of HCC patients with high METTL3 expres-
sion are poor. RNA-Seq assays revealed that METTL3 is 
significantly upregulated in HBV-related liver cancer tis-
sues relative to corresponding non-tumor (NT) liver tis-
sues. Further studies demonstrated that METTL3 reduces 
the mRNA stability of the tumor suppressor SOCS2 through 
the YTHDF2-dependent pathways in HCC, bringing about 
the pathogenesis and development of HCC [47]. Moreover, 
Chen et al. determined that Snail, an important transcription 
factor related to EMT, is a downstream target of METTL3; 
METTL3 and YTHDF1 jointly promote the transfer of HCC 
by enhancing translation of Snail protein [48].

METTL14 was examined to be downregulated in HCC 
[49]. Mechanism studies revealed that METTL14 medi-
ates the recognition and binding of DiGeorge syndrome 
chromosomal region 8 (DGCR8) to pri-miR-126 through 
 m6A-dependent pathways, resulting in miR-126 maturation 
[50]. It is noted that miR-126 functions as a tumor suppres-
sor and is downregulated in a variety of tumors [51]. In addi-
tion, Li et al. identified that METTL14 might participate 
in malignant progression of HCC by regulating the  m6A 
modification levels of cysteine sulfinic acid decarboxylase 
(CSAD), SOCS2, and glutamic-oxaloacetic transaminase 2 
(GOT2) [52].

The  m6A methyltransferase WTAP, KIAA1429 and the 
demethylase FTO have also been reported to influence the 
HCC growth and invasion through different mechanisms 
[53–56]. FTO has been reported as one tumor-promoting 
effector or tumor suppressor for the pathogenesis and 
development of HCC, respectively [55, 56]. Thus, the 
influences of FTO on the proliferation ability of different 
HCC cells were controversial, which needs further research 
and verification. In addition, ALKBH5 was observed to 
be reduced in HCC. Functional studies further confirmed 
that ALKBH5 could inhibit the growth and invasion of 
liver cancer cells in vivo and in vitro. Decreased ALKBH5 
increases the  m6A modification of LYPD1, which hinders 

the recognition of  m6A-modified LYPD1 by the  m6A read-
ing protein IGF2BP1 and thus enhances LYPD1 mRNA 
stability, resulting in tumor-inducing effect in HCC [57]. 
The above studies have enriched the understanding of  m6A 
roles in HCC development, and provided different perspec-
tives and insights for the developing effective treatment 
strategies.

Gastric cancer (GC)

Although the incidence of gastric cancer (GC) has decreased 
in the past few decades, GC is still the fifth most common 
malignant tumor in the world [58]. In GC tissues, the expres-
sion of METTL3 was significantly increased. Wang et al., 
found that METTL3 increases the  m6A modification levels 
of HDGF mRNA, which are then recognized and bound 
by IGF2BP3 to upregulate HDGF protein level, promot-
ing tumor angiogenesis and glycolysis and thus accelerat-
ing tumor growth [59]. Moreover, a previous study showed 
that METTL3 downregulation can activate the apoptotic 
pathway and inactivate the AKT signaling pathway, thereby 
inhibiting the proliferation and migration of human GC cells 
[60]. Taken together, it is speculated that METTL3 may be a 
potential target for the treatment of human GC.

Zhang et al. also confirmed that ALKBH5 can promote 
the invasion and metastasis of GC by reducing  m6A modi-
fication levels of the lncRNA NEAT1 [60], suggesting that 
ALKBH5 and NEAT1 may be potential therapeutic targets 
for GC.

Compared with the benign gastric disease patients and 
healthy groups, the  m6A levels in the peripheral blood of GC 
patients were significantly increased with the progress and 
metastasis of GC; while the  m6A levels in the GC patients 
decreased after surgery. Compared with healthy groups, the 
expression of ALKBH5 and FTO in the GC patients was 
significantly down-regulated. These results suggest that  m6A 
modification of peripheral blood can be used as a new non-
invasive biomarker for GC prediction and diagnosis [61]. 
Moreover, He et al., demonstrated that  m6A modification 
plays a regulatory role in miR-660-mediated inhibition of 
GC cells, providing a novel perspective for the  m6A regula-
tory mechanism in GC development [62].

However, Zhang et al., obtained contradictory results 
and found that the  m6A methyltransferases are potential 
tumor suppressors, while demethylases are potential cancer 
promoters. Further studies revealed that METTL14 knock-
down could promote the proliferation and invasion of GC 
cells by activating the oncogenic Wnt/PI3K-AKT signaling, 
while FTO knockdown exhibits the opposite effects [63]. 
These results indicate that the molecular mechanism of  m6A 
involved in the occurrence and development of GC is still 
complicated and worthy of further exploration.
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Breast cancer (BC)

Breast cancer (BC) is the most common cause of death 
among women in the world. Although early treatment of 
BC is effective, 30% of patients still face the risk of tumor 
recurrence or metastasis [64, 65]. Under hypoxic conditions 
in the tumor microenvironment, the expression of ALKBH5 
in Breast cancer stem cells (BCSCs) is increased, which 
reduces the  m6A methylation levels in tumor tissues and 
ultimately promotes the enrichment of BCSCs in the hypoxic 
microenvironment. Mechanistically, ALKBH5 reduces the 
 m6A methylation level of NANOG, a totipotent or pluripo-
tent stem cell transcription factor, to upregulate its mRNA 
stability [66, 67]. Furthermore, hypoxia can also induce 
expression of zinc finger protein 217 (ZNF217) in BC cells 
in a HIF-dependent manner. As an inhibitor of  m6A meth-
yltransferase, ZNF217 reduces METTL3 but upregulates 
ALKBH5 level to negatively regulate  m6A levels of down-
stream genes, resulting in promoting BC tumorigenesis by 
increasing expression of KLF4 and NANOG [68].

As a pro-apoptotic gene, BNIP3 is a tumor suppressor 
in BC. In BC, the expression of FTO is upregulated. FTO 
targets BNIP3 and mediates its mRNA demethylation, which 
induce degradation of BNIP3 mRNA in YTHDF2-dependent 
manner, resulting in BC cell proliferation, metastasis and 
colony formation [69].

The methyltransferase METTL3 is highly expressed in 
BC, and has a strong positive correlation with expression of 
oncoprotein hepatitis B virus x-interacting protein (HBXIP) 
in tumor development. Moreover, METTL3 increases 
HBXIP expression through methylation modification, and 
HBXIP in turn promotes the expression of METTL3 by 
inhibiting the METTL3 inhibitor miRNA let-7 g expres-
sion. These results identify that HBXIP/let-7 g/METTL3/
HBXIP forms a positive feedback pathway, accelerating the 
development of BC [70]. Furthermore, Wang et al., found 
that METTL3 targets Bcl-2 and increases its transcription, 
thereby inhibiting cell apoptosis and promoting the progress 
of BC [71]. Collectively, these results provide new potential 
therapeutic targets for BC.

Non‑small‑cell lung carcinoma (NSCLC)

In China, lung cancer is one of the malignant tumors with 
the highest morbidity and mortality, and it is the great-
est threat to the health and life of the population [72, 73]. 
According to histopathological criteria, lung cancer can 
be divided into small-cell lung carcinoma (SCLC) and 
NSCLC, among which common non-small-cell carcinomas 
include lung adenocarcinoma (LUAD) and squamous cell 
carcinoma. Lin et al., found that METTL3 mRNA levels 
in LUAD are significantly increased; further studies iden-
tified that METTL3 regulates LUAD growth and invasion 

[28]. Moreover, other studies revealed that METTL3 induces 
brain metastasis of lung cancer by regulating expression of 
miR-143-3p and vascular tissue protein 1 (vasohibin-1, 
VASH1) [74]. METTL3 also participates in the Transform-
ing Growth Factor-beta (TGF-β)-mediated EMT process of 
lung cancer cells via modulating the expression of JUNB, a 
key transcriptional regulator of EMT [75]. In another study 
on NSCLC, miR-33a was observed to directly binds to the 
3′ non-coding region of METTL3 mRNA to reduce the 
expression of METTL3, which in turn inhibits cancer cell 
proliferation by decreasing the expression of target genes 
EGFR, TAZ and DNMT3A [76]. These results suggest that 
METTL3 may become one of the targets of lung cancer 
treatment.

Liu et al., confirmed that FTO promotes the progres-
sion of lung squamous cell carcinoma via reducing the 
 m6A methylation level of zinc finger 1 (MZF1) and in turn 
enhancing its protein levels [77, 78]. Li et al., also found that 
FTO can accelerate the growth of lung cancer cells by target-
ing the  m6A level of ubiquitin-specific protease 7 (USP7) 
[79].

Other tumors

m6A has been found to be involved in the occurrence and 
development of human urinary system-related tumors in 
recent studies including renal cell carcinoma (RCC), blad-
der cancer (BCA), and male prostate cancer (PCA) [80–86]. 
RCC is the most fatal malignant tumor of the urinary system 
[58], in which METTL3 can inhibit the proliferation, migra-
tion and epithelial-mesenchymal transition of renal cancer 
cells by regulating the PI3K-AKT-mTOR pathway [80]. 
Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), 
overexpressed in RCC, can enhance the  m6A modification 
of hypoxia-inducible factor-2α (HIF-2α) and thus induce 
translation of HIF-2α, promoting glycolytic metabolism 
in tumor cells and malignant phenotype of tumors [81]. 
In BCA, METTL3 with increased expression upregulates 
the methylation level of CUB domain-containing protein 1 
(CUB domain-containing protein 1, CDCP1), and YTHDF1 
then recognizes the  m6A motifs in CDCP1 3’-UTR to facili-
tate translation of the oncogene CDCP1 [82]. Recent stud-
ies have demonstrated that the METTL3-YTHDF2 axis can 
directly target and recognize the downstream tumor suppres-
sor genes SETD7 and KLF4 mRNA to induce their degrada-
tion, thereby promoting the pathogenesis and development 
of BCA [83]. In addition, Gao et al. revealed the METTL3-
AFF4-SOX2/MYC regulatory axis plays a key role in the 
self-renewal and tumorigenicity of BCA stem cells [84]. In 
PCA, YTHDF2 and miR-493-3p are confirmed to be two 
key oncogenes to participate in the progression of PCA [85]. 
Ma et al. found that METTL3 increases  m6A methylation 
levels of LEF1 mRNA, increasing its protein translation and 
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enhancing the activity of the Wnt signaling pathway to pro-
mote the occurrence and development of PCA [86].

Among gynecological tumors,  m6A is involved in cervi-
cal squamous cell carcinoma (CSCC), ovarian cancer (OC), 
and endometrial cancer (EC) [87–89]. In CSCC, Zhou et al., 
found that FTO reduces β-catenin expression by reducing 
the  m6A levels in its mRNA transcripts, thereby increasing 
the excision repair cross-complementation group 1 (ERCC1) 
activity to enhance the resistance of CSCC to chemotherapy 
and radiotherapy [87]. Moreover, YTHDF1 increases the 
translation of EIF3C by recognizing the  m6A modification 
sites in EIF3C mRNA, and elevated EIF3C ultimately pro-
motes the progression of OC [88]. In EC, Liu et al., demon-
strated that estrogen decreases the  m6A methylation levels 
by downregulating the METTL3/METTL14 levels in can-
cer cells, which then reduces the expression of the negative 
AKT regulator PHLPP2, but induces the expression of the 
positive regulator mTORC2, thereby activating the AKT 
signaling pathway and enhancing cancer cell proliferation, 
migration, and invasion [89].

In uveal melanoma (UM), METTL3-mediated  m6A meth-
ylation modification regulates the proliferation, migration 
and invasion of UM cells by targeting c-Met. As a protein 
product encoded by the proto-oncogene c-Met, c-Met plays 
a critical carcinogenic role in the development of UM [90]. 
Moreover, METTL3 can promote cancer cell proliferation 
and tumor growth in cutaneous squamous cell carcinoma 
(cSCC) by upregulating the expression of delta Np63, one 
of the subtypes of p63 gene, which plays an important role 
in the growth, differentiation and pathological development 
of normal epithelium [91].

The dual role of  m6A in tumorigenesis 
and development

We have found that although  m6A modification plays a broad 
role in the occurrence and development of various tumors, 
and the mechanisms are diverse and complex (Table 1 and 
Fig. 2). In many types of cancer cells, increased  m6A levels 
are associated with upregulated expression of oncogenes, 
decrease apoptosis of cancer cells, and improved cellular 
migration and invasion abilities, which are conducive to 
the cancer progression. Moreover, the increased  m6A levels 
could improve resistance of cancer cells to drugs and shorten 
life expectancy of patients. For example, Hua et al. found the 
upregulated METTL3 promotes the occurrence and inva-
sion of OC by stimulating AXL transcription and inducing 
EMT progression [92]. However, in the research on colorec-
tal cancer (CRC), the effects of  m6A on tumors are diverse 
and contradictory. Li et al., found that METTL3 improves 
the stability of SOX2 mRNA and increases the expression 
of SOX2 through  m6A-IGF2BP2-dependent mechanism in 
CRC, which enhances the stemness of CRC cells and finally 

promotes cancer progression [93]. Similarly, Wen et al., con-
firmed that METTL3 promotes CRC metastasis via miR-
1246/SPRED2/MAPK signaling pathway [94]. However, 
Deng et al., found that METTL3 inhibits the proliferation 
and migration of CRC through the p38/ERK pathway [95]. 
The contradictory effects of  m6A are also reflected in the 
researches on glioblastoma [39–42]. In addition, different 
studies have found that at different stages of liver cancer 
development, METTL3 and ALKBH5 promote the progres-
sion of HCC by up-regulating or down-regulating the  m6A 
modification levels [48, 50], which may provide new insights 
into understanding the roles of  m6A in regulating cancer.

Drugs and targeted therapies in cancer 
development

In the research of targeted therapeutics against m6A for 
tumors, the research on FTO targeted therapies is the most 
accomplished and representative. Since Han et al. discovered 
the crystal structure of FTO in 2010, the research on FTO 
inhibitors has gained more and more attention [96]. Up to 
date, various small molecules have been applied to inhibit 
FTO expression, such as Rhein [97], meclofenamic acid 
[98], R-2HG [99], entacapone [100], etc. However, due to 
the low sensitivity and specificity, the potential for clinical 
application of these FTO inhibitors are limited [101]. Huang 
et al. recently discovered two derivatives of meclofenamic 
acid, FB23 and FB23-2, which could remarkably reduce the 
survival rate of AML cells and show the potential to treat 
AML [102]. Su et al. also found two new high-efficiency 
FTO inhibitors CS1 and CS2, which show strong anti-leuke-
mia effects in vitro [101]. Yang et al., revealed that knocking 
out the FTO gene could reduce the resistance of melanoma 
to anti-PD-1 immunotherapy [103]. In summary, the main 
effects of FTO inhibitors against tumors include reducing 
tumor cell drug resistance, inhibiting cancer stem cell pro-
liferation and suppressing immune evasion, suggesting the 
possibility of FTO as a promising therapeutic target.

In addition to FTO, many studies on other m6A-related 
enzymes for targeted therapy of tumors have been per-
formed in recent years. Wang et al., reported that knocking 
out METL3 or METL14 can enhance the responsiveness 
of colorectal cancer and melanoma cells to immunotherapy 
by regulating the IFN-γ-Stat1-Irf1 signaling [104], and Li 
et al., succeeded in using ALKBH5 specific inhibitor ALK-
04 to improve the efficacy of immunotherapy for colorectal 
cancer and melanoma [105]. It is noted that Bedi RK et al., 
proposed potent and selective inhibitors of METTL3, which 
is conducive to developing target drugs [106].

In short, although the current targeted therapeutics 
against m6A for treating cancer is still in its infancy, it is 
promising to develop clinically effective drugs in the near 
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Table 1  Functional roles of  m6A modification in cancer progression

Cancers m6A effectors Promote or 
Suppress 
cancer

Mechanism References

Acute myeloid leukemia (AML) METTL3 Promote Promote the expression of c-MYC, BCL-2 and 
PTEN in AML cells

[30]

Promote Upregulate the m6A methylation levels on the 
oncogenes SP1 and SP2 mRNAs

[32]

METTL14 Promote The SP1-METTL14–MYB/ MYC signal axis 
can inhibit the myeloid differentiation of 
normal cells and participate in malignant 
hematopoiesis

[31]

ALKBH5 Promote Function as an oncoprotein [35]
Glioblastoma (GBM) METTL3 Promote Upregulate SOX2 expression [40]

Promote Function as a regulator of NMD to maintain 
the aggressiveness of tumor

[41]

Suppress Downregulate the expression of oncogenes, 
such as ADAM19, EPHA3, and KLF4

[39]

ALKBH5 Promote Promote the expression of the oncogene 
FOXM1

[43]

IGF2BP2 Promote Upregulate IGF2 and then activate PI3K/AKT 
signaling pathway

[44]

Hepatocellular carcinoma (HCC) METTL3 Promote Reduce the mRNA stability of the tumor sup-
pressor SOCS2

[47]

Promote Enhance the translation of Snail protein alone 
with YTHDF1

[48]

METTL14 Promote Mediate the recognition and binding of DGCR 
8to pri-miR-126, resulting in miR-126 
maturation

[50]

WTAP Promote Modulate the G2/M phase of HCC cells 
through a p21/p27-dependent pattern medi-
ated by ETS1

[53]

KIAA1429 Promote Induce m6A methylation on the 3' UTR of 
GATA3 pre-mRNA

[54]

FTO Promote Trigger the demethylation of PKM2 mRNA 
and accelerated the translated production

[55]

ALKBH5 Suppress Decrease the m6A methylation modification 
of LYPD1

[57]

Gastric cancer (GC) METTL3 Promote Increase the m6A modification levels of 
HDGF mRNA

[59]

ALKBH5 Promote Reduce m6A modification levels of the 
lncRNA NEAT1

[60]

Breast cancer (BC) METTL3 Promote HBXIP/let-7 g/METTL3/HBXIP forms a 
positive feedback pathway, accelerating the 
development of cancer

[70]

Promote Target Bcl-2 and increases its transcription [71]
ALKBH5 Promote Target NANOG and downregulate the m6A 

methylation level of its mRNA, upregulating 
the mRNA stability

[67]

FTO Promote Target BNIP3 and mediates its mRNA dem-
ethylation

[69]

Non-small-cell lung carcinoma (NSCLC) METTL3 Promote Regulate expression of miR-143-3p and vascu-
lar tissue protein 1, inducing brain metastasis

[74]

Promote Modulate the expression of JUNB, participat-
ing in EMT process of lung cancer cells

[75]

FTO Promote Reduce the  m6A methylation level of MZF1, 
enhancing its protein levels

[77]
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Table 1  (continued)

Cancers m6A effectors Promote or 
Suppress 
cancer

Mechanism References

Renal cell carcinoma (RCC) METTL3 Suppress Regulate the PI3K-AKT-mTOR pathway [80]

MTHFD2 Promote Enhance the  m6A modification of HIF-2α and 
induce translation of HIF-2α

[81]

Bladder cancer (BCA) METTL3 Promote METTL3-YTHDF1 axis targets and upregu-
lates the methylation level of the oncogene 
CDCP1

[82]

Promote METTL3-YTHDF2 axis targets and recognize 
the downstream tumor suppressor genes 
SETD7 and KLF4 mRNA

[83]

Prostate cancer (PCA) METTL3 Promote Act on LEF1 mRNA through  m6A methylation 
and enhance the activity of the Wnt signal-
ing pathway

[86]

Ovarian cancer (OC) YTHDF1 Promote Recognize the  m6A modification sites in 
EIF3C mRNA, increasing the translation of 
EIF3C

[88]

Endometrial cancer (EC) METTL3/METTL14 Suppress Induce the expression of PHLPP2 and reduce 
the expression of mTORC2

[89]

Uveal melanoma (UM) METTL3 Promote Target c-Met [90]
Cutaneous squamous cell carcinoma (cSCC) METTL3 Promote Upregulate the expression of delta Np63 [91]

Fig. 2  Functional roles of  m6A 
in development of various 
cancers. The  m6A modification 
exerts diverse effects on various 
cancers. AML acute myeloid 
leukemia, GBM glioblastoma, 
HCC hepatocellular carcinoma, 
GC gastric cancer, BC breast 
cancer, NSCLC non-small-cell 
lung carcinoma, BCA bladder 
cancer, OC ovarian cancer, UM 
uveal melanoma, W-E-R writ-
ers, erasers, readers



4937Molecular Biology Reports (2022) 49:4929–4941 

1 3

future with the increasing knowledge of related molecular 
mechanisms of m6A modification being explored.

Conclusion and perspectives

This review summarizes the different roles of  m6A modi-
fication and the underlying mechanism in cancer develop-
ment, and reveals that  m6A modification plays a critical role 
in the occurrence and development of various cancers. But 
our knowledge about  m6A is far from complete, and cur-
rent research results on  m6A cannot provide accurate and 
universal guidance for the clinical diagnosis and therapeutic 
strategies of cancer yet. Little is known about whether the 
regulation of tumors by  m6A-related proteins is associated 
with tumor types and tumor progression stages, whether 
the inhibition of  m6A regulatory factors for a certain tumor 
leads to the occurrence of another tumor or other diseases. 
The challenges need to be explored and solved urgently. 
Under these circumstances, clearer research directions have 
emerged: the first is to clarify the phenotype, staging and 
prognosis of  m6A-related cancers; the second is an anti-
tumor therapy research related to  m6A; the third is a new 
immunotherapy strategy targeting  m6A [107].
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