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Abstract
Background Clonorchis sinensis was a food-borne zoonotic parasite in the worldwide and also an important risk factor of 
hepatic fibrosis. Excretory/secretion products of C. sinensis (CsESPs) are involved in parasite-host interactions and con-
tribute to the development of hepatic damage. The aim of the present study was to investigate whether CsESPs and CsTP 
(adult protein) could induce autophagy of hepatic stellate cells (HSCs) and further activate HSCs so as to participate in the 
pathogenesis of hepatic fibrosis.
Methods and results The human hepatic stellate cell line LX-2 was stimulated by CsESPs and CsTP. CsESPs showed the 
effect on cell proliferation in methyl thiazolyl tetrazolium (MTT) assay while CsTP failed. Autophagosomes and autolys-
osomes were observed after the transmission mRFP-EGFP-LC3 plasmid into the LX-2 cells. CsESPs had more powerful to 
induce the accumulation of autophagosomes and autolysosomes to enhance autophagic flux compared with CsTP. Western-
blotting analysis confirmed that the ratio of LC3-II/I in LX-2 cells was up-regulated after CsESPs treatment for 6 h, which 
further proved that CsESPs could induce autophagy in LX-2 cells. Meanwhile, q-PCR results showed that the mRNA levels 
of collagen I, collagen III and α-SMA decreased in LX-2 cells after treatment with autophagy inhibitor chloroquine, whereas 
they increased when combination with CsESPs.
Conclusions These results suggested that CsESPs-induced autophagy might be involved in the activation of HSCs, and 
consequently participate in the pathogenesis of hepatic fibrosis caused by C. sinensis infection.

Keywords Clonorchis sinensis · Excretory-secretory products · Autophagy · Hepatic stellate cells · Hepatic fibrosis

Introduction

Clonorchiasis, caused by Clonorchis sinensis (C. sinensis), 
is mainly prevalent in Asian countries and regions, espe-
cially Guangxi and Guangdong in China [1]. C. sinensis 
infection is closely related to hepatobiliary diseases, such 
as fibrosis and even cholangiocarcinoma, thus it is a seri-
ous public health problem in endemic areas. The proposed 
mechanisms of pathogenesis of C. sinensis infection include 
mechanical damage to bile duct epithelia resulting from the 
activities of the adult worm, inflammation and other patho-
logical effects from excretory-secretory products (ESPs) [2].

Autophagy is a metabolic process that eukaryotic cells 
digest their own organelles and long-lived proteins. As a cel-
lular house keeper, autophagy eliminates defective proteins 
and organelles, removes intracellular pathogens, and also 
prevents abnormal proteins from accumulating [3]. There-
fore, autophagy plays active roles in the pathogenesis of 
many diseases, including hepatic diseases. Chronic hepatic 
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injury initiates fibrogenic process by triggering inflammation 
and HSCs activation, during which quiescent HSCs reduce 
vitamin A droplets and acquire myofibroblastic features 
associated with the capacity to secrete extracellular matrix 
(ECM) and inhibition of matrix degradation [4]. Researches 
indicated that autophagy played a complex role in the liver 
fibrogenic process: it indirectly protects against hepatic 
fibrosis in hepatocytes, macrophages and endothelial cells, 
and it displays fibrogenic properties to promote the activa-
tion process in HSCs and influence other fibrogenic cells 
[5, 6].

Clinical information had shown that C. sinensis infection, 
as a chronic liver injury, could lead to hepatic fibrosis, the 
progress is different from that of the hepatic fibroplasias 
caused by hepatic virus and alcohol. Animal experiment 
proved that periductal fibroplasia occurred at an early stage 
of the infection and then developed into liver parenchyma 
[2]. ESPs are released continuously by adults into bile ducts 
and surrounding liver tissues to cause persistent injury. Hu 
et al. also found that HSCs activation and hepatic fibrosis 
occurred in the infected animal [7–9]. As components of 
ESPs, secretory phospholipase A(2) (CsPLA2), fructose-1, 
6-bisphosphatase (CsFBPase), lysophospholipase (Cslyso-
PLA), Fe heavychain protein (CsFHC) have been reported to 
directly activate human HSCs and other key cells in hepatic 
fibrosis process [7, 8, 10–12], suggesting that CsESPs play 
an important role in the progress of hepatic fibrosis in C. sin-
ensis infection. However, the specific pathogenesis remains 
unclear, though the activated TGF-β/Smad signalling path-
way contribution to fibrosis was reported [13].

In our previous study, hepatic fibrosis was observed in 
histological examination of livers from the rats infected 
by C. sinensis. Based on the H&E staining and Masson 
staining, histological analysis revealed that 4 rats were in 
stage F1 (Stellar enlargement of portal tracts without septa) 
and 6 rats were in stage F2 (Enlargement of portal tracts 
with rare septa) among 10 infected rats. According to the 
Metavir scoring system, significant fibrosis was considered 
when METAVIR stages were F ≥ 2 [14]. Meanwhile, in the 
same liver tissue, the ratio of LC3-II/I was elevated and the 
expression of p62 was decreased correspondingly. To date, 
microtubule associated protein light chain 3 (LC3) serves as 
a widely used marker for autophagosomes. Endogenous LC3 
is detected as two bands by SDS-PAGE: LC3-I is present in 
the cytosol. When autophagy is induced, some LC3-I is con-
verted into LC3-II, which is bound to the autophagosomal 
membrane. Thus the amount of LC3-II or LC3-II/I ratio cor-
relates with the number of autophagosomes [15, 16]. There-
fore, we hypothesized that autophagy might be triggered by 
C. sinensis infection and was involved in hepatic fibrosis. In 
the present study, we examined the autophagy flux and the 
activated markers expression of HSCs induced by CsESPs 
and CsTP to explore a possible link between autophagy and 

HSCs activation to further elucidate the role of autophagy 
in the pathogensis of C. sinensis–induced hepatic fibrosis.

Methods

Preparation ESPs and adult‑derived total protein 
of C. sinensis

Pseudorasbora parvas, the second intermediate host of 
C. sinensis, naturally infected with metacercariae was 
collected from endemic areas. The fish were digested by 
using artificial gastric juice (0.5% pepsin, 1% HCl and 0.9% 
NaCl) at 37 °C overnight. Male New Zealand White rab-
bits (3000–3500 g) were purchased from Guangxi Medical 
University Laboratory Animal Center and raised carefully 
in accordance with National Institutes of Health on animal 
care and the ethical guidelines. Metacercaria were isolated 
under stereomicroscope and 800 metacercaria/each rabbit 
were administered intragastrically. After 6 weeks of infec-
tion, the rabbits were sacrificed after anesthesia and adult 
worms were collected from bile ducts, and then cultured in 
PBS (pH 7.4) at 37 °C under 5%  CO2.

The culture medium was harvested after 6 h (named 
CsESP-6 h), then the adult worms were cultured in fresh 
PBS for another 6 h and the culture medium was harvested 
(named CsESP-12 h). They were centrifuged at 12,000×g 
for 10 min at 4 °C. The supernatant was sterilized with 
a 0.22 μm filter and stored at − 80 °C for later use. The 
homogenate of adult worms in PBS (pH 7.4) was centri-
fuged at 12,000×g for 10 min at 4 °C, and the supernatant 
(C. sinensis adult-derived total protein, CsTP) was stored at 
− 80 °C after sterilization. The concentrations of CsESP-
6h, CsESP-12h and CsTP were detected using BCA method 
(Biosharp, China).

MTT assay

LX-2 cell was obtained from the Shanghai Cell Institute 
(Shanghai, China) and cultured in DMEM medium con-
taining 10% fetal calf serum in 5%  CO2 at 37 °C. The cells 
(3000/well) were seeded into a 96-well plate. After over-
night incubation, culture medium was replaced with fresh 
medium supplemented with 25, 50, 100 µg/ml of CsESP-6h 
respectively. It was performed by the same way with the 
three concentrations of CsESP-12h and CsTP respectively. 
At 6, 12, 24, 36, 48 h respectively, 20 µl MTT solution 
(Solarbio, China) and 180 µl culture medium were added 
to each well after the medium was aspirated. The medium 
was aspirated and 150 µl DMSO was added to solubilize the 
formazan 4 h later. The absorbance at 490 nm was recorded 
with a microplate reader (Thermo, USA).
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Measuring autophagy flux of LX‑2 cells 
by fluorescent‑tagged LC3

LX-2 cells were plated into the wells of a 24-well plate and 
incubated in the cell culture overnight. The cells were then 
transiently transfected with mRFP-EGFP-LC3 reporter 
plasmid (gift from Pro. Dong Hu, Anhui University of Sci-
ence &Technology), performing with Lipofectamine 2000 
transfection system (Effectene Transfection Kit, Qiagen, 
Germany) according to the manufacturer’s protocol. After 
24 h transfection, the medium was aspirated and replaced 
with 100 µg/ml CsESP-6 h, CsESP-12 h and CsTP, 10 μM 
rapamycin (Sigma) respectively and maintained for 6 h. 100 
cells/each group were randomly selected and taken photos 
by a fluorescence microscopy (× 400, Olympus, Japan) for 
counting the puncta. Then the amount of red and yellow 
puncta in the cells was observed and counted using ImageJ 
software. The results were presented as the average number 
of puncta per cell. The experiments were repeated 3 times.

Examining autophagy of LX‑2 cells by western 
blotting analysis

LX-2 cells were plated into a 24-well plate and cultured for 
24 h. Then the cells were treated with 25, 50, 100 µg/ml 
CsESP-6h; 25, 50, 100 µg/ml CsTP, and 20 μM CQ inde-
pendently or simultaneously for 6 h. Then the cell pellets 
were lysed with RIPA buffer supplemented with protease 
inhibitors. Total soluble protein (40 µg) was subjected to 
12% SDS-PAGE and electrotransferred to apolyvinyliden-
edifluoride (PVDF) membrane. The membranes were incu-
bated overnight with primary antibodies for LC3 and glyc-
eraldehyde 3-phosphatedehydrogenase (abcam) (1: 1000) at 
4 °C, respectively. After washing procedures, the membrane 
was incubated with horseradish peroxidase-conjugated goat 
anti-rabbit/mouse secondary antibody (Abways Technology) 
for 2 h at room temperature and developed with Immobilon 
western chemiluminescent HRP substrate (Merck Milli-
pore). Densitometry analysis was performed using ImageJ 
software, and the relative levels of protein in each group 
were normalized to the loading control. The experiments 
were performed 3 times.

Monitoring LX‑2 cells activation by qPCR analysis

LX-2 cells were plated into a 24-well plate and cultured for 
24 h. Then the cells were treated with 100 µg/ml CsESP-6h, 
and 20 μM CQ independently or simultaneously. After 48 h, 
total RNA was extracted from the cell line. Quantitative 
real-time PCR (qPCR) was performed by PrimeScript™RT 
Master Mix (Perfect Real Time) and TB Green®Premix 
Ex Taq™ (TliRNaseH Plus) (TaKaRa, China) according to 
the manufacturer’s instructions. Reverse transcription was 

carried out in a condition of 15 min at 37 °C and 5 s at 
85 °C. The PCR cycling conditions were as follows: 95 °C 
for 5 min and 40 cycles of 95 °C for 5 s, 60 °C 40 s. The 
primers set used were listed as follows: for GAPDH (5′GAA 
CGG GAA GCT CAC TGG  3′, 5′GCC TGC TTC ACC ACC 
TTC T 3′), for Collagen-I (5′TCG GCG AGA GCA TGA CCG 
ATG GAT  3′, 5′GAC GCT GTA GGT GAA GCG GCT GTT  
3′), for Collagen-III (5′ATG GTT GCA CGA AAC ACA CT3′, 
5′CTT GAT CAG GAC CAC CAA TG 3′), for α-SMA (5′CCA 
GGG CTG TTT TCC CAT CC 3′, 5′GCT CTG TGC TTC GTC 
ACC CA 3′). Gene expression levels were calculated by the 
 2−△△CT method. The relative mRNA expression of each time 
point sample was calibrated to that of GAPDH internal con-
trol and reported as the fold change relative to the untreated 
control. The experiments were repeated 3 times.

Statistical analysis

Data are expressed as the means ± SD of three independent 
experiments and significant differences were assessed by 
Student’s t-test. Statistical significance was accepted with 
p < 0.05. Statistical analyses were performed using SPSS 
22.0.

Results

MTT assay

MTT assay was used to detect the effects of different concen-
tration of CsESP-6 h, CsESP-12h and CsTP on LX-2 cells 
proliferation. After incubation for 24 to 48 h, CsESP-6 h and 
CsESP-12h showed a dose-dependent effect on the prolifera-
tion of LX-2 cells (p < 0.05; Fig. 1a, b). Different concentra-
tion of CsTP had no effect to promote proliferation of LX-2 
cells (p > 0.05; Fig. 1c).

Measurement autophagic flux of LX‑2 cells 
by fluorescent‑tagged LC3

In the fluorescent transfection experiment, the red puncta 
(autolysosomes) and yellow puncta (autophagosomes) sig-
nificantly increased in LX-2 cells treated by rapamycin com-
pared with the control (Fig. 2b), suggesting that the expres-
sion of mRFP-EGFP-LC3 in LX-2 cells could be used to 
evaluate autophagy flux (Fig. 2a). According to the result 
of MTT assay, 100 μg/ml CsESP-6h, CsESP-12h and CsTP 
were performed to treat LX-2 cell. As presented in Fig. 2a, 
c, the treatment of CsESP-6h, CsESP-12h and CsTP, led 
to a substantial number of yellow puncta as well as red 
puncta compared with the control (p < 0.01), suggesting that 
CsESPs and CsTP could enhance autophagic flux. Addition-
ally, much more red and yellow puncta were observed after 
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the treatment of CsESP than CsTP, especially CsESP-6h 
treatment. These results indicated the ability of induction 
of autophagy in LX-2 cells by CsESPs was more powerful 
than CsTP.

Monitoring LX‑2 cells autophagy by western 
blotting

To further confirm the ability of CsESP-6h and CsTP to 
induce autophagy in LX-2 cells, the protein expression of 
LC3 was examined by using Western blotting. As shown in 
Fig. 3a, the ration of LC3-II/I elevated in a concentration-
dependent manner after LX-2 cells exposure to CsESP-6h 

for 6 h. Combination with CQ, which disrupts the function 
of lysosome to result in the accumulation of LC3-II, fur-
ther increased the amount of LC3-II (Fig. 3b). However, 
different concentrations of CsTP failed to elevate the ratio 
of LC3-II/I. This provided further evidence that CsESPs 
played more positive role in the induction of autophagy in 
LX-2 cells.

Monitoring LX‑2 cells activation by qPCR

After treatment with autophagy inhibitor CQ for 48 h, the 
mRNA expression levels of collagen I, collagen III and 
α-SMA in LX-2 cells were significantly decreased (p < 0.05), 
and the mRNA expressions of the three genes were signifi-
cantly increased after treatment by CQ combination with 
CsESP-6h (p < 0.05), suggesting that CsESPs-induced 
autophagy might contribute to the activation of human stel-
late cells (Fig. 4).

Discussion

Comprehensive analysis has demonstrated that autophagy 
could be triggered by bacteria, viruses [17–20]. Autophagy 
plays a double-edged sword during infection: autophagy 
involves by the formation of autophagosomes and their 
transport to lysosomes to degrade and dispose of the intra-
cellular bacteria and viruses; on the other hand, bacte-
ria and viruses combat autophagy for their survival by 
interfering with autophagy signalling [21, 22]. Autophagy 
research involving parasites especially protozoan also 
focused on host-autophagic responses to infections and 
their interaction with autophagy machinery in host cells to 
manipulate their virulence. It was reported that autophagy 
as a key process carried out during Trypanosoma cruzi 
differentiation and host cell infection [23]. Proxiredoxin 
of Entamoeba histolytica, as a critical molecule during 
the invasion of host tissues, could induce autophagy and 
cytotoxic effects in macrophages [24]. In the process of 
Leishmania infection, autophagy was inhibited at the early 
stage but was activated at later stages of infection, indi-
cating that Leishmania engaged an alternative path way 
to induce host autopahgy to optimize its survival [25]. 
These studies revealed that the important functions of 
host autophagy trigged by protozoan in the battle between 
host and parasites. Even though less autophagy studies 
about helminth infection were reported, it also manifested 
that helminth-induced autophagy contributed to their 
pathogensis. Research presented that host macrophage 
autophagy was induced by Schistosoma japonicum egg 
antigen (SEA) to limit the development of pathology 
in host liver [26]. ESPs of Angiostrongylus cantonensis 
could activate autophagy in mouse brain astrocyte cell via 

Fig. 1  MTT proliferation assay showing the effect of the CsESPs 
and CsTP on the viability and proliferation of LX-2 cells. Cells were 
grown in 96-well culture plates overnight following by incubation 
with different concentrations of CsESP-6h, CsESP-12h, CsTP (0, 
25, 50, and 100 μg/ml), respectively. At 6, 12, 24, 36, and 48 h time 
points, MTT was added to cell culture medium, and cells were cul-
tured for another 4  h followed by adding DMSO to each well. The 
absorbance at 490  nm was recorded with a microplate reader. a–c, 
showed the effect of the CsESP-6h, CsESP-12h, and CsTP on the 
viability and proliferation of LX-2 cells, respectively. Each bar repre-
sents the mean value from three experiments with standard deviation; 
*p < 0.05
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Sonic hedgehog (Shh) signaling which had a protective 
potential for astrocytes [27]. Trichinella spiralis infection 
also induced autophagy in the host muscle cells and ESPs 
inhibited autophagy of myoblasts in vitro [28]. Studying 
the mechanism of autophagy in helminth infection and its 
interaction with host can help discover new pathogenic 

mechanism and accelerate the development of effective 
prevention and control strategies.

Sustained hepatic injury such as induced by C. sinensis 
infection maybe a major driving force of fibrosis progres-
sion. In the previous study, we successfully established 
the hepatic fibrosis rat model of C. sinensis infection for 

Fig. 2  a LX-2 cells were 
transfected with mRFP-EGFP-
LC3 plasmid and then treated 
by CsESP-6h, CsESP-12h, 
CsTP and rapamycin, respec-
tively. Autophagosomes 
(yellow puncta) as well as 
autolysosomes (red puncta) 
were observed by a confocal 
fluorescent microscope (Leica, 
Germany). DAPI was used as 
a nuclear staining. Scale bar, 
25 μm. b Autophagosomes as 
well as autolysosomes in the 
LX-2 cells treated by rapamycin 
were statistically analyzed. c 
Autophagosomes as well as 
autolysosomes in the LX-2 cells 
treated by CsESP-6h, CsESP-
12h and CsTP were statistically 
analyzed respectively. 100 cells 
/ each group were imaged and 
the number of red and yellow 
puncta in each cell was quanti-
fied. **(p < 0.01)
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6 months. In the hepatic tissues from the infected rats, the 
expression of fibrosis-related protein α-SMA increased in 
parallel to the up-regulated expression of the autophagy 
marker LC3-II/I and the down-regulated expression of 
p62. These results suggested that a potential link between 
autophagy and hepatic fibrous induced by C. sinensis infec-
tion. Adult worms of C. sinensis parasitize the secondary 

hepatobiliary duct of human and live for approximate 20 
to 30 years. During the chronic infection, the adults experi-
ence a nutrient-deprived and oxygen-deficient state in the 
parasitic site, the probability of stimulation of autophagy 
exists. Moreover, the adults continuously excrete/secrete a 
complex mixture of proteins and other metabolites via the 
tegument and oral opening or excretory organs, which lead 
to hepatobiliary injury directly [29]. As the most abundant 
composition, the proteases and protein such as glutathione 
transferase, dehydrogenase, cysteine protease, basement 
membrane-specific heparan sulfate proteoglycan core pro-
tein, dynein, retinal dehydrogenase 1, and myoglobin, were 
found in the CsESP [30, 31], some of them are capable of 
potential chemical toxicity. In this study, we sought via 
cell experiment in vitro to investigate whether autophagy 
in LX-2 cells could be triggered by ESPs from C. sinensis 
and identify the possible relationship between the activated 
autophagy and activation of HSCs.

Previous studies reported that C. sinensis adult-derived 
total protein (CsTP) was involved in the pathogenesis by 
eliciting Th2 immune response [32]. It was also reported 
that most of tegument proteins of adult worms were oxi-
doreductases, hydrolases or transferases, which of them 
were predicted to be involved in liver disease [31]. Thus, 
in this study, we explored both CsESP and CsTP’s role in 
the autophagy-induced. Dual fluorescent mRFP-EGFP-LC3 
system experiment result showed that CsTP was weaker 
capable of autophagy-induced in LX-2 cells compared with 
CsESP. However, it was demonstrated by Western blotting 
that different concentration of CsTP failed to upregulate the 
ratio of LC3-II/I in LX-2 cells. Taken together, these find-
ings suggested that CsESPs could play more positive role in 
triggering autophagy of LX-2 cells. Obviously, it was due 
to the difference of the compositions between CsESP and 
CsTP. ESPs include more abundant proteases, antioxidant 
enzymes and metabolic enzyme, which lead to chemical 
stimulation to hepatic tissue. Zheng et al. reported that 267 
proteins were identified in the CsESPs after adult culture for 
0–6 h, only 103 proteins were identified in the CsESPs after 
culture for another 6 h [33]. In the present study, compared 
with CsESP-12 h, it was found that CsESP-6 h was more 
powerful to promote proliferation and induce autophagy in 
LX-2 cells with a dose-dependent effect. Obviously, it was 
due to the more secretion/excretion products of adult worms 
after culture for 0–6 h than 6–12 h, showing that the compo-
sition of CsESPs remained closer to the substance secreted/
excreted by the parasitic state of adult worms in vivo as 
culture time shortened. It was suggested that ESPs used to 
stimulate cells were harvested in vitro in as short a time as 
possible to ensure the accuracy of the results.

A key step in the fibrogenic process is the activation of 
HSCs. Parenchymal injury and the resulting inflammatory 
reactions generate signals that promote a phenotypic switch 

Fig. 3  a The expression of LC3 was detected after LX-2 cells expo-
sure to different concentration of CsESP-6h for 6 h by Western blot-
ting. b The expression of LC3 was detected after treatment of 100 µg/
ml CsESP-6 h with or without 20 μM chloroquine (CQ) for 6 h by 
Western blotting. *p < 0.05 vs control. Data represent the results of 
three independent experiments

Fig. 4  The mRNA expression of Collagen-I, Collagen-III and α-SMA 
in CsESPs-treated LX-2 cells were detected by qPCR. Cells were 
treated with 100 μg/ml CsESPs with or without 20 μM chloroquine 
(CQ) for 48  h and the mRNA levels were calculated as the fold 
change  (2−△△CT) relative to the untreated control after normalization 
to GAPDH mRNA. Values were the means ± SD of three independent 
experiments (*p < 0.05, compared with the untreated control)
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from a lipid-rich to a myofibroblastic fibrogenic phenotype 
[34, 35]. Generally, HSCs are activated to lead to a large 
amount of ECM, especially the increase of collagen-I and 
III. And induction of α-SMA is also a reliable marker of 
HSCs activation. In HSCs, autophagy displays fibrogenic 
properties via p62 loss which impairs VDR-RXR (Vitamin 
D receptor-retinoid X receptor) interaction for maintaining 
HSC in a quiescent state, and via lipophagy which allow 
lipid droplet digestion and release of ATP required to pro-
mote the activation process. In qPCR analysis, the mRNA 
expression of collagen I in the LX-2 cells was up-regulated 
after the CsESPs treatment for 48 h, whereas, the mRNA 
expression of collagen-III and α-SMA was unchanged, 
which was not completely consistent with the previous 
study that the mRNA level of the collagen-III increased 
by using RT-PCR [9]. The difference may be mainly due 
to the method of identifying mRNA level and the time of 
CsESPs harvested in vitro. The previous report revealed that 
the degree of hepatic fibrosis could be alleviated through 
inhibiting autophagy [6]. In current study, the autophagy 
inhibitor chloroquine (CQ) inhibited the mRNA expression 
of collagen-I, collagen-III and α-SMA in LX-2 cells, which 
proved that autophagy participated in HSCs activation. More 
importantly, CQ combination with CsESPs compared with 
single CQ, the elevated level of mRNA of collagen-I, colla-
gen-III and α-SMA was parallel to the elevated autophagy 
flux, indicating that CsESPs could alleviate the inhibition 
effect of autophagy inhibitor on HSCs activation. It implied 
that CsESPs could induce autophagy and then participate 
in the activation of HSCs that is the major driver hepatic 
fibrogenesis.

In conclusion, this is first study to show that CsESPs 
could induce autophagy in HSCs that might contribute 
to the activation of HSCs. It is important for elucidating 
hepatic fibrous pathogenesis caused by C. sinensis infection. 
Given an established relationship between HSCs activation 
and hepatic fibrosis, further research would focus on the 
mechanism of how C. sinensis-induced autophagy leads to 
hepatic fibrosis, which can point towards new targets for the 
treatment of the chronic liver disease.
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