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Abstract
Millets are small seeded cereal crops predominantly cultivated and consumed by resource-poor farmers in the semi-arid 
tropics of Asia and Africa. Millets possess rich nutrients and a climate resilience property when compared to the other cere-
als such as rice and wheat. Millet improvement using modern genetic and genomic tools is falling behind other cereal crops 
due to their cultivation being restricted to less developed countries. Genome editing tools have been successfully applied 
to major cereal crops and, as a result, many key traits have been introduced into rice, wheat and maize. However, genome 
editing tools have not yet been used for most millets although they possess rich nutrients. The foxtail millet is the only millet 
utilised up to now for genome editing works. Limited genomic resources and lack of efficient transformation systems may 
slow down genome editing in millets. As millets possess many important traits of agricultural importance, high resolution 
studies with genome editing tools will help to understand the specific mechanism and transfer such traits to major cereals in 
the future. This review covers the current status of genome editing studies in millets and discusses the future prospects of 
genome editing in millets to understand key traits of nutrient fortification and develop climate resilient crops in the future.
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Introduction

Millets are small-seeded cereal crops widely cultivated in 
the semi-arid tropics of Asia and Africa. Millets are key 
crops for strengthening food and nutrient security in the 
drought prone areas of these regions. The most frequently 
cultivated millets are finger millet (Eleusine coracana (L.) 
Gaertn.), foxtail millet (Setaria italica (L.) P. Beauvois), 
pearl millet (Cenchrus americanus (L.) Morrone.), kodo 
millet (Paspalum scrobiculatum L.), little millet (Panicum 
sumatrense Roth ex Roem. and Schult.), proso millet (Pani-
cum miliaceum L.), and barnyard millet (Echinochloa crus-
galli (L.) P. Beauvois). Millets have not been utilized fre-
quently for modern genetic and genomic studies since they 
are cultivated in less developed countries of Asia and Africa. 
Genome sequences of millets also have only been released 
in recent years, a few decades after the release of genome 
sequences of stable cereals like rice [1]. However, millets 
have started receiving attention in recent years, especially 

from researchers in Europe and America, due to their dense 
nutrients and climate resilient properties [2].

Genome editing has emerged as a central tool for mod-
ern plant genetic studies. The recently developed and Nobel 
Prize winning genome editing tool, clustered regularly inter-
spaced palindromic repeats (CRISPR) and CRISPR associ-
ated protein 9 (Cas9), has emerged as the most popular tool 
for genome editing in a diverse range of organisms [3–5]. 
The CRISPR/Cas system has been championed to acceler-
ate crop improvement, with an option for precision breeding 
[6–9]. Many labs around the world have quickly adopted 
the CRISPR/Cas system and successfully produced mutant 
plants and scores of reports are available on crop genome 
editing (reviewed in [10, 11]).

Millets have been generally considered to be orphan crops 
due to the lower importance they have been awarded for 
crop improvement programs in the green revolution and 
modern genetic studies. For example, genetic engineering 
and genome sequencing works are lagging far behind in 
millets when compared with other major cereals [1, 2, 12]. 
Apart from foxtail millet, other millets do not have complete 
and annotated genome sequences and this hampers modern 
genetic studies, including the application of genome editing 
in these crops. Many traits associated with climate resilience 
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and nutrient enrichment have not yet been studied in mil-
lets with high resolution molecular studies. Studying the 
molecular mechanism of abiotic stress tolerance and nutri-
ent enrichment with the help of precise genome editing will 
be helpful to understand the mechanism and transfer such 
traits to other cereals. The availability of fully annotated 
genome sequence and efficient transformation system are 
the key factors to apply the genome editing in millets. In 
this review, nutrient benefits of millets, the scope of genome 
editing in millets, the need for genome editing in millets and 
future prospects for genome editing in millets are discussed.

Nutritional importance of millets

Nutrient contents of millets are superior to main cereals 
like rice and wheat [13]. Seeds of millets are the richest 
source of several nutrients like calcium, magnesium, phos-
phorus, iron, and proteins [1, 14, 15]. Millets also have high 
amounts of essential amino acids, dietary fibers, minerals, 
and vitamins [16]. For example, proso millet is a rich source 
of protein (12.5%), barnyard millet has highest crude fiber 
(13.6%) and iron (186 mg/kg dry matter) [17]. Finger millet 
is a rich source of calcium, magnesium, and potassium [14, 
17]. It is noteworthy to mention that the calcium content of 
finger millet (344 mg) is the highest among cereals [1, 18]. 
Foxtail millet is also rich in protein (11%) and fat (4%) [19]. 
Pearl millet has high amounts of zinc, iron, and lysine [20]. 
Kodo millet is rich in magnesium (1.1 g/kg dry matter) and 
essential amino acids such as lysine, threonine, valine, and 
sulfur-containing amino acids [21]. Consumption of millets 
minimizes the risk of diseases like duodenal ulcers, anaemia, 
constipation, and atopic dermatitis [22, 23]. It has been pre-
dicted that consumption of millets reduced the incidence of 
cardiovascular complaints, diabetes, and certain cancer dis-
eases [24, 25]. Consequently, millets are considered as nutra-
cereals due to their nutrient dense seeds providing potential 
health benefits. Studying millets with genome editing tools 
will help to understand key roles of nutrient fortification.

Genome editing for agricultural 
improvement

Genome editing is a recent addition to the toolbox for plant 
breeders to develop new and improved varieties of crops. 
The commonly used genome editing tools include zinc fin-
ger nucleases (ZFNs), transcription activator like effector 
nucleases (TALENs), and the most popular, the CRISPR/
Cas system [26]. Among these three systems, CRISPR/Cas 
system has been widely adopted by many labs for efficient 
genome editing due to its simple, user friendly, and cost 
effective construct designing [27–29]. Researchers can 

choose from the wide choices of constructs available for 
academic research at Addgene, a non-profit plasmid reposi-
tory (https://​www.​addge​ne.​org/). Basic plant biotech labs 
that have expertise with basic cloning and plant transforma-
tion experiments can successfully use CRISPR/Cas system-
mediated genome editing due to its user friendly construct 
design option. This has opened a broad scope for the variety 
of genome editing works in many plant species.

Genome editing tools have been predicted to solve many 
issues of agriculture. In particular, the CRISPR-Cas9 system 
has been predicted to play a key role in imparting new traits 
in crop plants. Many excellent reviews are available on pos-
sible application of genome editing for crop improvement 
[11, 29–32]. Genome editing has been believed to benefit 
agriculture by imparting key traits including seed quality, 
drought tolerance, higher yield, disease resistance, improved 
nutrient uptake, and herbicide tolerance. For example, in 
rice, through knocking out SWEET genes that are respon-
sible for disease susceptibility, researchers imparted resist-
ance to bacterial blight [33, 34]. Improving yield is the pri-
mary objective of plant breeding, and genome editing has 
been considered to play a key role in this aim. Key genes 
responsible for yield improvement could help improve the 
yield. For example, editing genes responsible for tillering is 
believed to improve the yield of cereals [29, 31, 32, 35–37]. 
Genome editing could also be harnessed for enhancing the 
quality of seeds with lower gluten content, enriched carot-
enoid, and reduced phytic acid levels. Similarly, genome 
editing could help to overcome other stresses impacting 
crop production like drought, salinity, and cold, and could 
offer herbicide tolerance [11]. Imparting these types of novel 
traits by genome editing for enriching seed nutrient content 
with yield improvement will ensure both food and nutritional 
security.

Genome editing in major cereals

The CRISPR/Cas system has been applied to many cereal 
crops for crop improvement [7]. Many important traits have 
been imparted in cereals like rice, maize, and wheat through 
CRISPR/Cas9-mediated genome editing (Fig. 1). Genome 
editing tools have been successfully applied to many cereal 
crops and in particular scores of reports are available on 
the use of the CRISPR/Cas system (Reviewed in [7, 38, 39, 
39]). Many studies were conducted on testing the genome 
editing tools with non-functional genes in major cereals like 
rice and wheat [7]. However, a few traits have also been 
imparted by precision genome editing in rice, barley, wheat, 
and maize (reviewed in [38]). These include development 
of fungal resistance in wheat [40–42], blast resistance in 
rice [43], grain nutrient quality improvement in rice [31, 44, 
45] and maize [46], resistance to various biotic and abiotic 
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stresses in wheat [47] and rice [48–51]. Major cereals like 
rice, maize, and wheat continue to get more attention for 
genome editing for improvement of various traits.

Need for millet genome editing

Application of genome editing tools in millets is helpful to 
improve millet research in the future. Genome editing may 
help in understanding the mechanism of nutrient fortifica-
tion and climate resilience and to exchange such useful traits 
with other cereals. As discussed above, functional genomics 
studies of millets are lagging far behind when compared 
to those in main-stream cereals. However, millets possess 
superior traits to main cereals for agricultural performance 
and seed nutrient profile. Genes and QTL responsible for 
such traits need to be dissected through high resolution 
functional genomic studies with the help of genome edit-
ing tools. This will help to identify and transfer such traits 
to main-stream cereals. Millets show more plasticity in the 
field under adverse climate conditions [52]. Rice and wheat 
cannot produce good yield above 37 °C but millets like pearl 
millet can grow up to 46 °C, a very crucial trait to cope with 
drought induced by global warming [52]. When compared 
with main cereals like rice and wheat, millets are short dura-
tion crops demanding less maintenance in the field. Simi-
larly, millets require minimum water and rainfall compared 
to major cereals. These traits have not yet been dissected 
by functional genomics studies. High resolution functional 
genomics studies aided by genome editing may help to 

unravel the candidate genes responsible for these traits and 
would help to transfer such traits to main cereals. Exception-
ally higher accumulation of mineral nutrients like calcium 
(finger millet) and iron (barnyard millet) and B-vitamins in 
millet seeds need to be studied with genome editing tools 
to identify the transporters and signals responsible for the 
seed fortification. These traits could be transferred to within 
and outside the millet cereals to strengthen food security. An 
illustration on the application of various CRISPR/Cas sys-
tems for functional genomics studies and trait improvement 
in millets is included (Fig. 2).

Although millets possess climate resilient properties, 
their yield is affected by low nutrient soils since they are 
mostly cultivated under low input agriculture systems by 
resource poor farmers. For example, zinc deficiency severely 
affects the productive stage of pearl millet. It reduces the 
size of the panicle and delays the development and matura-
tion of the grain [53]. Phosphate and nitrogen deficiencies 
significantly reduce the growth and yield of foxtail millet 
[54, 55]. Particularly, phosphate deficiency also significantly 
influences the size of the panicle and reduces the grain yield 
of all millets [56]. Precision genome editing like base edit-
ing could help to improve nutrient transport and improve the 
yield of millets under low nutrient soils in semi-arid regions 
of Asia and Africa.

Current status of genome editing in millets

Among the cereal crops, most reports are available for 
genome editing in rice. This is followed by wheat, maize, 
and barley based on a recent Pubmed search. But only 
2 reports are available until now on genome editing in 
millets (Fig.  3). It may be due to lack of funding and 
the fact that millets are cultivated and consumed by less 
developed countries in Asia and Africa. It is also one of 
the reasons for delayed sequencing of millet genomes. 
Foxtail millet is the only millet which was utilized for 
genome editing studies. Foxtail millet is considered as 
a model crop due to its small genome (~ 450 mb), dip-
loid in nature and has C4 photosynthesis chemistry [57]. 
Genome sequences of two different foxtail millet geno-
types were released in 2012 and the genome is also com-
pletely annotated [58, 59]. Many genetic studies have been 
conducted in foxtail millet as it is a model C4 plant with 
a small genome. As a result, foxtail millet is the first mil-
let utilized for genome editing studies. The first genome 
editing study using CRISPR/Cas9 was reported in foxtail 
millet during 2018 by Lin et al. [60]. They have used the 
protoplasts of several monocot and dicot plants including 
foxtail millet to assess CRISPR/Cas9-mediated genome 
editing in single cells (protoplast). The phytoene desatu-
rase gene of foxtail millet was targeted by the plasmid 

Fig. 1   Application of the CRISPR/Cas9 system for imparting agro-
nomically important traits in rice, wheat, and maize
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pCAMBIA1300-35s-Cas9-OsU3-SiPDS. The targeted 
mutagenesis was detected by RFLP and sequencing [60]. 
Both deletion of bases up to 43 with insertion of single 
base were detected by sequencing results [60]. This is the 
first report on the successful application of the CRISPR/
Cas9 system in foxtail millet.

Recently, CRISPR/Cas9-mediated genome editing has 
been applied in foxtail millet for the induction of double 
haploid (DH) lines by targeting the S. italica Matrilineal 
(SiMTL) gene [61]. The exonic region of SiMTL was targeted 
with two different gRNAs and was expressed under the con-
trol of the OsU3 promoter, with Cas9 kept under the control 
of the Uq promoter of maize. Foxtail millet genotype Ci846 
was used for this study and the transformation was mediated 
by Agrobacterium. The authors reported a haploid induction 
frequency of 2.8% in the T2 progeny. It is encouraging to 
note that foxtail millet, being a model C4 crop, is utilized for 
genetic studies by genome editing. Apart from foxtail mil-
let, other millets have not yet been used for high resolution 
genetic studies by genome editing.

Future prospects of millet genome editing

Considering the geographical area of cultivation, available 
resources, and the expertise of native researchers, millet 
genome editing is expected to progress at a slow pace. Due 
to limited expertise and infrastructure among millet research 

Fig. 2   Application of CRISPR/Cas system mediated genome editing 
in millet improvement. Use of various CRISPR/Cas systems to edit 
the genomes of various millets to understand functions of genes and 
improve the millet is illustrated. A Gene knock-out studies with the 
use of the CRISPR-Cas9 system is helpful to study the functions of 
key genes involved in climate resilience and the nutrient fortifica-
tion process. B Gene knock-in studies with CRISPR-Cas9 aided by 
homologous recombination (HR) is useful to add novel genes and 

replace the defective portion of a gene to improve the performance. 
Base editing with the help of cytidine (C) and adenosine (D) base 
editors may help to change the ligand binding site residues of key 
nutrient transporters for improving nutrient transport in plants grow-
ing in low nutrient soils. E Expression of genes could be regulated at 
the transcriptional level using death Cas9 (dCas9) fused with either 
transcriptional activator or repressor to induce and down regulate 
respectively the specific genes in millets

Fig. 3   Number of articles dealing with genome editing in rice, wheat, 
maize, barley, and millets based on the search at PubMed website on 
07-04-2021 at 16.00 to 17.00 h Indian Standard time (IST)
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labs in developing countries of Asia and Africa, the reach 
of modern tools like genome editing is delayed. Among the 
available genome editing tools, the CRISPR/Cas system may 
play a key role for genome editing in millets due to it user 
friendly and cost effective construct design and tools like 
ZFN and TALEN may not be utilized for genome editing 
in the labs of less developed countries with millet research. 
Other key aspects influencing millet genome editing are dis-
cussed below.

Whole genome sequence of millet

Availability of a fully annotated genome sequence is the 
vital prerequisite for undertaking genome editing studies in 
any organism. A fully annotated whole genome sequence 
is required for the prediction of target regions and guide 
RNA (gRNA) in the CRISPR/Cas9-mediated genome edit-
ing system. For targeting individual genes, details on the 
structure of the whole gene, including intronic and exonic 
regions, are needed. Further, Cas9 from Streptococcus pyo-
genes requires “NGG” at the 3′ end of the target region [3]. 
So, mining such regions and designing gRNAs targeting the 
specific sequence demand a fully annotated whole genome 
sequence. Unfortunately, a fully annotated genome sequence 
is available only for foxtail millet as of now [2]. Only draft 
genome sequences were released for finger millet [62], pearl 
millet [63], and proso millet [64]. Fully annotated genome 
sequences are not yet available for these millets. Not even 
a draft genome sequence is reported for other millets (lit-
tle millet, barnyard millet, and kodo millet) up to now. In 
genome editing studies, the editing efficiency and type of 
editing (insertion and/or deletion) are being analyzed by 
the sequencing of target regions and sometimes by whole 
genome re-sequencing of the plants especially to detect any 
off-target effects. Whole genome re-sequencing has been 
applied in rice [65–67], sorghum [68], soybean [69], and 
Arabidopsis [70] to find off-target effects of genome-edited 
plants. Such studies could not be conducted in millets except 
for foxtail millet since it is the only millet having a com-
plete and annotated genome sequence. So, the availability of 

complete and annotated genomes of millets will help in the 
efficient application of genome editing systems in the future.

Efficient transformation and regeneration protocols

In addition to having the fully annotated genome, existence 
of an efficient system for the transformation and regeneration 
is another important prerequisite for the successful devel-
opment of mutant plants by genome editing. Generally, 
monocots are considered as recalcitrant for transformation 
and regeneration [71] studies. Thanks to the efforts made 
by labs around the world during the last two decades for the 
development of an efficient transformation system especially 
based on Agrobacterium, several efficient transformation 
works were reported for cereals [72, 73]. However, millet 
crops are lagging behind when compared with mainstream 
cereals on the transformation studies too, and only a few 
reports are available on millet transformation (Table 1) [12, 
74]. We have recently reviewed the status of millet transfor-
mation works [2].

Millets were predominantly transformed by the Agrobac-
terium-mediated system. Finger millet has several transfor-
mation reports and transgenic plants were regenerated by 
both direct [75] and indirect [76, 77] regeneration methods 
(reviewed in [2]). Following finger millet, foxtail millet has 
a few reports on transformation studies. The Agrobacte-
rium-mediated system was used frequently and it was first 
report by Yinghui et al. [78]. Many labs in China used the 
Jigu11 genotype of foxtail millet for transformation studies 
(reviewed in [2]). We have also reported a transformation 
system for the Maxima (Acc. No: Bs 3875) genotype with 
direct regeneration of transformed explants [79]. Two recent 
studies of the same period also reported the optimization 
of conditions for Agrobacterium-mediated transformation 
of foxtail millet [80, 81]. A few reports are also available 
on genetic transformation of pearl millet and this millet 
was predominately transformed by the biolistic method 
(reviewed in [74]). Embryogenic calli were mostly used as 
the explants for the transformation of pearl millet. Only one 
old report is available on the transformation of barnyard 

Table 1   Number of 
transformation studies reported 
on rice and millets

Name of the millet Number of transformation studies 
reported

References

Rice 1067 Reviewed in Fraiture et al. [85]
Finger millet 13 Reviewed in Vetriventhan et al. [2]
Pearl millet 12 Reviewed in Sood et al. [74]
Foxtail millet 10 Reviewed in Vetriventhan et al. [2]
Barnyard millet 1 Reviewed in Vetriventhan et al. [2]
Kodo millet Nil Reviewed in Vetriventhan et al. [2]
Proso millet Nil Reviewed in Vetriventhan et al. [2]
Little millet Nil Reviewed in Vetriventhan et al. [2]
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millet by the biolistic method in which the efficiencies of 
various promoters were tested for the expression of the GUS 
reporter gene [82]. Agrobacterium-mediated transformation 
of kodo millet was reported recently by Bhatt et al. [83]. 
They have optimized various parameters for the success-
ful transformation of kodo millet in this study. No report 
is available on the transformation of little millet and proso 
millet. This will hamper application of genome editing in 
these millets. Among the available transformation methods, 
the Agrobacterium-based system is expected to dominate 
millet transformation and the same could be extended to 
successful delivery of CRISPR/Cas constructs to millets. 
Biolistic system-based transformation may not be utilized 
as many millet research labs in developing countries may 
not afford this expensive system.

As a leading millet with completely annotated genome 
with application of genome editing tools, foxtail millet is 
expected to lead the genome editing studies among millets. 
To further supplement the genetic studies, a mini foxtail 
millet variety with a shorter life cycle has been developed 
recently [84]. This is named as Xiaomi, and has a point 
mutation in the Phytochrome C gene and shows a heading 
date of 39 days after sowing whereas for wild type plants it 
takes 82 days. The authors have also assembled the genome 
and transcriptome of the Xiaomi variety with establishment 
of an efficient transformation system [84]. This variety of 
foxtail millet could serve as a model system for functional 
genomics studies in other millets in future. The Xiaomi vari-
ety could be harnessed for several genome editing studies 
and genes of many other millets could be tested by compara-
tive genomics approaches in this variety to accelerate the 
gene characterization.

Conclusion

Millets are nutri-rich cereal crops supplying energy and 
nutrients to the majority of the people in the semi-arid trop-
ics of Asia and Africa. They also possess good climate resil-
ient properties like tolerance to drought and salinity. Unfor-
tunately, modern genetic research is still far from reaching 
these crops due to the fact that these are cultivated in less 
developed countries where the resource for modern molecu-
lar research is limited. Application of genome editing has 
been considered to accelerate crop breeding by helping to 
impart key traits precisely. Apart from foxtail millet, other 
millets have not yet been used for genome editing studies. 
Development of completely annotated genomes and an effi-
cient transformation system for millets may aid high resolu-
tion studies using genome editing tools like CRISPR/Cas9 
in the near future to help conserve food security in Asia and 
Africa.
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