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Abstract
Background The potential protective properties of carvacrol (CRV), which possesses various biological and pharmacologi-
cal properties, against lung toxicity caused by cadmium (Cd), a major environmental pollutant, were investigated in the 
present study.
Methods and results In the study, rats were given 25 or 50 mg/kg CRV orally 30 min after administrating 25 mg/kg cad-
mium chloride for seven days. Subsequently, the levels of 8-OHdG, MMP-2, and MMP-9, as well as markers of oxidative 
stress, inflammation, and apoptosis, were analyzed in the lung tissue of the animals. The results revealed that CRV exhibited 
antioxidant characteristics and raised SOD, CAT, GPx, and CAT levels and decreased the MDA levels induced by Cd. It 
also suppressed proinflammatory cytokines by lowering the levels of CRV NF-κB and p38 MAPK, thus exerting an anti-
inflammatory effect against Cd. It was found that the levels of Bax, Caspase-3, and cytochrome c increased by Cd were 
decreased by the application of CRV. CRV also showed an anti-apoptotic effect by increasing Bcl-2 levels. The levels of 
8-OHdG, MMP2, and MMP9, which increased with Cd administration, were observed to reduce after treatment with CRV.
Conclusions The results indicate that CRV has protective properties against Cd-induced lung toxicity.
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Introduction

Toxic metals are among the leading causes of environmen-
tal pollution, and their recognition is increasing day by day 
in terms of contributing to the pathophysiology of various 
diseases [1]. Studies have reported that toxic metals act by 
decreasing or increasing the activities of some enzymes even 
at very low concentrations. [2, 3]. Among these toxic agents, 
cadmium (Cd) is one of the best known. Cd is not only one 
of the components of cigarette smoke but also widely used 
in battery, electroplating, pigment, plastic, and fertilizer 
industries [4, 5]. Humans and animals are highly exposed 
to this highly toxic compound along with contaminated air, 

food, and water [6]. For example, in a previous study, it 
was reported that Cd inhibits the glutathione S-transferase 
enzyme in the gills of Lake Van fish and causes toxicity [7]. 
As this metal can cause serious health problems by bioac-
cumulation in the human body, it will inevitably become a 
topic of international interest [8]. There is growing evidence 
that Cd damages the liver, kidneys, respiratory system, and 
nervous system [4, 5]. For this reason, it has been added to 
the list of chemicals classified as globally hazardous by the 
International Register of Potentially Toxic Chemicals of the 
United Nations Environment Program [5].

Although the mechanism of Cd toxicity is not fully under-
stood, recent studies indicate that oxidative stress plays a 
significant role in Cd toxicity [6]. Cd binding to glutathione 
and sulfhydryl groups of proteins leads to increased reac-
tive oxygen species (ROS) and the inactivation of proteins. 
Elevated ROS has also been reported to cause DNA damage 
and activate pathways that cause cell apoptosis [8, 9]. For 
this reason, it is believed that antioxidant compounds may be 
an effective treatment for cadmium toxicity, and interest in 
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the use of naturally occurring phytochemicals is increasing 
day by day [8, 10, 11].

Carvacrol (CRV) (5-isopropyl-2-methylphenol) is a phe-
nolic monoterpene component of essential oils found in vari-
ous Lamiaceae plants [12, 13]. Previous in vitro and in vivo 
studies attributed anti-inflammatory, antioxidant, antispas-
modic, immunomodulatory, anticancer, and chemoprotective 
effects to this compound [12, 14, 15]. It has been reported 
that CRV not only increases the levels of endogenous anti-
oxidants but also protects against inflammation, which is 
the underlying mechanism of many diseases, by regulating 
the expression of genes that play an essential role in inflam-
mation [12]. Also, it was reported in a prior study that CRV 
attenuates Cd toxicity by showing anti-apoptotic properties 
in PC12 cells, but this effect of CRV has not been confirmed 
in vivo [16].

The present study investigated the potential protective 
effect of CRV against pulmonary toxicity caused by Cd. 
To uncover this, markers of oxidative stress, inflammation, 
apoptosis, and oxidative DNA damage were analyzed, as 
well as the activities of MMP-2 and MMP-9 in lung tissue.

Materials and methods

Animals used for the study and ethics committee 
approval

The study included 35 male Sprague Dawley rats weighing 
250–280 g and aged 10–12 weeks. Animals were provided by 
Atatürk University Experimental Research and Application 
Center (Erzurum, Turkey). After being randomly assigned 
into five groups in plastic cages, the rats were housed in an 
environment with 24 ± 1 °C, 45 ± 5% humidity, and a 12-h 
light/dark cycle. Animals were fed standard rodent chow and 
water ad libitum. Before the experiment, the animals were 
acclimated to the environment for one week. The study was 
conducted in accordance with the guidelines of the Com-
mittee for the Update of the Guide for the Care and Use of 
Laboratory Animals [17]. Approval was obtained for the 
study from Atatürk University Animal Experiments Ethics 
Committee (Approval No. 2018/12/217).

Experimental groups

Each experimental group consisted of 7 animals. Doses of 
CRV and Cd were determined with reference to previous 
studies by Barnwal et al. (2018) [18] and Kim et al. (2018) 
[19], respectively. CRV is available in vials dissolved in oil 
(CAS Number: 499-75-2, Sigma-Aldrich chemicals, St. 
Louis, MO, USA). Therefore, in the present study, carvac-
rol was administered orally. Experimental groups are given 
below.

1. Control group: Animals were orally given physiologi-
cal saline for seven days and 30 min later were orally 
administered corn oil.

2. CRV group: Animals were orally administered 50 mg/kg 
CRV (98% purity, Sigma-Aldrich chemicals, St. Louis, 
MO, USA) for seven days.

3. Cd group: Animals were orally administered 25 mg/
kg cadmium chloride  (CdCl2; 99.99% purity, Sigma-
Aldrich chemicals, St. Louis, MO, USA) for seven days.

4. Cd + CRV 25 group: Animals were given 25 mg/kg 
 CdCl2 orally for seven days and 25 mg/kg CRV orally 
30 min later.

5. Cd + CRV 50 group: Animals were given 25 mg/kg 
 CdCl2 orally for seven days and 50 mg/kg CRV orally 
30 min later.

On day 8 of the study (24 h after the last CRV admin-
istration), the animals were decapitated and their lung tis-
sue removed after mild anesthesia with sevoflurane. Subse-
quently, lung tissue was used for biochemical, Real-Time 
PCR, and Western blot analyses.

Preparation of tissue homogenates

Rat lung tissue was first frozen with liquid nitrogen and then 
pulverized with a homogenizer (Tissue Lyser II, Qiagen, 
Netherlands). In the second phase, the tissues were diluted 
with 1.15% potassium chloride at a ratio of 1:10 (w/v) and 
then homogenized using the same homogenizer. The super-
natant was obtained from the homogenates by centrifugation 
at the rpm and times specified in the analysis methods of 
the parameters to be measured. Since MDA is found in the 
cell membrane, SOD in the cytoplasm and CAT in peroxi-
somes, centrifugation at 3500 rpm for 15 min makes these 
substances suitable for analysis. The fact that GPx is a tetra-
meric enzyme and GSH has a tripeptide structure makes it 
difficult for these molecules to pass into the supernatant. 
Therefore, unlike the others, it should be centrifuged at 
10,000 rpm for 20 min in accordance with its methods.

Analysis of oxidant and antioxidant markers in lung 
tissue

MDA levels as oxidation markers in lung tissue were ana-
lyzed according to the Placer et al. (1966) [20] method. The 
antioxidant markers SOD, CAT, and GPx activity and GSH 
levels were analyzed using the methods Sun et al. (1988) 
[21], Aebi (1984) [22], Lawrence and Burk (1976) [23] and 
Sedlak and Lindsay (1968) [24] respectively. Total protein 
levels of lung tissue used to calculate enzymatic antioxidant 
content were determined according to the method of Lowry 
et al. (1951) [25].
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Analysis of inflammatory markers in lung tissue 
by ELISA method

Since the sensitivity of the kits used in the study was high, 
the analyzes were made using the ELISA method. For this 
purpose, powdered tissue was diluted with phosphate-buff-
ered saline (PBS) at a ratio of 1:20 (w/v) and homogenized 
with a homogenizer to analyze inflammatory markers in lung 
tissue by ELISA method. The homogenates obtained were 
centrifuged at 3500 rpm for 15 min at 4 °C. The levels of 
mitogen-activated protein kinase 14 (p38α MAPK), nuclear 
factor kappa B (NF-κB), B-cell lymphoma-3 (Bcl-3), induc-
ible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX 
-2), and prostaglandin E2 (PGE2) in the supernatant sepa-
rated after centrifugation were analyzed according to the 
manufacturer's instructions (YL Biont, Shanghai, China).

Analysis of 8‑OHdG and MPO in lung tissue by ELISA 
method

Levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and mye-
loperoxidase (MPO) in lung tissue were determined using 
commercial ELISA kits from YL Biont (Shanghai, China). 
The analyses were carried out in strict accordance with the 
manufacturer's instructions.

Analysis of apoptotic markers in lung tissue 
by ELISA method

The levels of the apoptotic markers Bcl-2-associated X pro-
tein (Bax) and caspase-3 in lung tissue were analyzed using 
the rat ELISA kit according to the manufacturer's instruc-
tions (YL Biont, Shanghai, China). At the end of the ana-
lytical process, the color intensity was measured using an 
ELISA microplate reader (Bio-Tek, Winooski, VT, USA).

RT‑PCR analysis in lung tissue

The mRNA transcript levels of tumor necrosis factor α (TNF-
α), Interleukin 1 beta (IL-1β), matrix metalloproteinase-2 

(MMP-2), and matrix metallopeptidase-9 (MMP-9), whose 
primary sequences are listed in Table 1, were analyzed in 
lung tissue through RT -PCR. For this purpose, total RNA 
was first isolated from the tissue using QIAzol Lysis Reagent 
(Qiagen, Cat: 79,306, Germany). The concentrations of the 
total RNAs obtained were measured using the NanoDrop 
instrument (BIO-TEK INSTRUMENTS EPOCH, USA), and 
the total RNAs of each sample were counterbalanced accord-
ingly. In the next step, cDNA synthesis was performed from 
the synchronized total RNAs using the iScript™ cDNA 
Synthesis Kit (BIO-RAD, United States) according to the 
manufacturer's instructions. mRNA transcript levels were 
determined on the ROTOR -GENE Q (Qiagen, Germany) 
instrument using iTaq Universal SYBR Green Supermix 
(BIORAD) in the final phase. The samples were analyzed 
in triplicate. β was used as a housekeeping gene. Relative 
mRNA transcript levels were calculated using CT values 
from the device and Livak et al.[26]'s −ΔΔCT method.

Western blot analysis in lung tissue

The lung tissues were removed and homogenized in RIPA 
lysis buffer containing protease inhibitor cocktail and PMSF. 
The samples were centrifuged, and the supernatant was col-
lected. Protein concentration was measured by BCA Protein 
Assay Kit (Rockford, IL, USA) using bovine serum albumin 
(BSA) as standard. 30 μg of protein from the supernatant 
was dissolved in Laemmli sample buffer and separated on 
10% sodium dodecyl sulphate polyacrylamide gel (SDS-
PAGE). Afterwards, transferred to polyvinylidene fluoride 
(PVDF) membranes. Blocking was performed by incubating 
membrane in 5% BSA for 1.5 h at room temperature and 
subsequently were incubated overnight at 4 °C with primary 
antibodies against cytochrome c, caspase-3, Bcl-2-associ-
ated X protein (Bax), B-cell lymphoma 2 (Bcl-2), beclin-1, 
and β-actin. After application of the primers, membranes 
were washed 5 times in PBST for 5 min and left for 1.5 h 
in the presence of goat anti-mouse IgG secondary antibody 
(1:2000 dilution, sc-2005). Protein bands were detected 
using enhanced chemiluminescence reagent Western ECL 

Table 1  Primer sequences used 
in the study

Gene Sequences (5′–3′) Length (bp) Accession no.

TNF-α F: CTC GAG TGA CAA GCC CGT AG
R: ATC TGC TGG TAC CAC CAG TT

139 NM_012675.3

IL-1β F: ATG GCA ACT GTC CCT GAA CT
R: AGT GAC ACT GCC TTC CTG AA

197 NM_031512.2

MMP2 F: CTC TAG GAG AAG GAC AAG TG
R: CTC AAA GTT GTA CGT GGT GG

158 NM_031054.2

MMP9 F: AGC TGG CAG AGG ATT ACC TG
R: ATG ATG GTG CCA CTT GAG GT

230 NM_031055.2

β-Actin F: CAG CCT TCC TTC TTG GGT ATG 
R: AGC TCA GTA ACA GTC CGC CT

360 NM_031144.3
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Substrate (Bio-Rad, Hercules, USA) and visualized with 
using ImageQuant LAS 500 (GE Healthcare Bio-Sciences 
AB, Uppsala, Sweden). Relative density of the bands was 
quantified with using Image J software (NIH, Bethesda, 
USA).

Statistical analysis

Statistical evaluation of the data obtained from biochemi-
cal, RT-PCR and western blot analyzes in the study was 
performed with one-way variance analysis (ANOVA) and 
Tukey's multiple comparison test in SPSS 20.0 program. 
Results are presented as mean ± SD. P < 0.05 was considered 
statistically significant.

Results

Effects of cadmium and carvacrol on oxidant 
and antioxidant markers in rat lung tissues

The oxidant (MDA) and antioxidant (SOD, CAT, GPx, and 
GSH) markers analyzed in lung tissue are listed in Table 2. 
According to the results, Cd inhibited the activities of enzy-
matic antioxidants such as SOD, CAT, and GPx in lung 
tissue and caused a decrease in GSH stores (p < 0.05). In 
addition, MDA levels, which are an important indicator of 
lipid peroxidation, were found to increase with Cd applica-
tion (p < 0.05). However, it was observed that the activi-
ties of SOD and GPx increased in a dose-dependent manner 
with the administration of CRV (p < 0.05). GPx activity and 
GSH levels were found to increase with CRV administration, 
but there was no significant difference between doses. Data 
obtained include that CRV causes a decrease in MDA levels 
and that this is dose-dependent (p < 0.05).

Effects of cadmium and carvacrol on inflammatory 
markers in rat lung tissue

The effects of Cd and CRV on inflammatory markers in rat 
lung tissue were determined by analysis of p38α MAPK, 

NF-κB, Bcl-3, iNOS, COX-2, and PGE2 by the ELISA 
method and TNF-α and IL-1β mRNA transcript levels by the 
RT -PCR method. ELISA results revealed that Cd increased 
the levels of p38α MAPK, NF-κB, Bcl-3, iNOS, COX-2, and 
PGE2 in lung tissue (p < 0.05). However, it was observed 
that CRV administration decreased p38α MAPK and iNOS 
levels in a dose-dependent manner (p < 0.05). In addition, 
CRV was found to cause a decrease in NF-κB, Bcl-3, COX 
-2, and PGE2 levels, (p < 0.05) but there was no statistically 
significant difference between doses. Figure 1 summarizes 
the ELISA results. It was found that the mRNA transcript 
levels of TNF-α and IL -1β increased with Cd application, 
whereas CRV exerted an anti-inflammatory effect by sup-
pressing these genes (p < 0.05) (Fig. 2).

Effects of cadmium and carvacrol on apoptotic 
markers in rat lung tissue

Apoptotic status in lung tissue was determined by ana-
lyzing caspase-3, Bax, Bcl-2, and cytochrome c levels by 
ELISA and/or Western blot method. The findings showed 
that Cd caused a significant increase in caspase-3, Bax, and 
cytochrome c levels and a decrease in Bcl-2 levels (p < 0.05). 
However, CRV showed anti-apoptotic properties by decreas-
ing caspase-3, Bax, and cytochrome c levels and increasing 
Bcl-2 levels (p < 0.05). On the other hand, ELISA results 
showed that Bax levels were not significantly different 
between the Cd + CRV 25 and Cd + CRV 50 groups, but 
the higher dose was more effective in Western blot analysis 
(p < 0.05). Similarly, it was found that the effect of 50 mg/kg 
CRV was higher on Bcl-2 and cytochrome c levels analyzed 
by Western blot (p < 0.05). Figures 3 and 4 depicts the levels 
of caspase-3, Bax, Bcl-2, and cytochrome c in lung tissue.

Effects of cadmium and carvacrol on 8‑OHdG 
and MPO levels in rat lung tissue

Based on the results shown in Fig. 5, it was found that the 
levels of 8-OHdG and MPO were increased in the lung tis-
sue of Cd-treated rats. It was observed that 8-OHdG lev-
els decreased in a dose-dependent manner in rats receiving 

Table 2  Effect of Cd and CRV 
administrations on oxidative 
stress markers

MDA malondialdehyde, GSH glutathione, SOD superoxide dismutase, GPx glutathione peroxidase, CAT  
catalase
a–e Different superscript letters in same row indicates statistical difference (p<0.05).

Parameters Control CRV Cd Cd + CRV 25 Cd + CRV 50

MDA (nmol/g tissue) 34.27 ± 2.18a 33.68 ± 1.82a 58.07 ± 2.37d 48.14 ± 1.89c 41.55 ± 2.09b

GSH (nmol/g tissue) 3.65 ± 0.49c 3.93 ± 0.26c 2.04 ± 0.12a 2.60 ± 0.15b 2.94 ± 0.13b

SOD (U/g protein) 27.02 ± 1.22d 27.56 ± 1.46d 15.29 ± 1.17a 18.13 ± 1.04b 22.55 ± 1.26c

GPx (U/g protein) 17.83 ± 0.93c 18.89 ± 0.81c 9.39 ± 0.86a 13.13 ± 1.02b 14.32 ± 1.37b

CAT (catal/g protein) 22.94 ± 1,86d 24.60 ± 1.34d 12.30 ± 0.95a 15.87 ± 0.79b 18.15 ± 0.91c
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CRV (p < 0.05). It was found that administration of CRV 
also decreased MPO levels, (p < 0.05) but there was no sig-
nificant difference between doses.

Effects of cadmium and carvacrol on MMP2 
and MMP9 mRNA transcript levels in rat lung tissue

MMP2 and MMP9 mRNA transcript levels analyzed by 
RT -PCR in lung tissue are shown in Fig. 6 Accordingly, 
Cd was found to activate MMP2 and MMP9 genes. On the 
other hand, it was observed that the application of CRV sup-
pressed MMP2 and MMP9 genes (p < 0.05).

Discussion

Because Cd has a half-life of twenty years, even small 
amounts can accumulate in tissues and cause significant 
toxic effects [27]. Tissues that suffer from toxic effects 
include many organs such as the lungs, liver, and kidneys 
[28]. On the other hand, many beneficial effects are reported 
for CRV, which has various biological characteristics [12, 
13, 29]. The present study investigated the potential protec-
tive effect of CRV against Cd-induced pulmonary toxicity 
in rats.

Several factors are known to play a role in the mechanism 
of toxicity of Cd in tissues [30]. On the other hand, although 
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Fig. 1  Results of inflammatory markers measured by ELISA method 
in lung tissues of rats after Cd and CRV administrations. A NF-κB 
levels, B MAPK14 levels, C Bcl-3 levels, D iNOS levels, E COX-2 
levels, F PGE2 levels. Values are expressed as mean ± SD. Different 
letters (a–d) on the columns show a statistical difference (p < 0.05). 

(Cd; cadmium, CRV; carvacrol, NF-κB; nuclear factor kappa B, 
MAPK14; mitogen-activated protein kinase 14, Bcl-3; B-cell lym-
phoma-3, iNOS; inducible nitric oxide synthase, COX-2; cyclooxyge-
nase-2, PGE2; prostaglandin E2)
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Cd is not a redox-reactive metal, oxidative stress is thought 
to be the basis of its toxic effects. Cd causes the deteriora-
tion of redox homeostasis by removing cations located in 
the active sites of various antioxidant enzymes. It also binds 
to the sulfhydryl groups of proteins, including antioxidant 
enzymes, thereby inhibiting them [30, 31]. Among them, 
SOD, CAT, and GPx are well-known antioxidant enzymes 
[32, 33]. In addition, Cd causes degradation of cellular 
GSH, which is an important antioxidant in the body. All this 
together causes the accumulation of reactive oxygen spe-
cies and leads to a deterioration of the balance between oxi-
dants and antioxidants [34]. In the present study, CRV was 
observed to increase the activities of antioxidant enzymes 
(SOD, CAT, and GPx), possibly by scavenging Cd-derived 
ROS. In addition, GSH, which has a sulfhydryl group in its 
structure, was found to increase its levels by protecting it 
from the effects of Cd. Previous studies have reported that 
Cd causes oxidative stress by decreasing the levels of enzy-
matic and non-enzymatic antioxidants and leading to toxic-
ity in various organs [1, 5]. On the other hand, different 

antioxidant compounds used against Cd have been reported 
to protect against toxicity by reducing oxidative stress [35, 
36]. Lipid peroxidation is one of the most critical indica-
tors of oxidative stress, and since MDA is a product of lipid 
peroxidation, it is an essential indicator for the assessment 
of the oxidative status [28]. While many factors such as obe-
sity, alcohol, smoking, stress and air pollution cause lipid 
peroxidation by increasing free oxygen radicals, antioxidant 
defense mechanisms reduce lipid peroxidation by protecting 
mammalian cells from reactive oxygen species [37, 38]. In 
our study, Cd was observed to cause lipid peroxidation and 
increase MDA levels in agreement with previous studies [39, 
40]. However, CRV was observed to protect cell membranes 
from the effects of Cd by reducing lipid peroxidation and 
lowering MDA levels.

It is known that inflammation, another mechanism for 
the progression of lung damage, plays an important role, 
and oxidative stress is one of the triggers of the inflamma-
tory process [41]. Inflammatory cytokines and chemokines 
are released by lung cells with oxidative stress [42]. NF-κB 
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is one of the main regulatory transcription factors regulat-
ing inflammatory responses and coexists with IκB in the 
cytoplasm [28]. Bcl-3, localized in the nucleus, is one of 
the common activators of transcription factors involved in 
NF-kB signaling [43]. When protein kinases phosphorylate 
IκB, NF-kB is released and thus enters the nucleus; regu-
lates proinflammatory cytokines such as TNF-α, IL -1β, 
iNOS, and COX -2 [42, 44, 45]. Although PGE-2 plays a 
vital role in the gastrointestinal tract, it has a proinflamma-
tory effect at high concentrations. p38 MAPK is one of the 
NF-kB regulators [46]. Cd has been reported to activate the 
MAPK pathway through the production of ROS [47]. In the 
present study, Cd was observed to induce p38 MAPK activ-
ity and increase Bcl-3 levels depending on ROS production. 
Thus, it is thought to activate TNF-α and IL -1β genes by 
causing NF-kB activation and increasing iNOS and COX 
-2 levels. Cd also reduced PGE-2 levels. In previous stud-
ies, it has been reported that Cd triggers the inflammatory 
process by stimulating pro-inflammatory cytokines [27, 48]. 
However, CRV is thought to attenuate Cd-induced oxidative 
stress through its antioxidant properties, thereby reducing 
p38 MAPK and NF-kB activation. CRV was also found to 
reduce levels of Bcl-3, TNF-α, IL -1β, iNOS, COX-2, and 
PGE-2, as well as transcript levels of TNF-α and IL -1β.

MPO is a chemokine released by activated neutrophils 
and macrophages. MPO is known to have potent pro-oxidant 
and proinflammatory properties [49]. In the present study, 
an increase in MPO activity was observed in the lung tissue 
of rats administered Cd. In a previous study, it was reported 
that Cd caused a significant increase in MPO levels [49]. 
However, it was observed that MPO activity decreased with 
the application of CRV.

Measurement of 8-OHdG level is often used to determine 
DNA damage, a macromolecule that is extremely sensitive 
to oxidative stress. ROS makes a significant contribution to 
the formation of 8-OHdG [50]. Cd was reported to increase 
8-OHdG levels by causing endogenous oxidative DNA dam-
age in a previous study [31]. In the present study, Cd was 
found to increase 8-OHdG levels by causing oxidative DNA 
damage in DNA. However, it was observed that CRV, which 
alleviates oxidative stress by its ROS scavenging property, 
reduced Cd-induced 8-OHdG levels in lung tissue.

Increasing evidence points to a close relationship between 
oxidative stress, inflammation, and apoptosis [48]. In the 
mechanism associated with oxidative stress, Cd decreases 
mitochondrial membrane potential by disrupting calcium 
homeostasis. Thus, it causes the release of cytochrome c and 
subsequently caspase-dependent apoptosis [27, 51]. Cas-
pase-3 and Bax are pro-apoptotic proteins, whereas Bcl-2 is 
anti-apoptotic. Bcl-2 inhibits the release of cytochrome c by 
binding to the outer membrane of mitochondria and thus has 
an anti-apoptotic function. A previous study also reported 
that NF-kB promotes apoptosis by activating caspase-3 and 

downregulating Bcl-2 [49]. Pro-inflammatory cytokines 
have been shown to contribute to the apoptotic process by 
activating the caspase family of proteases [52]. A previ-
ous study reported that administration of CdCl2 increased 
caspase-3 and Bax levels in cortical tissues and downregu-
lated Bcl-2 levels, triggering the apoptotic process [51]. Cd 
was observed to increase cytochrome c levels, causing cas-
pase-3 activation in the presented study. In addition, Cd was 
observed to induce apoptosis in lung tissue by causing an 
increase in Bax levels and a decrease in Bcl-2 levels. On the 
other hand, it was found that the levels of cytochrome c, cas-
pase-3, and Bax decreased in the lung tissues of rats treated 
with CRV, whereas Bcl-2 levels increased and protected the 
lungs from apoptosis.

MMPs are proteolytic enzymes known to play a role in 
cell migration and tissue remodeling [53]. Among MMPs, 
MMP2 and MMP9 contribute to tissue remodeling by play-
ing a role in the degradation of collagen and elastase in lung 
tissue [54]. Recent studies show that ROS, which is derived 
from NADPH oxidase, can cause MMP activation [55]. It is 
believed that lung tissue can be protected from inflammation 
and tissue remodeling by inhibiting MMP activities [53]. A 
previous study found increased expression of MMP-2 and 
MMP-9 in arteries of mice exposed to Cd [55]. MMP-2 and 
MMP-9 have also been shown to be upregulated in patients 
with acute lung inflammation [56, 57]. In the present study, 
a remarkable increase in MMP-2 and MMP-9 mRNA tran-
script levels was observed in the lung tissue of rats exposed 
to Cd. However, CRV appears to protect against possible 
lung tissue remodeling by Cd by suppressing the expression 
of MMP2 and MMP9.

High-performance liquid chromatography (HPLC) ana-
lyzes were not performed to detect the accumulation of Cd 
in the lung tissue. The protective effect of carvacrol against 
cadmium-induced lung toxicity was analyzed only through 
oxidative stress, inflammation, apoptosis, oxidative DNA 
damage and metalloproteinases. This situation constitutes 
the limitation of the present study.

Conclusion

Taken together, it was found that acute Cd exposure mainly 
caused oxidative stress in lung tissue and accordingly 
induced oxidative DNA damage, inflammation, apoptosis, 
and MMPs. However, it was concluded that CRV could pro-
tect the lung by suppressing Cd-induced oxidative stress, 
inflammation, apoptosis, oxidative DNA damage, and MMPs 
by exhibiting antioxidant properties. The mechanisms that 
occur with Cd and CRV administration are presented in the 
graphical abstract in Fig. 7.
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