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Abstract
GTPase activating proteins (GAPs) were initially considered as the inhibitors of cell signaling pathways because of their 
nature to activate the intrinsic GTPase activity of the RhoGTPases. But recent studies of dysregulated GAPs in many can-
cers such as glioblastoma, colorectal cancer, breast cancer, and renal cancer have elucidated the important roles of GAPs in 
carcinogenesis and GAPs have been shown to perform multiple nonconventional functions in different contexts. We have 
discussed the recent developments in the roles played by different types of srGAPs (SLIT-ROBO Rho GTPase-activating 
proteins) in cancer.

Keywords GAPs · RhoGTPases · srGAPs · Cancer · Rho-GDP · Rho-GTP

Introduction

RhoGTPases (Rho G-proteins) are regulated by various fac-
tors and alternate between GTP-bound active state and GDP-
bound inactive state. Rho family of small GTPases consists 
of 20 proteins which can be classified into subfamilies such 
as Rho (RhoA, RhoB, and RhoC), Rac (RhoG, Rac1, Rac2, 
and Rac3), and Cdc42 and some of the less characterized 
members are Rnd, RhoD, RhoBTB, RhoH, and RhoE [1]. 
RhoGAPs (Rho GTPase activating proteins) increase the 
slow intrinsic GTPase activity of RhoGTPases leading to the 
hydrolysis of GTP and inactivation of the pathway. There are 
more than 70 known RhoGAPs so far identified in eukary-
otes and based on their homology of RhoGAP domains they 
have been further classified into subfamilies [2]. RhoGT-
Pases are involved in the regulation of fundamental biologi-
cal processes such as cell cycle progression, cell dynamics, 
intracellular membrane trafficking, cell growth, gene tran-
scription, and apoptosis. RhoGTPases are also involved in 
gastrointestinal diseases [3] and regulate Wnt signaling in 
colorectal cancer [4, 5]. RhoGTPases couple environment 

to intracellular cell signaling pathways and the GDP-GTP 
cycle of RhoGTPases is controlled majorly by three classes 
of proteins (shown in Fig. 1).

(1) GEFs (Guanine nucleotide exchange factor)—GEFs 
activate the Rho GTPase activity by replacing GDP for 
GTP. Some GEFs can activate multiple Rho GTPases 
but others are GTPase specific. GEFs are recruited 
by different adaptor proteins under the influence of 
upstream cell signaling and they interact with multiple 
effector proteins by their specific protein domains [6].

(2) GAPs (GTPase activating proteins)—GAP proteins 
enhance the intrinsic GTPase activity of the Rho-
GTPases that results in the inactivation of G proteins 
leading to termination of the cell signaling. GAPs have 
a conserved domain that changes the conformation of 
GTP-bound Rho proteins to orient the GTP for a bet-
ter nucleophilic attack by water. GAPs also induce a 
GDP-like charge distribution. GAPs are generally very 
specific for their substrate Rho GTPases [7].

(3) GDIs (Guanine nucleotide dissociation inhibitor)—
GDIs are a family of small regulatory proteins that bind 
to GDP-bound Rho GTPases and prevent the exchange 
of GDP with GTP. They also prevent the localization of 
Rho GTPases to the plasma membrane. The inhibitory 
nature of GDIs can be removed by GDI displacement 
factors [8].
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Non‑conventional roles of GAPs

GAPs were initially considered as signal terminators but 
they were later discovered to have a role in sensing the 
external cues and in Rho mediated signaling pathways. 
Later, they were found to have context-dependent func-
tions that were independent of cell signaling pathways. 
Rac-GAPs were expected to act as a tumor suppressor 
as they induce the Rac mediated GTP hydrolysis but 
in-vivo studies could barely prove their tumor suppres-
sor roles. Rac-GAPs have also been unexpectedly shown 
to act as an oncogene in certain types of cancers. The 
GAP proteins negatively regulate Rac mediated cell cycle 
and migration but the effects are variable depending on 
the epithelial or mesenchymal nature of the cancer cells. 
β2 chimaerin acts as a tumor inducer as well as a tumor 
suppressor depending on the context and cancer types 
[9, 10]. SrGAP2 and SrGAP3 are suppressed in human 
osteosarcoma and invasive ductal breast carcinoma hint-
ing towards a tumor suppressor role of these proteins but 
the downregulation of SrGAP2 leads to more aggressive 
cancer by inducing cell migration while downregulation of 
srGAP3 leads to Rac1 dependent, anchorage independent 
cell proliferation [11, 12]. FilGAP (ArhGAP, a Rac-GAP) 
is suppressed in renal tumors and it is correlated with poor 
patient survival. The overexpression of ArhGAP24 inhibits 
G1/S cell cycle transition, reduces invasion, and induces 
apoptosis in renal cell cancer [13]. In breast cancer, Arh-
GAP24 has pro-metastatic as well as anti-metastatic roles 
[14, 15]. RASAL2 mediated inhibition of ArhGAP24 is 
shown to induce invasion by increased Rac activity and 
high RASAL2 is correlated with poor outcomes in triple-
negative breast cancer patients [16, 17]. The complexity 
of Rac-GAP function is also revealed by a tumorigenic 
function of RacGAP1 (MgcRacGAP) as its expression 
is directly linked to the aggressiveness of human cancer 
cells [18]. It has been recently shown to act as a driver for 
metastasis in uterine carcinosarcoma [19]. Overexpression 

of Rac/Cdc42 GAP CdGAP is correlated with poor prog-
nosis in breast cancer and it is highly expressed in basal 
breast cancer subtypes [20]. CdGAP is important for TGFβ 
and Neu/ErbB2 regulated cell migration and invasion inde-
pendent of GAP activity [21]. CdGAP forms a complex 
with Zeb2 and represses E cadherin leading to enhanced 
epithelial-mesenchymal transition [22]. In another cap-
tivating example, overexpression of P190B RhoGAP in 
the mammary gland leads to Rac1 activation and erbB2 
mediated tumor growth and metastasis [23]. ARHGAP4, 
a Rho-GAP, depletion leads to increased cell prolifera-
tion and migration, and Septin 9 acts as a negative regula-
tor of ARHGAP4 [24]. The tumor-promoting activity of 
GAP can be considered as independent of enhancing the 
GTPase activity of Rac and these GAPs can have impor-
tant non-conventional roles to play in different contexts 
[25]. IQGAP acts as a scaffolding protein to assemble the 
GTPases, GEFs, and effector proteins in a multistep pro-
cess, and the binding of IQGAP1 with Rac-GEF Tiam1 
and Rac 1 to activate Rac1 is a well-studied example [26]. 
The overexpression of Rac-GAP β2-chimaerin in breast 
cancer epithelial cells leads to the reduction of E-cadherin 
and hence induces the detachment of cell–cell contacts. 
In MMTV-Neu/ErbB2 mice, inhibition of β2-chimaerin 
leads to accelerated cancer onset but a delayed tumor pro-
gression. In Her2 positive breast cancer, β2-chimaerin and 
E-cadherin gene expressions are inversely related and the 
patients having a lower expression of β2-chimaerin have 
lower relapse-free survival but cancer metastasis develops 
at similar times. Hence, in-vivo experiments support the 
dual function of β2-chimaerin as it suppresses the tumor 
initiation but at the same time also supports the progres-
sion of the tumor [27]. Suppression of RhoA-GAP, DLC1 
induces tumor growth, and RhoGAPs ARHGAP11A and 
RACGAP1 are highly expressed in the basal-like subtype 
of breast cancer. In contrast to DLC1, both of these Rho 
GAPs behave as an inducer of cancer rather than a tumor 
inhibitor. Epigenetic regulation of ARHGAP28 increases 
the Rho activity in highly metastatic colon cancer cells 
[28, 29]. Different RhoGAPs play unique and context-
dependent roles based on their spatial position, regulation, 
and cancer subtypes [30].

RhoGAPs are regulated by lipids, phosphorylation, pro-
tein degradation, and protein–protein interactions and they 
are involved in multiple biological and physiological func-
tions such as cell differentiation, endocytosis, migration, 
exocytosis, cytokinesis, tumor suppression, angiogenesis, 
and neuronal morphogenesis. Dysregulation of genes encod-
ing RhoGAPs may lead to the development of diseases such 
as cancer, Bardet-Biedl syndrome, MLS, and X-linked men-
tal retardation. More than 70 RhoGAP are known across 
yeast to humans and the human genome is known to encode 
59–70 proteins having RhoGAP domain. There are 20 

Fig. 1  Rho-GDP (inactive)-Rho-GTP (active) cycling mediated by 
GEF, GAP, and GDI
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different genes known to encode for RhoGAPs domain con-
taining proteins. There are 22 mammalian genes that encode 
Rho proteins, and 5 Rho proteins are identified in yeast, ten 
in worms, and 11 in fly genomes. The number of RhoGAPs 
is 2–3 times higher than the number of Rho GTPases. Some 
GAPs display broad specificity, while others are specific to 
a single Rho GTPase. For some of the GAPs, there are also 
differences in in-vitro and in-vivo specificity.

srGAPs and their cellular functions

RhoGAP family proteins, srGAP1 (Slit-Robo GAP1), 
srGAP2, srGAP3, and p115 contain N-terminal FCH (Fes/
CIP4 (Cdc42 interacting protein4) homology) domain, 
a central RhoGAPs domain, and an SH3 domain in their 
highly conserved structures. srGAP1 protein is encoded by 
the SRGAP1 gene in humans. srGAP1 is known to be active 
in-vivo on Cdc42 and RhoA proteins while srGAP3 is pri-
marily known to be active in-vitro on Rac1 and Cdc42. P115 
causes the loss of stress fibers and downregulates RhoA. 
p115 binds with MEKK1 and provides a link between 
MEKK signaling and cytoskeleton maintenance inside 
the cell. srGAP1 interacts with Slit-Robo receptor protein 
through its SH3 domain. The contractile adherens junctions 
connect the cells of epithelial tissues to form a monolayer 
and the contractile force is more focused on E-cadherin-
based adherens junction called zonula adherens. The inter-
action between actomyosin and zonula adherens regulates 
the cell–cell rearrangement during the process of morpho-
genesis. The scaffold protein cortactin and cellular signals 
such as the RhoA pathway regulates the assembly of F-actin 
and non-muscle Myosin II at the contractile adherens junc-
tion. The dephosphorylation of tyrosine residues of cortactin 
induces the recruitment of rho antagonist srGAP1 at zonula 
adherens leading to downregulation of RhoA signaling and 
contractibility. srGAP1 is present in a higher amount in 
sub-confluent epithelial cells adherens junction compared 
to confluent culture. srGAP1 RNAi is shown to restores the 
RhoA signaling and contractility in sub-confluent cell cul-
ture conditions [31]. srGAP1 has also been shown to act as 
a podocyte specific RhoGAP and it prevents the podocyte 
foot process effacement. srGAP1 ensures spatial restriction 
of the Rho GTPase protein activity of RAC1 and maintains 
morphologic plasticity in pathological conditions [32].

srGAPs and cancer

srGAP1 is involved in papillary thyroid carcinoma suscepti-
bility. Linkage analysis and association studies had identified 
the SRGAP1 gene as a linkage peak candidate gene [33]. 
Slit2-Robo1 has been shown to inhibit the cell migration 

in colorectal cancer and its downstream molecule srGAP1 
mediates the Slit2 anti-migration function through the inhi-
bition of Cdc42. srGAP1 is remarkably low in colorectal 
cancer tissues and its diminished expression is correlated 
with high TNM stage, lymphatic invasion, poor survival, 
and poor differentiation [34]. SRGAP1 is shown to be highly 
expressed in gastric cancer cell lines and its knockdown 
inhibits cell proliferation, reduces colony formation, and 
suppresses cell invasion and migration. SRGAP1 knock-
down was also shown to inhibit the Wnt signaling path-
way and it was directly targeted by tumor suppressor miR-
NAs, miR-340 and miR-124. miR-340 and SRGAP1 were 
inversely correlated in samples of primary gastric cancer and 
overexpression of SRGAP1 restored the anticancer effects 
of miR-340 [35]. The expression of srGAP1 and srGAP2 
is increased in hepatocellular carcinoma (HCC) relative to 
normal tissues as observed in Oncomine and TCGA data-
sets and srGAP2 is highly expressed at mRNA and protein 
levels. SRGAP2 level has also been found to be associated 
with HCC stages. srGAP2 has also been linked to cellular 
metabolic signaling [36]. srGAP3 has been shown to control 
the cytoskeleton (actin and microtubule) dynamics through 
downregulation of Rac. Depletion of srGAP3 by RNAi 
mediated inhibition leads to anchorage independent and Rac 
dependent growth of partially transformed human mammary 
epithelial cells and the expression of srGAP3 is found to 
be lower in most of the breast cancer cell lines. srGAP3 
might be playing a tumor suppressor role through inhibition 
of Rac1. TET1 positively regulates srGAP3 and srGAP3 is 
needed for TET-mediated neuronal differentiation of Neu-
ro2a cells. This link can be a useful target in neuroblastoma 
management [37]. The fusion of SRGAP3 and RAF1 genes 
is involved in posterior fossa pilocytic astrocytomas [38]. 
srGAP3 is involved in radiotherapy induced radio-resistance 
in murine squamous cell carcinoma [39]. The fusion of the 
SRGAP3-RAF1 genes is shown to activate the MAPK sign-
aling pathway and phosphoinositide-3 kinase/mammalian 
target of rapamycin (PI3K/mTOR) signaling pathways in 
pediatric low grade gliomas [40].

srGAP2 have a metastasis suppressor role in osteosar-
coma as evident from a study in murine osteosarcoma cell 
lines K12 and K7M2s. In early stage recurrence of triple-
negative breast cancer cell adhesion/motility related gene 
SRGAP2 has been shown as one of the upregulated genes 
[41]. Neural stem cells renewal and differentiation are 
tightly regulated by SRGAP2 and FAM72 master genes 
and their dysregulation might lead to the transformation of 
cancer stem cells into glioblastoma multiforme [42]. The 
SNP (rs2580520) which is located at a predicted enhancer 
region of the SRGAP2 gene is frequently associated with 
a highly increased chance of breast cancer in Chinese 
women as observed in a study of recessive genetic model 
[43]. srGAP1 is downregulated in U87-IM3 and U251-IM3 
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glioblastoma multiforme cells and miR145 is shown to 
target and downregulate the srGAP1 [44]. miR-145 acts 
as a tumor suppressor by targeting Sox9 and adducin 3 
in human glioma cells [45]. miR-145 induces invasion in 
glioblastoma multiforme and enhances the chemosensi-
tivity of glioblastoma stem cells to demethoxycurucumin 
[46]. srGAP1 is shown to have a higher expression in pros-
tate cancer cell lines that are castration-resistant while its 
expression is very low in androgen-sensitive prostate as 
well as normal prostate epithelial cells. srGAP1 is rela-
tively overexpressed in castration-resistant prostate can-
cer tissues and androgen-sensitive LNCaP cells under 
androgen deprivation or Wnt stimulated condition show 
induced expression of srGAP1 [47]. srGAP2 localizes at 
the protrusions of the plasma membrane and cytoplasm 
and their knockdown leads to decreased cell–cell adhe-
sion and increased cell migration but the effect on cell 
proliferation is negligible. Protein arginine methyltrans-
ferase 5 binds to the N terminal of srGAP2 and methylates 
Arg-927 and hence plays an active role in cell migration 
and dissemination through regulation of membrane protru-
sion [48]. The methylation mutant srGAP2 can’t localize 
to the plasma membrane and disturbs the F-BAR domain-
mediated homodimerization of the srGAP2 and hence the 
arginine methylation can be involved in cell spreading and 
migration mediated by cell protrusions.

Conclusion

srGAPs play many important nonconventional roles espe-
cially in carcinogenesis and abnormal cellular pathology. 
The functions of srGAPs can be context-dependent and 
they might act as a tumor suppressor or oncogene depend-
ing on the upstream or downstream pathways and various 
regulatory factors that interact with them. Novel srGAP 
target molecules and their interacting partners are get-
ting explored and many surprising and unexpected roles 
of srGAPs have been revealed. Elucidating the detailed 
mechanism and functions of srGAPs in cancer can provide 
novel target molecules for the treatment of advanced and 
metastatic cancers in the future.
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