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Abstract
Background  Recent investigations suggested that deregulated levels of Circular RNAs (circRNAs) could be associated 
with type 2 diabetes mellitus (T2DM) pathogenesis. Accordingly, this study aimed to determine the expression levels of 
circulating CircHIPK3, CDR1as and their correlation with biochemical parameters in patients with T2DM, pre-diabetes 
and control subjects.
Methods and results  The expression of circRNAs in peripheral blood was determined using QRT-PCR in 70 patients 
with T2DM, 60 pre-diabetes and in 69 age and sex matched healthy controls. Moreover, bioinformatics tools were applied 
to explore and predict the potential interactions between circRNAs and other non-coding RNAs (ncRNAs). Our analysis 
revealed that the expression level of CircHIPK3 was significantly elevated in T2DM patients compared to healthy partici-
pants (P < 0.001) and pre-diabetes subjects (P = 0.018). In addition, ROC analysis suggested that at the cutoff value of 0.24 
and the sensitivity and specificity of 50% and 88.4%, respectively, CircHIPK3 could distinguish between T2DM patients 
and control subjects. Furthermore, it was observed that the expression level of CDR1as is higher in pre-diabetic individuals 
than healthy individuals (P = 0.004). Finally, Spearman correlation analysis showed that there was a significant correlation 
between CircHIPK3 and CDR1as expression levels and clinical and anthropometrical parameters such as BMI, systolic and 
diastolic blood pressure, HbA1c and fasting blood glucose (P < 0.005).
Conclusions  The data of this study provided evidence that the expression levels of CircHIPK3, CDR1as increased in T2DM 
and pre-diabetes subjects, respectively.
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Introduction

Diabetes mellitus (DM) is a major global health problem 
resulting from the interplay of genetic, environmental and 
epigenetic factors [1]. The data from the International Dia-
betes Federation (IDF) revealed that, nearly 463 million 
adults were living with diabetes in 2019 worldwide, and 

this number is expected to increase to 700 million worldwide 
by 2045 [2].

It has been demonstrated that the human genome can be 
transcribed widely into a large number of non-coding RNAs 
(ncRNAs), which are closely related to the incidence and 
development of human disorders such as type 2 diabetes 
mellitus (T2DM) [3]. One of the most recently discovered 
type of ncRNAs is circular RNAs (circRNAs) [4]. CircR-
NAs are single-stranded molecules deferentially generated 
by the non-sequential back-splicing of pre-mRNAs or lariat 
introns and exon-skipping events [5, 6]. Because of the 
lack of 5′ or 3′ ends, circRNA possesses marked stability 
in body fluids and they could act as an ideal class of blood-
based biomarkers [7]. It has been reported that circRNAs 
play essential roles in a wide range of biological processes 
that are included: regulation of gene splicing/transcription, 
microRNA (miRNA) and protein sponging, and modulation 
of protein translation and protein function [8, 9].
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Several lines of evidence suggested that deregulated lev-
els of circRNAs could be involved in human diseases [10, 
11]. In this regards, previous studies shown that circRNAs 
are involved in β-cell function and T2DM related complica-
tions [12]. Huanyu Xu et al. found that the over-expression 
of CDR1as could improve insulin secretion by sponging 
miR-7 [13]. CircHIPK3 found to regulate the expression of 
several key β-cell genes involved in insulin signaling path-
way [14]. This circRNAs could also affect hyperglycemia 
and insulin resistance by sponging some miRNAs such as 
miR-192-5p and modulation of FOXO1 expression [15]. 
Furthermore, it has been reported that CircHIPK3 is highly 
abundant in diabetic neuropathic pain patients [16] and its 
silencing could alleviate retinal vascular disorders [16].

To date, only few studies have investigated the circulat-
ing level of CircHIPK3, and CDR1as in T2DM patients. 
Accordingly, in this study, we determined and compared the 
expression levels of CircHIPK3, and CDR1as in peripheral 
blood samples of T2DM patients, pre-diabetes and control 
subjects. Moreover, we evaluated the correlation of these 
circRNAs with biochemical and clinical parameters.

Material and methods

Study subjects

A total of 199 age and sex-matched subjects including 
70 patients with T2DM, 60 pre-diabetes subjects, and 69 
healthy volunteers were included in this case–control study. 
The control group was chosen among the healthy volun-
teers who had a fasting blood sugar (FBS) level of < 100 mg/
dL or hemoglobin A1c (HbA1c) < 5.7% and no history of 
diabetes. Patients were diagnosed according to the Stand-
ards of the American Diabetes Association criteria for the 
diagnosis of diabetes. Accordingly, cases have either of the 
following criteria were diagnosed as having T2DM: FBS 
level of 126 mg/dL or higher; 2-h plasma glucose (2-h PG) 
level of 200 mg/dL or higher or HbA1c level of 6.5% or 
higher. Moreover, patients with FBS 100–125 mg/dL, 2-h 
PG 140–199 mg/dL or an HbA1c level 5.7–6.4% diagnosed 
as pre-diabetes. Subjects with liver or kidney dysfunction, 
inflammatory diseases, malignancies, autoimmune diseases 
and any endocrine diseases were excluded.

The study was approved by the Yasuj University of Medi-
cal Sciences Ethics Committee (IR.YUMS.REC.1397.153) 
and performed in compliance with the Helsinki declaration. 
Moreover, the informed consent was obtained from all sub-
jects before enrolling in the study. 

Anthropometrical and biochemical measurements

The demographic characteristics of the study population 
were collected by an interviewer-administered question-
naire and from medical records. Anthropometric param-
eters were measured by a nutritionist using standardized 
techniques. Estimation of body mass index (BMI) was 
done by dividing body weight in kilograms by height in 
square meters. Biochemical parameters including, FBS, 
HbA1c%, total cholesterol (TC), triglycerides (TG), high 
density lipoprotein cholesterol (HDL-c) and low density 
lipoprotein cholesterol (LDL-c) levels were measured 
using the routine laboratory methods. In addition, serum 
insulin levels were measured by enzyme-linked immune-
sorbent assay. Insulin resistance was assessed by the use 
of homeostasis model assessment of insulin resistance 
(HOMA-IR) equation.

Total RNA extraction and cDNA synthesis

Whole blood samples were collected from participants 
after an overnight fasting in EDTA-containing tubes. 
Total RNA was isolated from the peripheral blood using a 
miRNeasy Mini kit (Qiagen, Valencia, CA, USA) accord-
ing to the manufacturer’s instructions. The purity and 
concentration of the total RNA were evaluated using a 
NanoDrop Lite spectrophotometer (Termo Scientifc). Sub-
sequently, total RNA digested with RNase R to remove 
linear RNAs and enrich circRNAs. RNA was reverse-
transcribed into cDNA using Primescript RT reagent kit 
(TaKaRa, Japan) and primed with random primers.

Quantitative reverse transcription‑polymerase 
chain reaction (qRT‑PCR)

For quantification, real-time PCR analysis was performed 
using the Applied Biosystems StepOnePlus Real-Time 
PCR System and SYBR Premix Ex TaqTM II (Takara, 
Japan). qRT-PCR was done using forward primer 5′-TGG​
AGA​CTG​GGG​GAA​GAT​GA-3′ and reverse primer 
5′-CAC​ACT​AAC​TGG​CTG​AGG​GG-3′ for CircHIPK3, 
and forward primer 5′-TCT​GCT​CGT​CTT​CCA​ACA​TC-3′ 
and reverse primer 5′-AGA​TCA​GCA​CAC​TGG​AGA​CG-3′ 
for CDR1as. All the melting curves contain single peaks, 
indicating specific PCR amplification. Moreover, the PCR 
product size was tested by agarose gel electrophoresis. 
Furthermore, PCR efficiency was evaluated by LinReg-
PCR software. Finally, the relative expression of circRNAs 
was calculated using the 2−ΔCt method and normalized 
using the GAPDH as the internal control.
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Functional in‑silico analysis

CircRNAs plays important regulatory roles in T2DM patho-
genesis by interacting with other ncRNAs such as miRNAs 
(miRNA sponging). Moreover, they have several binding 
sites for RNA-binding proteins (RBPs). Therefore, to iden-
tify the miRNAs that bind to circRNAs, we performed a 
circRNA-miRNA interaction network prediction on circin-
teractome database [available on: https://​circi​ntera​ctome.​nia.​
nih.​gov/] [17]. In addition, the circRNA-RBP interaction 
was predicted with CircFunBase database (available on: 
http://​bis.​zju.​edu.​cn/​CircF​unBase/) [18]. Cytoscape (avail-
able on: http://​www.​cytos​cape.​org/) was applied to build a 
circRNA–miRNA–RBP interaction network.

Statistical analysis

All statistical analysis was performed by SPSS Statistical 
Software Package (version 20.0). The assessment of normal-
ity performed by the Kolmogorov–Smirnov test. The com-
parisons of the circRNA expression levels between groups 
calculated by one-way analysis of variance (ANOVA) for 
the normally distributed data or Kruskal–Wallis test for the 
nonparametric data. Pearson’s and Spearman’s correlation 
analysis carried out to determine the correlation between the 
expression levels of circRNAs and parametric and nonpara-
metric variables, respectively. P value < 0.05 was considered 
to be statistically significant.

A receiver operating characteristic (ROC) curve provided 
by MedCalc software was used to assess the feasibility of 
using circRNAs as a diagnostic marker for the T2DM. The 

best sensitivity/specificity pair was selected based on the 
maximum Youden Index.

Results

Characteristics of the study population

The clinical and biochemical characteristics of study sub-
jects (n = 199) are presented in Table  1. There was no 
significant difference between age (P = 0.562) and gender 
(P = 0.562) among the three studied groups. Our results 
showed that T2DM patients had significantly higher values 
for FBS (P = 0.000), HbA1c (P = 0.000), insulin (P = 0.011), 
HOMA-IR (P = 0.000), systolic blood pressure (P = 0.000), 
diastolic blood pressure (P = 0.015), BMI (P = 0.00), total 
cholesterol (P = 0.019) and LDL-c (P = 0.043) levels than 
other groups. We did not observe significant differences 
between groups for TG (P = 0.46), HDL-c (P = 0.33) levels.

Comparison of circulating circRNA levels 
between groups

Our analysis revealed that the expression level of CircHIPK3 
was significantly elevated in T2DM patients compared to 
healthy participants (P < 0.001). In addition, the circulat-
ing level of this circRNA was significantly increased in 
T2DM patients than that in pre-diabetes subjects (P = 0.0180 
(Fig. 1A). For further analysis, the ROC curve was applied 
to evaluate the diagnostic values of CircHIPK3. ROC analy-
sis showed that at the cutoff value of 0.24 and the sensitivity 
and specificity of 50% and 88.4%, respectively, CircHIPK3 

Table 1   Demographic and clinical characteristics of the study population

Data are expressed as mean ± standard deviation or median (interquartile range) for normally distributed and for the nonparametric data respec-
tively

Parameter Groups P value

T2DM patients (n = 70) Pre-diabetes (n = 60) Control (n = 69)

Gender (male/female) (34/36) (28/32) (36/33) 0.251
Age (years) 52.7 ± 9.68 54 ± 8.71 55.75 ± 8.27 0.562
Body mass index (kg/m2) 29.31 ± 4.04 25.11 ± 3.2 25.97 ± 2.72 0.000
Systolic blood pressure (mmHg) 127 (120–140) 120 (110–130) 110 (99–120) 0.000
Diastolic blood pressure (mmHg) 80 (80–90) 80 (70–90) 75 (70–86) 0.015
LDL-c (mg/dL) 84 (74–100) 84 (67–99) 79.5 (59–91) 0.043
HDL-c (mg/dL) 41 (37–45.25) 42 (37–47.5) 43 (36–51.75) 0.330
TG (mg/dL) 134 (94.75–186.5) 131 (100–164.75) 125 (103.5–150) 0.467
Total cholesterol (mg/dL) 163 (146–185.5) 155 (130.75–175.75) 145 (131.5–172.5) 0.019
FBS (mg/dL) 131 (100.5–157.5) 120 (110–122) 91 (87.5–96) 0.000
HbAlc (%) 7.135 (6.7–8.22) 6.1 (6–6.2) 4.7 (4.5–4.8) 0.000
Insulin (μIU/mL) 4.85 (3.17–8.8) 3.55 (2.7–4.95) 4.7 (3.3–7.05) 0.011
HOMA-IR 1.66 (8.88–2.86) 1.03 (0.77–1.4) 1.1 (0.75–1.52) 0.000

https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
http://bis.zju.edu.cn/CircFunBase/
http://www.cytoscape.org/


134	 Molecular Biology Reports (2022) 49:131–138

1 3

was able to distinguish between T2DM patients and control 
subjects (AUC = 0.665, 95% CI 0.589–0.752, P = 0.001) 
(Fig. 2A). Moreover, CircHIPK3 could distinguish T2DM 
patients from the pre-diabetes by a sensitivity and speci-
ficity of 50% and 75% respectively at a cutoff of 0.25 
(AUC = 0.613, 95% CI 0.524–0.697, P = 0.023) (Fig. 2B).

It was observed that the expression level of CDR1as is 
higher in the pre-diabetic individuals than healthy individu-
als (P = 0.0040 (Fig. 1B). We did not observe a significant 
difference for this circRNA between other groups. Further-
more, ROC analysis revealed that at a cutoff of 0.47, 86.9% 
sensitivity and 36.7% specificity (AUC = 0.605, 95% CI 
0.516–0.690, P = 0.041), CDR1as could distinguish pre-
diabetes patients from the healthy controls (Fig. 2C).

Correlation of circRNA levels with biochemical 
and anthropometrical parameters

Spearman correlation analysis was applied to determine 
the correlation of circRNAs expression levels and clinical 
parameters using 2−ΔCt values as input data. The results 
revealed that there was a significant positive correla-
tion between the CircHIPK3 level with BMI (R = 0.216, 

P = 0.002), systolic blood pressure (R = 0.224, P = 0.001), 
FBS (R = 0.22, P = 0.002), HbA1c (R = 0.168, P = 0.018), 
and HOMA-IR (R = 0.154, P = 0.03) (Fig. 3A–E). In addi-
tion, a significant correlation was found between CDR1as 
and FBS (R = 0.180, P = 0.011) (Fig.  3F). We did not 
observe a significant correlation between the CircHIPK3 
and CDR1as circulating levels with each other and another 
parameter (Table 2).

Prediction of circRNAs interaction with miRNAs 
and proteins

To identify the miRNAs that bind to circRNAs, we per-
formed a circRNA-miRNA interaction network prediction 
on circinteractome database. Forty-two miRNA binding sites 
matching to CircHIPK3 (hsa_circ_0000284) were identi-
fied by Circinteractome (Fig. 4). Moreover, this database 
provided 24 miRNA binding site residues in CDR1as (hsa_
circ_0001946) (Fig. 4). In addition, the circRNA-RBP inter-
action was predicted with CircFunBase database. Obtained 
data revealed a total of 13 and 8 RBPs sites matching to 
CircHIPK3 and CDR1as, respectively (Fig. 5).

Fig. 1   Comparison of A CircH-
IPK3 and B CDR1as circulating 
levels between T2DM patients, 
pre-diabetes and control sub-
jects. Data are shown as median 
(interquartile range)

Fig. 2   The ROC curve analysis for circRNAs. ROC curves and AUC for CircHIPK3:T2DM vs controls (A), CircHIPK3:T2DM vs pre-diabetes 
(B), CDR1as: Pre-diabetes vs controls (C)
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Discussion

It has been reported that deregulated expression levels of 
circRNAs are involved in several human diseases. However, 
little is known about the role of circRNAs in the T2DM 
[14]. Accordingly, the present study compared the expres-
sion profile of CircHIPK3 and CDR1as in the peripheral 
blood samples of pre-diabetes, T2DM and control subjects. 
Our findings revealed that the expression level of CircHIPK3 
elevated in T2DM patients compared to healthy participants 
and pre-diabetes subjects. There is no previous report on 

the evaluation of CircHIPK3 level in the peripheral blood 
samples of diabetic patients. However, the association of 
the CircHIPK3 expression level with diabetes complications 
evaluated in several studies. In this regard, it has been shown 
that CircHIPK3 level is elevated in patients with diabetic 
retinopathy [19], diabetic neuropathic pain [16], cardiovas-
cular disease [20], carotid acute and myocardial infarction 
[21]. There is some reason related to the elevated expres-
sion level of circHIPK3 under diabetic conditions in vivo 
and in vitro. Shan et al. revealed that high-glucose treat-
ment could upregulate CircHIPK3 expression in HRVECs 

Fig. 3   Correlation of CircHIPK3 expression with biochemical and 
anthropometrical parameters including: A BMI, B Systolic blood 
pressure (SBP), C FBS, D HbA1c, E HOMA-IR. F represented the 

correlation of CDR1as and FBS. R and P values are presented from 
Pearson’s and Spearman’s correlation analysis
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cells. Moreover, they reported that diabetes mellitus–related 
pathological factors, such as oxidative stress and inflamma-
tory stimulus, could significantly upregulate CircHIPK3 
expression [19].

Multiple lines of evidence suggested that CircHIPK3 
could be involved in the pathogenesis of T2DM by different 
mechanisms. It has been reported that CircHIPK3 impairs 
retinal vascular function in diabetes by sponging miR-30a-3p 
and regulation of the expression of its target gene includ-
ing VEGFC, FZD4 and WNT2 [19]. Interestingly, Wang.L 
et al. shown that CircHIPK3 silencing reduced diabetic 
neuropathic pain by inhibiting neuro-inflammatory factors 
Including IL-1b, IL-6, IL-12, and TNF-α by interaction with 
miR-124 [16]. In addition, it has been revealed that silencing 
of CircHIPK3 could ameliorate the damage to renal function 
by acting as a sponge for miR-185 [22].

In this study, we observed a positive correlation between 
the CircHIPK3 expression with FBS, HbA1c, blood pres-
sure and BMI. In agreement with these findings, Yi Sun 
et al. showed that BMI and CircHIPK3 expression levels are 
correlated in cardiovascular disease [11]. In addition, it has 
been reported that CircHIPK3 could promote hyperglyce-
mia and insulin homeostasis by sponging with miR-192-5p 
and increasing FOXO1 [15]. Interestingly, a recent study 
suggested that miR-192-5p is a target for ATP1B1, which 
reduces renal tubular reabsorption via Na + / K + -ATPase 
and eventually reduce blood pressure [23].

In the current investigation, we reported that the expres-
sion of CDR1as in the peripheral blood of pre-diabetes 
was higher than control. To the best of our knowledge, this 
is the first report evaluating the expression levels of CDR1as 
in diabetic patients. However, there are some reports about 

Table 2   Correlation between circRNAs expression level and molecu-
lar and clinical parameters

Bold values are statistically significant. (*P < 0.05)
Asterisk indicates P < 0.05
HDL high-density lipoprotein, LDL low-density lipoprotein, HbAlc 
glycated haemoglobin, HOMA-IR homeostasis model assessment of 
insulin resistance

Parameters CircHIPK3 level CDR1as level
R value R value

CircHIPK3 – 0.027
CDR1as 0.027 –
Age ( years) 0.094 0.032
Body Mass Index (kg/m2) 0.216* − 0.058
Systolic blood pressure (mmHg) 0.224* − 0.103
Diastolic blood pressure (mmHg) 0.115 − 0.046
LDL-cholesterol (mg/dL) 0.055 0.054
HDL-cholesterol (mg/dL) 0.128 − 0.021
Triglycerides (mg/dL) 0.102 0.088
Total cholesterol (mg/dL) 0.038 0.116
Fasting blood glucose (mg/dL) 0.22* 0.180*
HbAlc (%) 0.168* 0.099
HOMA-IR 0.154* 0.023

Fig. 4   Interaction network of circRNAs and miRNAs. Forty-two and 24 miRNA binding sites matching to CircHIPK3 and CDR1as, respectively
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the dysregulated levels of this circRNAs in human disease 
such as myocardial infarction and cardiovascular patients 
[20, 24]. In-vitro studies suggested that CDR1as could be 
involve in the development of T2DM by different mecha-
nisms [25, 26]. Huanyu Xu et al. Reported that CDR1as may 
regulate insulin transcription and secretion in the pancreatic 
islets by interacting with miR-7 [13]. Moreover, we observed 
a positive correlation between expression of CDR1as with 
FBS. In line with this finding, Zhang et al. reported that the 
expression levels of ZFAS1 and CDR1as in whole blood 
samples of myocardial infarction patients were positively 
correlated with FBS [24].

Experimental analysis reported that circRNAs could func-
tion as a “molecular sponge” for their related miRNAs and 
thereby modulates their inhibitory effects on the expression 
of target genes [12]. Therefore, to further investigation, we 
performed a circRNA-miRNA interaction network predic-
tion to identify the miRNAs that bind to circRNAs. Annota-
tion and function prediction revealed that CircHIPK3 could 
interact with a total of 42 miRNAs. It has been reported 
that some of these could be involve in T2DM pathogenesis. 
For example, hsa-miR-1179, hsa-mir-149, hsa-mir-382 and 
hsa-mir-377 are involved in proliferative diabetic retinopathy 
[27], impaired insulin synthesis and secretion in beta cells 
[28], diabetic nephropathy [29, 30] respectively. Moreover, 
we found that a total of 24 miRNAs have an interaction with 
CDR1as. Among them, hsa-miR-21 plays an important role 
in the pathogenesis of diabetes and its complications [31, 
32].

CircRNAs also could participate in sponging of RBPs 
and thereby affect the fate of their target mRNAs and protein 

[12]. Our results revealed that CircHIPK3 and CDR1as 
could interact with several common RBPs including AGO1, 
AGO2, IGF2BP2 and FUS. It has been reported that AGO1 
involves in the pathways of angiogenesis, adipose tissue 
function, and insulin sensitivity [33]. Furthermore, hepatic 
AGO2 could regulate energy expenditure during obesity and 
its inactivation protects against obesity-related glucose intol-
erance in mice [34]. In addition, it has been shown that the 
IGF2BP2 genotypes is associated with impaired insulin lev-
els, beta cell function, and insulin resistance, and increases 
the risk of T2DM. It is also involved in adipogenesis and 
pancreatic development [35, 36].

Conclusion

In the current study, we determined and compared the 
expression levels of CircHIPK3, and CDR1as in peripheral 
blood samples of T2DM patients, pre-diabetes and control 
subjects. Our analysis revealed that the expression level of 
CircHIPK3 elevated in T2DM patients compared to healthy 
participants and pre-diabetes subjects. In addition, it was 
observed that the expression level of CDR1as is higher 
in pre-diabetic individuals than healthy individuals. The 
data of this study provided evidence that the expression of 
CircHIPK3, CDR1as increased in T2DM and pre-diabetes 
subjects, respectively. However, further in vitro and in vivo 
investigations are needed to confirm our results.
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