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Abstract
Matrix metalloproteinases (MMPs) or matrixins, are members of a zinc-dependent endopeptidase family. They cause remod-
eling of the extracellular matrix (ECM) leading to numerous diseases. MMPs subfamilies possess: collagenases, gelatinases, 
stromelysins and membrane-type MMPs (MT-MMP). They consist of several domains; pro-peptide, catalytic, linker peptide 
and the hemopexin (Hpx) domains. MMPs are involved in initiation, proliferation and metastasis of cancer through the 
breakdown of ECM physical barriers. Overexpression of MMPs is associated with poor prognosis of cancer. This review will 
discuss both types of MMPs and current inhibitors, which target them in different aspects, including, biosynthesis, activa-
tion, secretion and catalytic activity. Several synthetic and natural inhibitors of MMPs (MMPIs) that can bind the catalytic 
domain of MMPs have been designed including; peptidomimetic, non-peptidomimetic, tetracycline derivatives, off-target 
MMPI, natural products, microRNAs and monoclonal antibodies.
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Abbreviations
ADAMs	� A disintegrin and metalloproteinase
ADAMTs	� A disintegrin and metalloproteinases with 

thrombospondin motifs
AKT	� Serine/threonine-specific protein kinase
AP-1	� Activator protein-1
BAE	� Bovine aortic endothelial
ECM	� Extracellular matrix
EGCG​	� Epigallocatechin—Gallate
EGF	� Epidermal growth factor
EMT	� Epithelial-to-mesenchymal transition
ERK	� Extracellular signal–regulated kinase
Fab	� Antibody fragment
FAK	� Focal adhesion kinase
HIF-1	� Hypoxia-inducible factor 1
Hpx	� Hemopexin
MAPK	� Mitogen-activated protein kinase
MHC	� Major histocompatibility complex
mAbs	� Monoclonal antibodies
MMPs	� Matrix metalloproteinases
MMPIs	� MMP inhibitors
MT-MMP	� Membrane-type MMPs
mTOR	� Mammalian target of rapamycin
NF-κB	� Nuclear factor κB
siRNA	� Small interfering RNA
TACE	� TNF-α converting enzyme
TGF-β	� Transforming growth factor-β
TIMPs	� Tissue inhibitors of metalloproteinases
uPA	� Urokinase-type plasminogen activator
uPAR	� Urokinase-type plasminogen activator 

receptor

Introduction

Matrix metalloproteinases (MMPs) belong to a zinc depend-
ent endopeptidases family. They are involved in many vital 
biological functions through the proteolysis of different pro-
tein targets [1, 2]. The substrates of MMPs include gelatins, 
collagens, elastin, proteoglycans and many other proteins [3, 
4]. The alteration in MMPs function is involved in numerous 
diseases, which may lead to high mortality rates. Among 
these diseases are cancer, autoimmune diseases, cardiovas-
cular diseases, inflammation and neurodegenerative disease 
states [5, 6]. Several clinical and experimental studies dem-
onstrate the role of MMPs in tumor invasion, metastasis and 
neo-angiogenesis, which make them promising targets for 
cancer therapy [7, 8].

There are about 28 MMP members have been identified 
till now; 23 MMPs are expressed in humans, as well as, 
15 members are present in vasculature [9]. There are dif-
ferent subfamilies of MMPs including: gelatinases which 

include two enzymes: gelatinase A (MMP-2) and gelatinase 
B (MMP-9) [10, 11].

It possesses also collagenases (MMP-1, MMP-8, MMP-
13 and MMP-18), matrilysins (MMP-7 and MMP-26), 
membrane-type MMPs (MT-MMPs), as transmembrane 
type MMP-14, MMP-15, MMP-16, and MMP-24, and gly-
cosylphosphatidylinositol, or glycophosphatidylinositol, or 
GPI-anchored MMP-17 (as GPI is a phosphoglyceride that 
can be attached to the C-terminus of a protein during post-
translational modification) and MMP-25 [9, 15].

Other family possesses stromelysins (MMP-3, MMP-10 
and MMP-11) and other MMPs (MMP-4, MMP-5, MMP-6, 
MMP-12, MMP19, MMP-20, MMP-21, MMP-22, MMP-23, 
MMP-27, and MMP-28) [12].

There are other two new families of membrane-anchored 
metalloproteinases that have a disintegrin domain: the 
ADAMs (a disintegrin and metalloproteinases) and 
ADAMTs (a disintegrin and metalloproteinases with throm-
bospondin motifs) [13]. Different classes and common mem-
bers of MMPs are shown in Table 1.

Structure of MMPs

The MMP typically consists of several domains; the pro-
peptide domain contains about 80 amino acids, the cata-
lytic domain contains about 170 amino acids and a variable 
lengths of linker peptide (hinge region)[14]. The hemopexin 
(Hpx) domain, which is involved in the interaction with other 
MMP, has about 200 amino acids, Fig. 1 [15]. MT-MMPs 
lack the pro-domain, while MMP-7 (matrilysin 1), MMP-26 
(matrilysin 2) and MMP-23 lack the Hpx domain and the 
linker peptide. The MMP-23 also contains an immunoglob-
ulin-like domain and a unique cysteine-rich domain after 
the metalloproteinase domain. Three repeats of a fibronectin 
are present in the metalloproteinase domain of gelatinase A 
(MMP-2) and gelatinase B (MMP-9). The catalytic domain 
of MMP contains zinc binding motif HEXXHXXGXXH, 
while the pro-peptide contains “cysteine switch” motif 
PRCGXPD. The pro-MMPs remain inactive through the 
coordination of three histidines in the zinc binding motif 
and the coordination between the cysteine in the pro-peptide 
domain and the catalytic zinc ion. This coordination pre-
vents the binding of a water molecule to the zinc ion, which 
is necessary for activation. A conserved methionine is also 
present in the catalytic domain creating a “Met-turn” eight 
residues after the zinc binding motif. This supports the struc-
ture around the catalytic zinc [16].

Other members also contain the zinc binding motif and 
the Met-turn, which are called “metzincins, including; the 
ADAMTS (ADAM with thrombospondin motifs) family, 
members of the ADAM (a disintegrin and metalloprotein-
ase) family, a protozoan proteinase leishmanolysin, the 
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Table 1   Classification of MMP family and their substrates [67]

Traditional classification Numerical 
classification

Group of substrates for enzymes

Collagenases
Collagenase-1 MMP-1 Collagen (I, II, III, VII, VIII, X), casein, entactin, laminin, pro-MMP-1, -2, -9 and Serpens
Collagenase-2 MMP-8 Collagen (I–III, V, VII, VIII, X), gelatin, aggrecan and Fibronectin
Collagenase-3 MMP-13
Gelatinases
Gelatinase A MMP-2 Gelatin, collagen (IV–VI, X), elastin and fibronectin
Gelatinase B MMP-9 Gelatin, collagens (IV, V, VII, X, XIV), elastin, fibrillin and osteonectin
Stromelysins
Stromelysin-1 MMP-3 Laminin, aggregan, gelatin and fibronectin
Stromelysin-2 MMP-10 Collagens (III–V), gelatin, casein, aggregan, elastin and MMP-1,8
Stromelysin-3 MMP-11 Fibronectin, laminin, aggregan and gelatin
Matrilysin MMP-7 Collagen (IV–X), fibronectin, laminin, gelatin, aggregan and pro-MMP-9
Metalloelastase MMP-12 Elastin, gelatin, collagen I, IV, fibronectin, laminin, vitronectin and proteoglycan
Matrilysin-2 MMP-26 Gelatin, collagen IV and pro-MMP-9
Membrane-type MMPs (MT-MMP)
MT-MMP-1 MMP-14 Collagen (I, II, III), gelatin, fibronectin, laminin aggrecan and tenascin
MT-MMP-2 MMP-15 Fibronectin, laminin, aggrecan and perlecan
MT-MMP-3 MMP-16 Collagen III, gelatin and casein
MT-MMP-4 MMP-17 Fibrinogen and TNF precursor
MT-MMP-5 MMP-24 Proteoglycans

Fig. 1   Structural domains of matrix metalloproteinases MMP. A 
schematic representation of the general structure of the inactive and 
active forms of MMPs (only the membrane-type group has the extra 
membrane binding domain). The pro-domain, catalytic domain, 

hemopexin domain and fibronectin (c-Fib) domains (only present in 
MMP-2 and MMP-9) are shown in red, turquoise, yellow and green, 
respectively. Both prodomain and catalytic domain (domain) together 
represents the enzyme motif. Zn ions are indicated in red [15]
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bacterial serralysin family, the astacin family and 2 preg-
nancy associated plasma proteins [17]. MMPS are classified 
according to domain organization and substrate preference 
into gelatinases, collagenases, matrilysins, stromelysins, 
membrane-type (MT)-MMPs and others [18].

Regulation of MMPs activity

The activity of MMPs is highly regulated, otherwise they can 
negatively affect the biological system [19]. MMPs activity 
is regulated at several levels involving, mRNA expression, 
pro-enzyme activation and the action reversal of endogenous 
tissue inhibitors of metalloproteinases (TIMPs) [20, 21]. The 
transcription of MMPs is affected by several factors includ-
ing, inflammatory cytokines, cell–cell, cell–matrix interac-
tions, chemokines, growth factors and oncogenes. On the 
level of posttranslational modification, MMPs are formed 
in inactive pre-pro-MMPs. During translation, the signal 
peptide is removed to form the pro-MMPs. The cysteine 
forms the PRCGXPD “cysteine-switch” motif in the pro-
MMPs, which coordinates with the zinc ion in the catalytic 
site keeping the pro-MMPs inactive. In order to obtain the 
active MMPs, the cleavage of the cysteine switch by the help 
of other proteolytic enzymes including, the endopeptidase 
furin, is required, or by serine proteases, plasmin, or other 
MMPs [2, 22]. Urea and 4-aminophenylmercuric acetate 
are other non-proteolytic substances that can activate the 
pro-MMPs [23]. The MMPs are also regulated by the tissue 
inhibitors of MMPs (TIMPs), which is important for main-
taining the extracellular matrix. The alteration in the bal-
ance between TIMPs and MMPs activities leads to several 
diseases as cancer. There are 4 distinct TIMPs that can bind 
to MMPs catalytic site causing their inactivation [16, 20].

MMPs and cancer

The pathological changes that happen during carcinogen-
esis and cell transformation require the interaction between 
cells and the ECM. The phenotype of the tumor is affected 
by some proteins of the ECM, which affect angiogenesis 
or cell migration including, fibronectin, laminin, thrombos-
pondin-1 and osteopontin. MMPs are involved in metastasis 
through the breakdown of ECM physical barriers. They are 
also involved in all stages of cancer starting from cancer 
initiation to proliferation up to metastasis [2, 24].

Cancer cells synthesize MMPs, which are involved in 
cancer cell expansion and survival in a very small amount. 
Cancer cells stimulate the neighboring cells to generate the 
needed MMPs by secreting interferon, interleukin, extra-
cellular MMP inductor and growth factors. The generated 

MMPs can be bounded on the surface of the cancer cell and 
used in all stages of cancer [25]

MMPs can regulate the growth of tumor cells through 
diverse mechanisms such as the regulation of proliferative 
signals by integrins, the release of some growth factor pre-
cursors that bound to the cell membrane and the change in 
the growth factor bioavailability. The growth of tumor cells 
can be also inhibited by MMPs through different mecha-
nisms as they can stimulate the proapoptotic production 
(TNF-α and Fas ligand) or they can activate transforming 
growth factor-β (TGF-β) [26].

TGF-β is one of the important factors that stimulate the 
growth of the tumor cells. MMP-9 can degrade fibronectin, 
which binds to CD44, leading to the generation of active 
TGF-β. MMP-1,2,3,7 and 9 also can stimulate the produc-
tion of TGF-β after the degradation of its reservoir (decorin) 
[27]. MMPs play an important role in the activation of many 
growth factors, which bind to the cell surface in an inactive 
form. MMP-7, when connects to CD44, leads to the genera-
tion of the active form of heparin epidermal growth factor 
through its proteolytic activation. MMPs also have a vital 
role in the production of TNF-α, which stimulates the tumor 
cells' survival through an NF-ĸb dependent manner [28, 29].

MMPs have both apoptotic and anti-apoptotic actions. 
They exhibit anti-apoptotic activity through different mecha-
nisms including; the activation of serine/threonine kinase 
AKT/ Protein kinase B, the cleaving of the Fas ligand and 
the proteolytic shedding of tumor-associated major his-
tocompatibility complex (MHC) complex class I related 
protein. MMPs retain pro-apoptotic action by changing the 
composition of ECM and cleaving adhesion molecules. The 
over-expression of MMP-3 in the epithelial cells causes deg-
radation of the laminin and apoptosis induction. As a result 
of such phenomena, the selection of resistant cells occurs 
and the activity of MMPs may lead to tumorigenic cell sur-
vival with reduced sensitivity to apoptotic stimuli [30, 31].

MMPs play a vital role in angiogenesis by the degrada-
tion of ECM and the basement membrane. The basement 
membrane degradation causes the endothelial cells to 
migrate from the existing vessels to the newly created ones. 
MMP-9 plays a vital role in angiogenesis through generating 
the factors bound to ECM and elevating their bioavailability. 
Vascular endothelial growth factor (VEGF) is an important 
factor that promotes angiogenesis. It can be released by 
MMPs. MMPs are considered as specific endothelial cell 
mitogenic factors, which promote the new blood vessel for-
mation and increase their permeability. They also stimulate 
the intracellular signaling of integrin [32]. MMPs can also 
release angiostatin which inhibits angiogenesis through the 
cleavage of plasminogen and collagen XVIII that stimulates 
the production of endostatin. MMP-2,,9 and 12 can digest 
plasminogen and release angiostatin, which promotes can-
cer cell apoptosis. MMP-3,7,9,12,13 and 20 stimulate the 



6529Molecular Biology Reports (2021) 48:6525–6538	

1 3

production endostatin, which inhibits the activation of pro-
MMP-9 and 13 by forming a stable complex with them. It 
also binds to a5b1 integrin and blocks the phosphorylation 
of focal adhesion kinase (FAK), thus inhibiting the capillary 
formation [33].

Involvement of MMPs in different cancers

The contribution of MMPs in human cancers was frequently 
reported. Thus, MMP-1 over-expression participated in the 
proliferation, invasion, metastasis, and stem-like properties 
of osteosarcoma cells [34]. In addition, MMP-9 is the most 
involved in the development of melanoma [35], and gener-
ally MMP expression patterns change in different stages of 
liver diseases [36] and pancreatic cancer [37].

On the other hand, MMPs may exert a positive role 
against cancer by favoring lymphocyte tumor infiltration. 
By using the immunohistochemistry staining, a reported 
significant increase of MMP-9 protein had been correlated 
to tumor-infiltrating CD3 lymphocytes in the close vicinity 
of the endometrial cancer milieu [38]. Interestingly, It has 
been emphasized that the proteolytic action of MMPs is not 
confined to degradation of ECM components, but they can 
play an immunomodulating role [39, 40].

MMPs role in invasion and metastasis

Tumor invasion is a multistep process involving the migra-
tion of cells, which is associated with proteolysis and cell-
ECM interaction [41]. The degradation of ECM and the 
basement membrane is necessary for metastasis and inva-
sion [42, 43]. MMPs can increase the infiltration and the 
migration of the tumor cell by promoting the epithelial-to-
mesenchymal transition (EMT) process [44]. In this process, 
the epithelial cells lose the epithelial phenotype and acquire 
mesenchymal phenotype. This leads to loss of the integrity 
of epithelial cells, increasing the migration, invasion and 
eventually metastasis [45]. Collagen IV of the basement 
membrane can be degraded by MMP-2 and 9, which stimu-
late the invasion [46, 47].

Cadherin, the cell adhesion molecules, can maintain 
the integrity of epithelial cells by mediating the adhesion 
between cells in normal mucosal cells [48]. The deregu-
lation of cadherin is usually associated with the progres-
sion of tumor cells [49]. The invasion and metastasis can 
be increased by decreasing the E-cadherin expression, 
which leads to the loss of cell adhesion and the increase of 
cell dissociation [50, 51]. MMP-3 and 7 cause cleavage of 
E-cadherin, which stimulates the EMT process [52]. TGF-
β, a strong stimulator of EMT, can be activated by MMP-
28 [53]. MMPs can induce cell migration through different 

mechanisms such as cleaving cell–matrix or cell–cell recep-
tors, removing sites of adhesion, exposing new building sites 
and releasing chemoattractants from ECM [54]. Laminin 5 
can be degraded by MMP-2 and 14, which exposes a cryptic 
site and stimulates the motility [14, 55].

Invadopodia is a specialized surface protrusion where 
MMPs can localize and stimulate the invasion. MMP 2, 9 
and 14 are examples of these MMPs, which promote base-
ment membrane degradation [56]. The interstitial collagen 
degradation is essential for further cancer cells spread after 
the cleavage of their basement membrane. The interstitial 
collagen degradation can be promoted by MMP-1, which has 
an essential role in metastasis [57]. Tumor cells can cross 
different barriers of ECM during metastasis, including, base-
ment membrane, surrounding stroma, blood vessels or lym-
phatics and finally after extravasation they can create new 
colonies [55]. MMP-9 plays an important role in intravasa-
tion [58]. Several studies also showed the role of MMPs in 
extravasation, the process in which cancer cells can exit the 
blood vessel. MMPs also have a vital role in different steps 
involved in metastasis such as local migration, angiogenesis 
and the creation of a microenvironment required for meta-
static growth [59].

Innate and adaptive immunity can destroy cancer cells 
when they reach the circulation. The immune system can 
recognize and attack tumor cells, which can establish differ-
ent ways to escape from this attack and maintain their sur-
vival [60]. They are attacked by different inflammatory cells 
such as neutrophils, macrophages, natural killer cells and 
tumor-specific cytotoxic T cells [55]. Cytokines are locally 
acting proteins that can be secreted by T cells when activated 
by antigen. They can stimulate T- cells proliferation as inter-
leukin 2 (IL-2). IL-2Rα can be cleaved by MMPs, which 
inhibit their proliferation [46]. The immune responses can 
be down-regulated by TGF-β cytokine through its effect on 
lymphocyte activation, growth, and differentiation. TGF-β 
can be activated by MMPs, which can indirectly control 
the function of T lymphocyte [61]. MMPs can regulate the 
action of chemokines; small proteins function as chemo-
attractants for certain kinds of leucocytes, and affect their 
action [62].

MMPs as targets for therapy

It is well known that MMPs have an essential role in cancer 
progression through the remodeling of the ECM. The over-
expression of MMPs is associated with the poor prognosis 
of diverse kinds of cancer, so it is necessary to develop new 
agents that can target MMPs. They can be targeted through 
different ways including, their biosynthesis, activation, 
secretion and enzymatic activity [63, 64].
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The expression and the activity of MMPs can be regu-
lated through four molecular levels. The first level is the 
transcriptional level through targeting transcription fac-
tors such as activator protein-1 (AP-1), hypoxia-inducible 
factor 1 (HIF-1), nuclear factor κB (NF-κB), extracellu-
lar factors like epidermal growth factor (EGF), TGF-β 
and signaling pathways like extracellular signal–regu-
lated kinase (ERK) and mitogen-activated protein kinase 
(MAPK) pathways. The second level is the translation 
level through developing antisense strategies as small 
interfering RNA (siRNA) that can inhibit the translation 
of a specific MMP. The third level is pro-MMPs activation 
through specific antibodies against a particular MMP. For 
instance; the activation of pro-MMP-2 can be inhibited by 
the anti-MMP-14 monoclonal antibody. The fourth level is 
the inhibition of the proteolytic and non-proteolytic MMPs 
activities [65, 66].

MMP inhibitors (MMPIs) could be divided into two 
major categories: synthetic and natural inhibitors. Some syn-
thetic inhibitors are still in clinical trials on humans, as syn-
thetic peptides, non-peptide molecules, chemically modified 
tetracyclines, and bisphosphonates. As well as, natural MMP 
inhibitors are mostly isoflavonoids and shark cartilage [67]. 
Several synthetic and natural inhibitors of MMPs (MMPIs) 
that can bind to the catalytic domain of MMPs have been 
designed, which made their way to clinical trials. Some 
of them are mentioned in Table 2. The synthetic MMPIs 
include; the chemically modified tetracycline derivatives 
and the synthetic peptidomimetic and non-peptidomimetic 
inhibitors. Next-generation of MMPIs includes; specific 
microRNAs that can block the transcription of a specific 
MMP and monoclonal antibodies that can inhibit the cata-
lytic domain of a particular MMP [63].

The antiproliferative and proapoptotic properties of fla-
vonols in head and neck cancer were reported during various 
processes associated with cancer progression. These com-
pounds could modulate signal transduction pathways that 
contribute to cancer development [68].

Due to toxicity limitation of MMPIs, recently, nanoma-
terials were extensively designed, showing promising out-
comes through screening of antibodies to target the terminal 
region located outside the zinc catalytic site. In this model, 
the antibody might directly act on the specific MMP, and the 
nanomaterials could inhibit its activity. This way showed the 
best safety margin [69].

Peptidomimetic MMPIs

The peptidomimetic MMPIs are derivatives of pseudo-
peptides. They mimic the MMP substrates cleaving site 
and act as competitive inhibitors. They interact with the 
Zn2+ in catalytic sites of MMPs and inhibit their action 
[60, 70]. Different classes of peptidomimetic MMPIs have 
been identified, including; hydro-carboxylates, sulfhydryls, 
phosphoric acid derivatives, hydroxamates and carboxylates 
[71]. Hydroxamates, the first generation of peptidomimetic 
MMPIs, include batimastat (BB-94) and marimastat (BB-
2516). Batimastat has a broad spectrum of inhibition and it 
can inhibit the activity of MMP-1, MMP-2, MMP-3, MMP-
7, and MMP-9. It is administrated intraperitoneally due to its 
poor water solubility [72]. Marimastat inhibits the activity of 
MMP-1, MMP-2, MMP-3, MMP-7, MMP-9 and MMP-12. 
It can be administrated orally as it is a major water-soluble 
peptidomimetic MMPI [73]. Among the side effects of mari-
mastat are inflammation and musculoskeletal pain. These 

Table 2   Matrix metalloproteinase inhibitors from different classes and their target MMPs

MMPI Class Specific MMP References

Batimastat (BB-94) Peptidomimetic MMP-1, MMP-2, MMP-3, MMP-7 and MMP-9 [72]
Marimastat (BB-2516) Peptidomimetic MMP-1, MMP-2, MMP-3, MMP-7, MMP-9 and MMP-12 [73]
Tanomastat (BAY 12–9566), Non-peptidomimetic MMP-2, MMP-3, MMP-9, MMP-13 and MMP-14 [73, 111]
Orinomastat (AG3340) Non-peptidomimetic MMP-2, MMP-3, MMP-7, MMP-9, MMP-13 and MMP-14 [77]
Doxycycline Tetracycline derivatives MMP-7, MMP-8, MMP-2 and MMP-9 [71]
Metastat Tetracycline derivatives MMP-1, MMP-2, MMP-3, MMP-7, MMP-9 and MMP-12 [73]
Zoledronic acid Off-target MMPI MMP-2, MMP-9, MMP-14, MMP-15 [81, 82]
Letrozole Off-target MMPI MMP-2, MMP-9 [144]
Sinulariolide Natural product MMP-2 and MMP-9 [89, 90]
Genipin Natural product MMP-1 and MMP-3 [93]
Aeroplysinin-1 Natural product MMP-1, MMP-2 and MMP-9 [94, 97]
Neovastat (AE 941), Natural product MMP-2, MMP-9, MMP-12, and MMP13 [111, 145]
Genistein Natural product MMP-2, -9, MT1-, MT2-, MT3-MMP [112]
Epigallocatechin—Gallate Natural product MMP-2 and MMP-9 [99–101]
Spirulina platensis Natural product MMP-2 and MMP-9 [110]
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adverse effects are due to the ability of marimastat to block 
the activity of TNF-α converting enzyme (TACE) and it can 
remove the TNF-α receptor II [2, 74].

Non‑ peptidomimetic MMPIs

The design of non-peptidomimetic MMPIs is based on 3D 
X-ray crystallographic confirmation of the Zn binding site 
making them more specific than peptidomimetic MMPIs 
[75]. The non-peptidomimetic MMPIs have better oral bio-
availability than the peptidomimetic MMPIs [76]. Tanomas-
tat (BAY 12-9566) and prinomastat (AG3340) are exam-
ples of non-peptidomimetic MMPIs. Tanomastat can block 
MMP-2, MMP-3, MMP-9, MMP-13 and MMP-14 activi-
ties. prinomastat inhibits the enzymatic activity of MMP-
2, MMP-3, MMP-7, MMP-9, MMP-13 and MMP-14 [73, 
77]. Prinomastat has dose-dependent side effects like joint 
and musculoskeletal symptoms as stiffness, arthralgias and 
swelling [78].

Chemically modified tetracyclines

Chemically modified tetracyclines are derivatives of tetra-
cyclines that lake their antibiotic activity. The removal of 
the dimethylamino group from this class is necessary for 
lacking their antibiotic activity and limiting their systemic 
toxicity [74]. They can block the enzymatic activity of 
MMPs through different ways, including; interfering with 
pro-MMPs activation, binding to Zn+2 and Ca+2 ions and 
reducing the transcription of MMPs [73, 79]. This group 
includes metastat (CMT-3, COL-3), minocycline and doxy-
cycline. Doxycycline is involved in the prevention of peri-
odontitis by blocking the activities of MMP-7 and MMP-9 
and it had been approved by the Food and Drug Admin-
istration [71]. Doxycycline can also inhibit the enzymatic 
activity of MMP-2 and MMP-9 and inhibit their secretion. 
Metastat can block the activities of MMP-1, MMP-2, MMP-
3, MMP-7, MMP-9 and MMP-12 [73]. It is helpful in the 
treatment of Kaposi's sarcoma, which is associated with a 
40% overall response rate and reduction in the serum level 
of MMP-2 [80]. It has dose-dependent toxicities like head-
ache, anorexia, nausea, vomiting, cutaneous phototoxicity. 
elevation of the activities of liver enzymes and anemia [71].

Off‑target inhibitors of MMPs

Off-target inhibitors of MMPs can decrease the enzymatic 
activities of MMPs without targeting MMPs themselves. 
Bisphosphonates, pyrophosphate (PPi) analogs are examples 
of this group. They are designed to inhibit bone resorption 

and treat osteoporosis and they can block the activities 
of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, 
MMP-12, MMP-13, MMP-14, and MMP-15. This drug can 
also inhibit the secretion of MMP-2 by targeting TIMP-2 
[60]. For instance, zoledronic acid can decrease the expres-
sion of MMP-2 and MMP-9 in nasopharyngeal carcinoma 
cells and MMP-2, MMP-9, MMP-14 and MMP-15 in breast 
cancer cells [81, 82]. The treatment with zoledronic acid can 
improve the outcome of patients with advanced breast and 
prostate cancer as it not only can prevent bone metastasis 
but also it can interfere with the growth and the invasion of 
tumor cells [83]. Letrozole is a non-steroidal agent that can 
be used in breast cancer but it has also inhibitory effects on 
MMPs. It can block the activities of MMP-2 and MMP-9 in 
breast cancer cells and diminishes the invasion potential of 
tumor cells in a dose-dependent manner [84].

Natural MMPIs

A lot of bioactive molecules contained in natural products 
can allow researchers to investigate numerous biochemical 
pathways that facilitate the development of new therapeutic 
interventions. Many natural products have been approved 
as drugs for the treatment of several diseases or they act as 
a starting point for the synthesis of helpful new derivatives 
[85–87]. In this review, we discuss several natural products 
that have an inhibitory action on MMPs. Sinulariolide is 
a marine diterpene that was isolated from the soft coral 
Sinularia flexibilis and belongs to the cembranoid family 
[1]. Numerous derivatives of sinulariolide have been identi-
fied and have different biological activities [88]. Sinulari-
olide can inhibit the migration and invasion of tumor cells 
in human bladder cancer cells (TSGH-8301) and human 
hepatocellular carcinoma cells (HA22T). Sinulariolide 
and 11-epi-sinulariolide acetate can reduce the expression 
of MMP-2 and MMP-9 and increase TIMP-1 and TIMP-2 
expressions. This can reduce the phosphorylation of serine/
threonine-specific protein kinase (AKT) and mammalian 
target of rapamycin (mTOR) [89, 90].

Genipin is an iridoid natural product that has been used 
as an anti-inflammatory agent in oriental medicine. It can 
be isolated from Gardenia jasminoides Ellis fruit [91]. 
Genipin at non-toxic doses can decrease the motility and 
invasion of tumor cells in human hepatocellular carcinoma 
cells (HepG2) and MHCC97L [92]. This effect is due to 
its ability to up-regulate TIMP-1 and it also can inhibit the 
activities of MMPs released from TNF-α-stimulated cells 
like MMP-1 and MMP-3 [93]. Aeroplysinin-1 is a metabo-
lite of bromotyrosine that have diverse biological activities 
such as anti-angiogenic, antibiotic and anticancer effects 
[94]. Both enantiomers of aeroplysinin-1 can be isolated 
from diverse sponge species. The more studied enantiomer 
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is ( +)-aeroplysinin-1 that was isolated from the yellow tube 
sponge Aplysina aerophoba. It can inhibit the bovine aortic 
endothelial (BAE) cell growth and decrease the expression 
of MMPs, particularly MMP-2 and urokinase expression 
[95]. It can also reduce the expression of MMP-1, MMP-2 
and interleukin 1 alpha (Il-1α) in other endothelial cell types 
[94, 96].

The Aplysina aerophoba aqueous extract showed the abil-
ity to decrease the expression and the activity of MMP-2 
and MMP-9 in rat astrocyte cultures. This indicates that the 
more polar compounds of this extract may participate in the 
chemical defenses of this marine organism [97]. Epigallocat-
echin—Gallate (EGCG) is another natural product that can 
bind to MMPs [98]. EGCG can block MMP-2 and MMP-9 
enzymatic activity in lung carcinoma cells via direct binding 
with the proteins of MMP, which approved by affinity gel 
chromatography experiments [99]. A preliminary in silico 
analysis; performed by Chowdhury et al. in 2017, showed 
that there is a strong interaction between the galloyl group 
of ECG and EGCG and pro-MMP-2 in pulmonary artery 
smooth muscle cell culture supernatant. They demonstrated 
that ECG and EGCG are better inhibitors of proMMP-2, in 
contrast to MMP-2 [100]. Another study showed the inter-
actions of green tea catechins with pro-MMP-9 via compu-
tational methods. This study showed a strong interaction 
between EGCG/ECG and pro-MMP-9 [101].

Spirulina platensis is a cyanobacterium that contains 
numerous important bioactive molecules [102]. These mol-
ecules have different biological activities such as anticancer, 
antioxidant [103], anti-inflammatory [104], neuroprotective 
[105, 106], hypolipidemic [107], antiviral [108] and hepato-
protective effects [109]. C-phycocyanin containing protein 
extract (C-PC extract) of Spirulina platensis can interfere 
with the activity of MMPs such as MMP-2 and MMP-9 and 
tissue inhibitors of MMPs (TIMP-2). C-PC extract can block 
the activity and the expression of MMP-2 and MMP-9 and 
it can also inhibit the expression of TIMP-2 in HepG2 cells 
[110]. Other natural products that inhibit MMPs include 
Neovastat (AE 941) and Genistein. Neovastat (AE 941) was 
extracted from shark cartilage. It showed antiangiogenic and 
antimetastatic effects by blocking MMP-2, MMP-9, MMP-
12, MMP-13 and VEGF [111]. Genistein, a soy isoflavonoid 
similar to estradiol; can interfere with diverse MMPs and 
TIMPs expression [112, 113].

Flavonoids showed diverse mechanisms on the stages 
of initiation and promotion of carcinogenesis. The 
principal molecular mechanisms of their activity are; 
repression of mutant p53 protein, stimulation of apop-
tosis, hindering of the cell cycle, inhibition of the heat 
shock protein, and inhibition of Ras protein expression 
[114]. Several members have been proved to be use-
ful in controlling metastasis in head and neck cancers 
as fisetin (3,7,3−,4− -tetrahydroxyflavone), kaempferol 

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one, 
quercetin is 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-
chromen-4-one [68].

Targeting MMP gene expression using 
microRNAs

MicroRNAs (miRNAs) are small noncoding RNAs, which 
contain 17–25 nucleotides. They participate in the post-
transcriptional regulation of gene expression and control 
the stability and translation of mRNA by base-pairing with 
complementary 3′ untranslated region of mRNA. miRNAs 
can target and regulate the activity of MMPs, which can be 
therapeutic targets [115, 116].

Generally, the mechanism of action of these miRNAs in 
sustaining MMP expression includes the aberrant produc-
tion of MMP protein, and other proteins contributing for the 
activation or inhibition of MMP, as osteopontin [35, 117]. 
The exact mechanism of action of miRNAs in this respect 
is still unclear, although modest observations reported loss 
of invasion, metastasis, and angiogenesis to be contributory 
mechanisms [118].

Numerous malignancies were involved during deregula-
tion of MMPs by miRNAs, like glioblastoma [119], osteo-
arthritis [120], endometrial cancer [121], lung cancer [122], 
and bladder cancer [123].

miR-146 b was found to downregulate the activity of 
MMP-16 in U 373 glioma cells, affecting the migration 
and invasion of the tumor cells [124]. miR-93-5p also has 
a suppressive effect in glioma as it can target MMP-2. It 
was found that the expression of miR-93-5p was reduced 
in glioma by targeting MMP-2. The upregulation of miR-
93-5p results in decreased expression of MMP-2, which 
affects the migration and invasion of U87-MG cells [125]. 
Osteosarcoma tissues and cell lines showed upregulation 
of miRNA-130b-5p and its overexpression is related to the 
poor prognosis of osteosarcoma patients. The upregulation 
of microRNA-130b-5p increases the invasion and the migra-
tion ability of osteosarcoma cells by negatively targeting 
TIMP-2 [126].

miR-21 participates in glioblastoma through the regu-
lation of apoptosis, proliferation and invasion of glioma 
cells. It also can increase the aggressiveness of glioma cells 
through the activation of MMPs by targeting their inhibi-
tors. The use of specific antisense oligonucleotides that 
can inhibit miR-21, causes an increase in the expression of 
reversion-inducing-cysteine-rich protein with kazal motifs 
(RECK) and TIMP-3 gene and protein levels. These lead 
to inhibiting the enzymatic activities of MMPs in vivo and 
in vitro, which can serve as a new anticancer therapy [127, 
128]. In the highly metastatic brain-trophic metastatic MDA-
MB-435-LvBr2 breast cancer cells, the induced upregulation 
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of miR-146a can decrease the migration and the invasion 
ability of these cells by inducing β-catenin and downregu-
lating MMP-1, urokinase-type plasminogen activator (uPA) 
and its receptor (uPAR) [129]. The expression of different 
MMPs can be regulated by a single miRNA due to sequence 
homology in MMP structure. For example, MMP-2 and 
MMP-9 can be downregulated by miR-143 at the protein and 
gene levels in pancreatic cancer cells [130]. miR-143 can 
target MMP-13 in osteosarcoma in vivo models [131]. The 
upregulation of miR-143 also can inhibit EGFR-dependent 
cell invasion by indirect mediating the expression of MMP-9 
in osteosarcoma [132]. miR-146b can downregulate the 
expression of MMP-16 in U373 glioma cells [124]. From 
the previous data, it is clear that understanding the mecha-
nism of miRNA in the regulation of MMPs expression will 
be helpful to use them as diagnostic or prognostic markers or 
serving as novel therapeutic targets to prevent the aggressive 
and metastatic malignancies.

Besides miRNAs, different studies have highlighted how 
DNA methylation is strongly associated with the alteration 
of MMPs expression levels. It was indicated that abnormal 
hypermethylation of many MMP gene promoters is a another 
indirectly functional event in breast carcinogenesis [133], 
which was previously exemplified by hypermethylation of 
MMP-9 gene in melanoma [134] and breast cancer [135].

Mono‑clonal antibodies and MMPs

The broad range MMPIs have diverse side effects and 
failed in clinical trials so there is a great interest in using 
therapy that can target a specific MMP. Several monoclo-
nal antibodies (mAbs) have been developed that can target 
the catalytic domain of a single MMP, which can be used 
in diverse primary and metastatic cancers [16]. DX-2400 
is an antibody fragment (Fab) that can selectively inhibit 
the enzymatic activity of MT1. It can inhibit angiogenesis, 
tumor growth, invasion and metastasis in numerous pre-
clinical models [136, 137]. Full-length mAb REGA-3G12 
can target the catalytic domain of MMP-9 [138, 139] more 
selectively when compared to MMP-2 [140]. Another mAb 
is a humanized full-length allosteric mAb GS-5745, which 
can selectively inhibit the enzymatic activity of MMP-9. 
GS-5745 can inhibit tumor growth, invasion, and metas-
tasis in a colorectal carcinoma model without exhibiting 
serious adverse effects [141]. Sela-Passwell et al. have 
developed inhibitory antibodies that have similar bind-
ing mechanisms as the endogenous TIMPs that can block 
gelatinase activities. Monoclonal antibodies SDS3 and 
SDS4 that can inhibit the enzymatic activities of MMP-9 
and the closely related MMP-2 while showing, by an order 
of magnitude, lower inhibition of MMP-14 and sparing 
MMP-1, MMP-7, and MMP-12. These antibodies can 

bind their target MMPs through protein–protein interac-
tions concerning the metal–protein motif, as well as to the 
enzyme surface. Further selectivity towards a single MMP 
may be achieved by classical protein engineering proce-
dures that refine protein surface interactions between the 
antibody and the target enzyme [142]. Although the use of 
mAb is limited due to undesired effector functions, high 
production costs and selectivity restrictions, which result 
from the high homology of the catalytic sites of several 
MMPs, the treatment with mAb either alone or combined 
with chemotherapy might exhibit promising efficacy [63].

Conclusion

Matrix metalloproteinases (MMPs) are members of a zinc-
dependent endopeptidase family. Being the most frequent 
cause of death worldwide; cancer gains a great interest in 
finding new and more effective anticancer therapies with 
fewer side effects [143]. Diverse and aggressive metastasis 
to vital body organs is always responsible for survival peri-
ods and quality of life among cancer patients. MMPs have a 
vital role in cancer progression by remodeling the ECM, so 
the development of new agents that can target MMPs or their 
inhibitors might help find newly synthesized anticancer ther-
apies. The Selective inhibition of MMPs enzymatic activities 
in a specific location may present a more potential anticancer 
activity with lower adverse effects and more efficacy. MMPs 
can be investigated for their role in different processes like 
angiogenesis, cell migration, apoptosis and cell proliferation, 
which allow them to be used as tumor markers. Elevated 
activity and expression of MMPs in both patients' blood and 
tissues with numerous types of cancer was observed. MMPs 
might have a vital value as a diagnostic invasiveness marker 
to predict the risk of distant metastasis. The co-therapy of 
MMPIs with chemo, radio, surgical and hormonal therapy 
of cancer will certainly introduce great outcomes in survival 
among cancer patients.
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