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Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction 
is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm 
express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have 
been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential 
protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with 
more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of 
transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. 
In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different 
processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral 
families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different 
types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) 
the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the 
infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special 
focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.

Keywords  GAR domain · Long-distance movement · Cell-to-cell movement · Fibrillarin · Nucleolus · Plant viruses

Introduction

Research on the interaction of viruses and the nucleolus 
started in the early 1990s. Despite that most viral families 
have in common is their interaction with the components of 
the nucleolus [1–4], RNA viruses, in particular those that 
replicate in the cytoplasm arise more attention. The identi-
fication of nuclear and nucleolar localization signals (NLS 
and NoLS) within viral-encoded proteins sequences explain 
how those viruses are able to interact with the nucleus and 

nucleolus [5]. The nucleolus is the main domain of the 
nucleus. In the nucleolus, functions like gene silencing, cell 
cycle progression, senescence, ribosomal biogenesis, bio-
genesis of small nucleolar RNAs, proliferation of RNA and 
many forms of stress response occur. This region can behave 
as a dynamic or stable region depending on the nature and 
quantity of its composed molecules [6–10]. The nucleolus is 
functionally related to Cajal bodies (CBs), a structure with 
viral interactions [11]. Fibrillarin (Fib), the main nucleolar 
protein, is present in both the nucleolus and CBs [12]. Fib 
is an essential protein conserved in sequence and function 
throughout evolution [12–14] that is is responsible for the 
2’-O-methylations of rRNA and histone H2A in eukaryotes 
[15, 16]. It belongs to the superfamily of the Rossmann-fold 
S-adenosylmethionine (SAM) methyltransferases (MTases) 
[17]. SAM proteins are characterized with a conserved 
SAM-binding motif, the catalytic triad/tetrad [K-D-K-(H)] 
and seven-stranded β-sheet flanked by α-helices to form an 
α-β-α structure [18]. In addition, they have a rich site in argi-
nine and glycine residues (GAR domain) and a specific motif 
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to bind RNA. The protein structure can be divided into two 
domains: the N-terminal and the MTase domain. In plants, 
the N-terminal domain of Arabidopsis thaliana Fib (AtFib) 
is divided with the GAR domain and a spacer region. Several 
cellular and viral proteins tend to interact with the GAR 
domain and give the property of Fib to retain in the nucleo-
lus. Rodriguez-Corona et al. [19] find a novel ribonuclease 
activity within the AtFib2 GAR domain, whilst AtFib1 do 
not show. Recently, similar studies found out that this novel 
activity is conserved in the GAR domain of Homo sapiens 
Fib (HsFib) [20]. In both (AtFib2 and HsFib), the ribonucle-
ase activity is affected by phosphoinositides. These findings 
were carried out in vitro, further studies are needed to eluci-
date the nature of this novel ribonuclease activity. Different 
viruses from different families require Fib to complete their 
infective cycle. In this review, we aim to identify possible 
patterns in Fib’s functions exclusively in plant viruses, to 
expand the knowledge of this protein on plant virology and 
design novel strategies to control these viruses.

Fibrillarin in viral long distance movement

Groundnut Rossette virus – ORF3

The Groundnut Rosette Virus (GRV) is a virus ( +) ssRNA 
belonging to umbraviruses. Umbraviruses have the peculiar-
ity of not coding a coat protein (CP), so their viral particles 
are unconventional [21, 22]. GRV ORF3 compensates this 
deficiency by acting like a CP by associating with the major 
nucleolar protein, Fib (Table 1). ORF3 traffics from the cyto-
plasm to the nucleus through its R-rich domain generating 
the fragmentation of the CBs in Cajal Body-like structure 
(CBLs) (through a process still unknown) (Fig. 1). Thereby 
promoting the fusion with the nucleolus and thus recruiting 
Fib. Although it has not been elucidated yet how ORF3 pro-
motes the formation of CBLs and consequently, the fusion 
with the nucleolus, a well-documented phenomenon [33, 

34], it is possible that the ORF3-Fib interaction interferes 
with host protein–protein interactions or other processes that 
affect the integrity of CB [23, 24]. Through Far-Western 
Blot and mutations analysis, ORF3-Fib interaction was dis-
covered in vitro through the L-rich region (and in particular 
L149) and the GAR domain, respectively. It is suggested that 
ORF3 and Fib move as a complex [23, 24]. ORF3-Fib com-
plex is exported from the nucleolus to the cytoplasm with 
the L-rich domain of ORF3, which acts as a nuclear export 
signal [35]. Fib’s location outside the nucleolus is an indi-
cator of some biotic or abiotic stress. Recruitment in vitro 
of ORF3 with Fib’s and the viral RNA produce filamentous 
RNP particles with structures and properties similar to those 
formed in vivo [21, 23, 24]. These RNP particles are infec-
tious and with the ability to protect viral RNA against an 
RNAase treatment. The binding site of Fib with RNA can 
serve either to interact physically with viral RNA or to allow 
catalysis of the RNA or assembly of other proteins with viral 
RNA, which is unreachable with ORF3 alone. Accordingly, 
the encapsidation of viral RNA with ORF3 and Fib is suf-
ficient for the formation of infectious RNP filaments capable 
of LDM in the infection of GRV [23, 24]. The requirement 
of Fib for GRV LDM is the first evidence reported of a plant 
virus-Fib interaction. However, to strengthen this hypoth-
esis that Fib plays a role in GRV LDM it would be helpful 
to obtain precise localization data of Fib in the phloem of 
GRV-infected plants.

Satellite RNA of bamboo mosaic virus – P20

Satellite RNAs (satRNAs) are parasites of other viruses, 
referred to as helper viruses (HV) for their replication and 
movement. satRNAs are generally unrelated in sequence to 
their HV, although, they depend on HV-encoded proteins 
for replication and encapsidation [36]. The Bamboo Mosaic 
Virus (BaMV)-associated satRNA (satBaMV) has a single a 
( +) ssRNA genome. satBaMV encodes a single non-struc-
tural protein of 20 kDa (P20) [37] not related to satBaMV 

Table 1   Plant virus-encoded proteins described to interact with Fibrillarin

Virus name Genome Virus-Encoded Protein Putative Function in Viral Infection References

Groundnut rosette virus ( +)ssRNA Open reading frame 3 (ORF3) protein Systemic movement [23, 24]
Potato virus A ( +)ssRNA Nuclear Inclusion protein a (NIa) Supression of RNA silencing [25]
Cucumber mosaic virus ( +)ssRNA 2b Undetermined [26]
Poa semilaten virus ( +)ssRNA Triple gene block protein 1 (TGBp1) Undetermined [27]
Beet black scorch virus ( +)ssRNA P7a Relevant for viral infection [28]
Rice stripe virus (−)ssRNA P2 Supression of RNA silencing/Sys-

temic movement
[29]

Bamboo mosaic potexvirus satRNA ( +)ssRNA P20 Systemic movement [30]
Barley stripe mosaic virus ( +)ssRNA Triple gene block protein 1 (TGBp1) Cell-to-cell and systemic movement [31]
Mulberry mosaic dwarf-associated virus ssDNA V2 Supression of RNA silencing [32]
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replication [38]. In fact, BaMV is required for satBaMV 
replication and encapsidation [37, 39].

The satBaMV P20 localizes in the nucleus and at the cell 
periphery, where it forms punctate structures [30]. P20 pro-
tein inmunoprecipitates with Fib, among other host proteins 
with anti-P20 IgG through a 7 dpi systemic leaves coinfected 
with HV and satBaMV, and in the absence of HV. Thus, 
the role of Fib in satBaMV trafficking (in the absence of 
HV) was examined by VIGS Fib-silenced N. benthamiana 
plants. The satBaMV RNA was not detected in Fib-silenced 
scion plants after grafting onto the satBaMV transgenic line, 
9 days after grafting (DAG). Quantitative analysis revealed 
that satBaMV mRNA was greatly reduced in Fib RNAi sci-
ons. This evidence suggest that Fib is crucial for satBaMV 
LDM as in GRV infection [23, 24]. However, the effect of 
fib-silencing impaired only the LDM of satBaMV in HV and 
satBaMV coinfected plants.

P20-Fib direct interaction was confirmed by yeast two-
hybrid (Y2H) assays (Table 1), being consistent with co-IP 
results [30]. P20 binds to satBaMV and BaMV RNAs with a 

strong affinity through its arginine-rich motif [40]. In regard 
to P20 RNA binding property and its interaction with Fib, a 
potential RNP was studied. RNA extraction from total sap 
of plants coinfected with HV and satBaMV were incubated 
with anti-P20 or anti-Fib IgG. RNA from both, HV and sat-
BaMV were present in the total sap incubated with anti-P20 
or antiFib IgG. These results indicate that satBaMV P20 
with Fib can form RNP complexes in vivo [30], as in GRV 
infection [23, 24]. In addition, P20 can form punctate struc-
tures localized at PD and the satBaMV-P20 RNP complexes 
can traffic autonomously through the phloem in satBaMV-
transgenic stocks or scions [30].

Fibrillarin in viral cell–to–cell movement

Barley mosaic virus – TGB1

Another virus with the genome type ( +) ssRNA that requires 
Fib, is the Barley stripe Mosaic Virus (BSMV), a member 

N NoCy

Long Distance Movement (I) Cell-to-cell Movement (II)

Suppression of RNA Silencing (III)

LDM Cell-to-cell
Movement

GRV-ORF3 BSMV-TGB1 PVA-VPg

Cajal body

siRNA

vRNAFibrillarin

Fig. 1   Model for the role of Fibrillarin in plant viruses. Fibrillarin 
(Fib) is potentially involved in long distance movement (LDM), cell-
to-cell movement and in the suppression of RNA silencing (SRS) 
of certain single-stranded positive-sense RNA plant viruses. (I) The 
ORF3 viral protein (VP) of Groundnut rosette virus (GRV), mediate 
its long distance movement (LDM) in part through the interaction 
with Fib in nucleolus (Nu), Cajal bodies (CBs) (in red circles), and 
finally in the cytosol (Cy) to form a viral ribonucleoprotein complex 
(vRNP) to traverse into the phloem. (II) The cell-to-cell movement of 
Barley stripe mosaic virus (BSMV) require the interaction of TGB1 

protein and Fib. The TGB1-Fib protein complex localizes in the Nu 
where are exported to the periphery of the cell to form a vRNP com-
plex where it conducts cell-to-cell movement with other BSMV VPs. 
(III) A potential, un-described role of Fib in plant viruses might be 
the SRS. The viral suppressor of RNA silencing (VSR) VPg of Potato 
virus A, interacts with Fib. Fib is an RNA-binding protein in CBs, site 
of siRNA in plants, which regulates viral defense. The VPg-Fib inter-
action localizes in the N and Nu, not seen in the Cy. Dotted arrows 
indicate movement
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of the genus Hordeivirus (Table 1). The BSMV genome is 
segmented into three gRNAs designated as � , � and � . The 
BSMV movement is orchestrated by CP and three viral MPs: 
TGB1, TGB2 and TGB3. Particularly, TGB1 interacts with 
Fib [31]. BSMV TGB1 is a protein with RNA-binding, RNA 
helicase and ATPase activities [41–43]. The C-terminus of 
TGB1 binds BSMV gRNAs and sgRNAs to form RNP com-
plexes that are thought to be involved in cell-to-cell move-
ment [44]. Li et al. (2018) found that BSMV TGB1 localizes 
partially in the nucleus and nucleolus when expressed alone, 
or in BSMV-infected cells. TGB1 contains NLS and NoLS 
between 227–238 and 95–104 amino acids, respectively. 
TGB1 NoLS mutations reduced BSMV cell-to-cell accu-
mulation and movement in inoculated leaves, in addition 
to systemic movement in N. benthamiana [31]. Based on 
the latter, the possible interaction with Fib was examined. 
It turned out that the BSMV TGB1 protein interacts with 
the N. benthamiana Fib 2 (NbFib2) GAR domain, while the 
abolition of this interaction leads to reduction of TGB1 in 
the nuclei and nucleoli. However, it still remains to map the 
region of BSMV TGB1 with Fib interaction.

In addition, Fib is induced in 60–70% in BSMV-infected 
plants with respect to healthy plants. The mechanism of this 
induction has not been yet elucidated. Furthermore, silenc-
ing of NbFib2 by RNAi reduces BSMV accumulation and its 
cell-to-cell movement compared to wild-type plants. Finally, 
it was found that NbFib2 co-localizes with BSMV TGB1 
protein and vRNA near the cell wall, and in conjunction with 
the BSMV vRNA, indicating that NbFib2 may be part of 
the BSMV RNP complex (Fig. 1) [31]. This report provides 
the first evidence that Fib interactions during plant virus 
infection not only affects LDM, but that it also may be a 
fundamental component for cell-to-cell movement.

Poa semilatent virus – TGB1

As BSMV, Poa semilatent virus (PSLV) are representatives 
of the genus Hordeivirus characterized by rod-shaped parti-
cles and helical structures [45]. Furthermore, PSLV genome 
consists as well of three + ssRNAs (RNA � , RNA � and 
RNA � ) [45, 46]. The PSLV TGB1 contains an N-terminal 
extension region and a C-terminal NTPase/helicase domain 
(HELD).

A co-localization of PSLV TGB1 (GFP-TGB1) with Fib 
(mRFP-AtFib) through agroinfiltration of N. benthamiana 
epidermal cells, encourages to analyze a direct protein–pro-
tein interaction. A series of Western Blot experiments with 
mutants of PSLV TGB1 and AtFib2 reveals that NTD of 
TGB1 directly interacts with fib in vitro and that the N-ter-
minal GAR domain of Fib is necessary for this interaction 
(Table 1) [27]. In addition, BiFC experiments exhibited 
an interaction between PSLV TGB1 and AtFib2 in both, 
the nucleolus and in the inclusions of different sizes in the 

cytoplasm [27]. Taking as a reference the involvement of 
Fib in GRV LDM [23, 24] and BSMV cell-to-cell movement 
[31], both re-localize fib to the cytoplasm and form an RNP 
complex. Thus, Fib might be involved in PSLV cell-to-cell 
movement or LDM. In fact, PSLV TGB1 has two in vitro 
RNA-binding activities: one is associated with the exten-
sion domain and is critical for LDM and the other is associ-
ated with the NTPase/helicase domain and is relevant for the 
formation of cell-to-cell movement competent RNPs [47, 
48]. Nevertheless, the TGB1 NTD is involved in cell-to-cell 
movement as well [41]. Makarov et al. (2015) suggests that 
the assembled PSLV TGB1-RNA complex be considered 
as a non-virion transport form of hordeiviral RNA facili-
tating both cell-to-cell and long-distance virus transport. 
Ultimately, infectivity studies must be conducted in order 
to elucidate the precise role of Fib in PSLV infection.

Beet black scorch virus – p7a

The Beet black scorch virus (BBSV) is a member of the 
genus Necrovirus [49]. BBSV has a single positive-stranded 
RNA genome that encodes six viral proteins. Confocal 
microscopy analysis of N. benthamiana epidermal cells 
stained with 2-(4-Amidinophenyl)-6-indolecarbamidine 
(DAPI) revealed that 87% of the P7a (fused to gfp) fluo-
rescence accumulated in the nucleus. BiFC assays showed 
an intense interaction between P7a and Fib (Table 1) in the 
nucleolus and CBs. Wang et al. (2012) found through P7a 
mutations that 9RRERRVR15 of the R-rich motif controls 
the nucleolar targeting. When P7aR5A mutant was tested 
to interact with Fib by BiFC, fluorescence was observed 
only in the nucleolus. Also, the R-rich motif of P7a is pre-
dicted to have an RNA binding domain. Consequently, this 
motif might be essential for cell-to-cell movement. TGB1 
of BSMV relocalizes Fib to the cytoplasm where both co-
localize with its viral RNA genome to promote cell-to-cell 
movement [31]. According to this, P7a of BBSV might relo-
calize Fib to the cytoplasm and form a RNP with gRNA for 
cell-to-cell movement, or P7a interacts with Fib as a strategy 
to localize in the nucleolus and CBs to undergo a nuclear 
role necessary for BBSV cell-to-cell movement. Neverthe-
less, Fib cytoplasmic localization needs further attention to 
uncover which of these two scenarios is the case or not.

Fibrillarin in virus‑mediated suppression 
of RNA silencing

Potyvirus A – NIa

Potyvirus is the largest genus of plant viruses with eight 
genera of viruses, all of them are plant-infecting ( +) 
ssRNA viruses. The genomic RNA of potyvirids contain 
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a single ORF that codes for a major polyprotein, which 
is proteolytically processed by virus-encoded protein-
ases. The polyprotein codes for the mature viral proteins 
P3–6K1–CI–6K2– VPg–NIaPro–NIb–CP, which are pro-
cessed by the proteinase NIaPro [50, 51].

NIa localizes primarily in the nucleus and less extensively 
in the cytoplasm of the infected cells [50]. NIa is partially 
process to produce VPg and NIaPro [52]. NIaPRO has a pro-
tease activity, responsible to processed the potyviral poly-
protein and a DNAse activity proposed to degrade host DNA 
to regulate gene expression [50, 53]. VPg interacts not only 
with the majority of the potyviral proteins [54, 55], as well 
with host proteins: the eukaryotic initiation factor eIF4E 
[56], a RNA helicase-like protein from peach and Arabidop-
sis (AtRH8) which is related to eIF4E [57], Poly(A)-binding 
protein [58], and Fib [25]. VPg is an intrinsically disordered 
protein, capable of interacting with several proteins, includ-
ing homodimers [59], and thus to participate in multiple 
processes [60–62].

As mentioned above, Potato virus A (PVA) NIa is mainly 
located in the nucleus of infected cells in systemically 
infected leaves of Solanum commersonii and N. tabacum 
(Rajamäki and Valkonen, 2009, 2003) examined by immu-
nostaining with antibodies against VPg and NIa-Pro. The 
PVA NIa N-terminus contain NLSI and NLSII, located at 
the residues from 4 to 9 and 41 to 50, respectively, both 
needed for efficient nuclear and nucleolar localization [25]. 
Also, PVA NIa accumulates in CBs. However, the nucleoli 
and CBs localization turned out to be independently con-
trolled by NLS II and NLS I, respectively.

The VPg domain of PVA NIa was found to interact with 
Fib, in vivo (Table 1). This interaction was subsequently 
studied in plant cells by BiFC [25]. Interestingly, VPg-Fib 
interaction occurred only in nucleoli and CBs but not in 
the cytoplasm (Fig. 1). In GRV where Fib is required for 
LDM [23, 24], and in BSMV where is part of the cell-to-
cell movement [31], the interaction in the cytoplasm is key 
to perform both processes. Therefore, this could mean the 
following scenarios: (1) In PVA infection, Fib might be 
involved in either LDM and cell-to-cell movement or both 
but in a different mechanism. (2) Fib is required for PVA 
in a different viral process rather than viral movement. (3) 
The VPg-Fib interaction signal in the cytoplasm is too weak 
to localize. Reduction of Fib expression by 30% to 80% in 
leaves by virus-induced gene silencing (VIGS) affected PVA 
accumulation by 50% but did not prevent LDM. By contrast, 
in similar experiments [23, 24, 29–31], the depletion of Fib 
resulted in the inhibition of LDM and cell-to-cell movement. 
Thus, an additional role of Fib in PVA infection becomes a 
plausible scenario.

Plant viruses evolved to counteract the plant RNA silenc-
ing machinery through viral proteins (viral suppressors of 
RNA silencing: VSR) that inhibit various stages of this plant 

defence [63]. Most potyviruses encode two viral suppressors 
of RNA silencing (VSRs), HCpro and VPg [25]. HCpro is 
probably the most studied protein of potyviruses, particu-
larly on its ability to suppress RNA silencing [64–66]. 
However, there is little research in VPg VSR activity. For 
instance, VPg of Turnip mosaic virus and other potyviruses 
mediate the degradation of SGS3, a key host protein, and 
its interacting and functional partner RDR6, both essential 
components of the RNA silencing pathway [67, 68].

Host genes are known to act as negative regulators of 
RNA silencing [63, 69, 70]. The NgRBP, a glycine-rich 
RNA binding protein (similar to Fib in the high content of 
glycine and the RNA binding property) from N. glutinosa 
suppress local and systemic RNA silencing induced by sense 
RNA or dsRNA. Mutational analysis of NgRBP demon-
strates that the RNA motif region is necessary to maintain its 
RNA- silencing suppression activity. Also, NgRBP was able 
to interact with the 3´end GFP mRNA and dsRNA, thus it is 
suggested that NgRBP blocks dsRNA synthesis by RdRp at 
the beginning of RNA silencing, and consequently, the RISC 
complex formation by competitive dsRNA binding [63].

PVA VPg interacts with Fib in nucleolus and CBs, both 
known centers for small RNAs, including siRNAs and 
microRNAs that regulate gene expression posttranscription-
ally [71–73]. Thus, Fib may be a vehicle for VPg to undergo 
its VSR activity in nucleoli and CBs. Furthermore, Fib 
interacts with RNAs of different lengths and types includ-
ing dsRNA and viral RNA in vitro [18]. As Anandalakshmi 
et al. (2000) speculate with NgRBP, Fib might impede RISC 
complex formation through competitive dsRNA binding. 
Alternatively, the VPg-Fib interaction may affect host tran-
scription or pre-mRNA processing, both processes in which 
Fib is involved, suggesting an explanation to the shutdown 
of host gene expression during potyvirus infection [74]. Fur-
ther studies need to explore why Fib interacts with a VSR 
protein.

Cucumber mosaic virus – 2b

Another VSR protein present in CBs and nucleoli is the 
Cucumber Mosaic Virus (CMV)-2b [26]. Different hosts 
and CMV strains confirmed that the deletion of CMV 2b 
gene affected entirely or, to some extent the symptons. 
Thus indicating that CMV 2b is involved in symptom 
induction in the hosts rather than in LDM [75–79]. In 
addition, CMV 2b counteracts host basal defenses based 
on RNA silencing. 2b was shown to suppress silencing 
in a protoplast system [80]. In A. thaliana CMV infec-
tion, accumulation of 21-, 22- and 24-nt siRNA species 
were significantly reduced compared to the same strain 
infection lacking 2b gene [81]. Furthermore, Zhang et al. 
(2006) demonstrated that 2b and AGO1 proteins interacted 
in vitro and in vivo by transient co-expression or crosses 



4682	 Molecular Biology Reports (2021) 48:4677–4686

1 3

between A. thaliana expressing each protein, followed 
by specific immunoprecipitation assays. Also, protein 2b 
might suppress RNA silencing to some extent by block-
ing AGO1, due to the evidence that protein 2b inhibits 
AGO1 slicer activity in vitro [82]. In this line, 2b protein 
is capable of interacting with protein AGO4, mainly in 
the nucleus of infected cells [26]. In CMV 2b transgenic 
A. thaliana and CMV infection affected the regulation of 
transposons, mimicking the AGO4 phenotype. Thus, CMV 
2b alters plant defense by interfering with AGO4-regulated 
transcriptional gene silencing [83].

CMV 2b protein colocalizes with Fib in nucleoli and 
associated bodies. Although, González et al. (2010) just 
reported a colocalization and not an interaction. PVA-NIa 
[25] and RSV-P2 [29], both VSRs, interact with Fib in 
nucleoli and CBs. This evidence, and that the 2b VSR 
activity relies significantly on the nucleoli [26, 83, 84] 
suggests a possible interaction between 2b and Fib. If this 
is the case, Fib might play a role in CMV 2b VSR activ-
ity, mainly due to its RNA binding ability and the pivotal 
movement through CBs and nucleoli [12].

Rice stripe virus – p2

RSV p2 is capable to interact with Fib in the nucleolus 
and CBs in N. benthamiana cells (Table 1) [29, 85]. Zheng 
et al. (2015) found that either NbFib2 or RSV p2 depletion 
prevents the systemic movement of RSV in N. benthami-
ana plants.

As mentioned above, p2-Fib interaction occurs in the 
nucleolus and CBs of N. benthamiana cells but not in the 
cytoplasm [29, 85]. GRV-ORF3 [23, 24] and satBaMV-
P20 [30] export Fib from the nucleolus and CBs to the 
cytoplasm to form vRNPs for its LDM. The lack of a 
p2-Fib cytoplasmic interaction and formation of vRNPs, 
indicates that the mechanism of Fib for LDM in RSV 
infection is different from the GRV [23, 24] and satBaMV 
infection [30] or has another role necessary for RSV-LDM.

Another host protein (from Oryza sativa) interactor of 
RSV p2 is a homologue of Arabidopsis suppressor of gene 
silencing (AtSGS3), designated as OsSGS3 (Os12g09580). 
AtSGS3 is a cofactor of RDR6 and has been implicated in 
antiviral silencing [86–90]. YTH and BiFC experiments 
demonstrated that the interaction between p2 and OsSGS3 
occurred in the cytoplasm and nucleus. The expression of 
the RSV p2 gene enhanced infectivity and pathogenicity of 
Potato virus X in N. benthamiana, indicated the functional 
role of p2 as a silencing suppressor [91]. The VSR activ-
ity of RSV p2 in the nucleus and the p2-Fib interaction in 
CBs and the nucleolus suggests a potential Fib’s role in 
the suppression of RNA silencing.

Mulberry mosaic dwarf‑associated virus – V2

Plant RNA viruses are not exclusive to show an interac-
tion with Fib. The Mulberry mosaic dwarf-associated virus 
(MMDaV), a novel, unsigned species of the family Gemi-
niviridae, a DNA-based genome virus, has been found to 
interact with Fib [32].

Yang et al. [92] showed that MMDaV V2 inhibited local 
RNA silencing and LDM of the RNA silencing signal, but 
not short-range spread of the GFP silencing signal in N. 
benthamiana plants expressing GFP. In addition, V2 was 
spotted to both subnuclear foci and the cytoplasm (in the 
absence of virus infection). Deletion mutagenesis of V2 
identified the basic motif (61 to 76 a.a) as crucial for V2 to 
form subnuclear foci and for suppression of RNA silenc-
ing. Further investigation on the V2 subnuclear localization 
demonstrated an interaction with NbFib2 through Y2H and 
BiFC in plant cells (Table 1). A V2 NLS (from amino acids 
61–77) mutant was assayed and did not interact with NbFib2 
[32]. Interestingly, V2 could not colocalize with NbFib2 in 
the nucleolus in the context of MMDaV infection, whereas 
V2 was found in the nucleoplasm.

MMDaV encodes five ORFs (V1–V5) and two ORFs 
(RepA and Rep) on the virion-sense and the complementary-
sense strands, respectively [93]. Different agrobacteria cul-
tures harboring each MMDaV viral proteins were infiltrated 
into RFP-H2B N. benthamiana plants leaves together with 
bacterium containing the construct GFP-V2. The exclusion 
of V2 from the nucleolus to the nucleoplasm was only pos-
sible when V2 was coinfiltrated with RepA. The plausible 
interaction of V2-RepA was confirmed via Y2H and through 
BiFC was limited to the nucleoplasm. V2 was observed to 
form homodimers and RepA excluded it as well to the nucle-
oplasm. Furthermore, RepA mediates nucleolar exclusion 
of V2-NbFib2 complex verified by BiFC in RFP-H2B plant 
leaves [32].

Plants evolved to limit viral replication and spread of 
RNA- and DNA-encoded viruses by different mechanisms. 
RdRp and Dicer-like (DCL) proteins target RNA viruses 
to generate siRNAs, and then catalyse additional cleavage 
of viral RNA. DNA viruses also generate small RNAs that 
are subject to RNA-directed DNA methylation (RdDM) [94, 
95]. Both, RNA- and DNA-based viruses encode silencing 
suppressors to limit the host plant defenses. The begomo-
virus Tomato yellow leaf curl virus (TYLCV) V2 protein 
suppresses the RdDM pathway through its localization to 
the CBs to interact with AGO4. TYLCV V2 protein colo-
calizes with Fib at the nucleolus and CBs [96], where V2 
triggers its suppressor activity. MMDaV RepA protein 
excludes V2-NbFib2 complex from the nucleolus to the 
nucleoplasmic sites [32] where Fib as a CB marker [12] 
might serve as an anchor to locate V2 and exert its function. 
Thus, MMDaV V2 protein might suppress RdDM at the CBs 
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as TYCLV V2 protein. Nevertheless, it needs to elucidate 
whether V2-NbFib2 interaction is required for V2 to sup-
press RNA silencing.

Conclusions and future directions

Although the study of viral interactions with the nucleolus is 
an already defined phenomenon, the precise mechanisms and 
functional role of these interactions are far from being elu-
cidated. Nucleolar proteomes during viral infection analysis 
together with bioinformatics techniques could be applied to 
explain the significance of viral-nucleolar molecule interac-
tions. As well, classical molecular biology techniques such 
as knockdowns to disrupt these interactions, provides a 
strong indication of which infective cycle phase is involved.

Fib is a common target for animal and plant RNA viruses. 
Particularly, in plant viruses is involved in both types of 
movements (LDM and cell-to-cell movement) apparently 
by the formation of RNP particles. VSR proteins are known 
to interact with Fib at nucleoli and CBS, the significance 
of these associations with the major nucleolar protein may 
be complicity with the suppression of RNA silencing. As 
discussed above, Fib is recruited for different purposes and 
the mechanism varies from a given virus to another. Reports 
from animal viruses known to interact with Fib may provide 
good insights to investigate in plant viruses.

The research on these interactions also provides knowl-
edge into novel nucleolar functions and processes and a way 
to define how to improve crops to be less susceptible to viral 
diseases.
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