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Abstract
Variants in the epidermal growth factor receptor (EGFR) gene are recognized as predictors of therapy response and are 
correlated with progression-free and overall survival in non-small cell lung cancer (NSCLC) patients. Molecularly guided 
therapy needs precise and cost-effective molecular tests. This review focused primarily on screening or target methods for 
the EGFR variants detection with diagnostic and prognostic potential in the clinical research published papers. Concern-
ing the inclusion and exclusion criteria, the search interval comprised available articles published from 2010 until 2020 in 
three electronic databases, ISI Web of Science, Pub Med, and Scopus. The analysis of eligible studies started with 5647 and 
obtained the final 987 full-text articles analyzed as clinical research. The regions comprised were Africa, America, Australia, 
Asia, Euro-Asia, Europe, or a consortium of different countries. All of the tested methods were applied prevalently in Asia. 
In clinical research, the polymerase chain reaction (PCR), followed by sequencing methods have been involved mostly over 
the years. The identified high-through output approaches evolved to improve the survival and quality of the NSCLC patient’s 
life becoming more sensitive, specific, and cost-effective.
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Abbreviations

‘Immuno’‑ Immunohisto/cytochemistry
TMA	� Tissue microarray
FP	� Fluorescence polarization
AQUA	� Automated quantitative analysis 

system

Hybridization techniques
FISH	� Fluorescence in situ hybridization
CISH	� Chromogenic in situ hybridization
SISH	� Silver-enhanced in situ hybridization
ISH	� In situ hybridization

Proteomics
MALDI TOF–MS	� Mass spectrometry, Matrix assisted 

laser desorption/Ionization time of 
flight mass spectrometry, Nucleotide 
mass spectrometry

ELISA	� Enzyme-linked immunosorbent assay
DHPLC	� Denaturing high performance liquid 

chromatography
HPLC	� High performance liquid 

chromatography

‘Seq’: Sanger sequencing
NGS	� Next generation sequencing (NGS) 

(with the advances), Deep sequencing 
(CAPP-Seq), SEQUENOM MassAR-
RAYiPLEX assay

PCR	� Polymerase chain reaction (End point, 
classical PCR)
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RD	� Recently developed: Clustered 
regularly interspaced short palin-
dromic repeats (CRISPR/Cas9), 
Gold nanoparticle-based microarray, 
Liquid-chip array, Fluorescence reso-
nance energy transfer-based prefer-
ential homoduplex formation assay 
(F-PHFA), Mach–Zehnder Interfer-
ometer (MZI) sensor and isothermal 
solid-phase DNA amplification (IDA) 
technique (MZI-IDA sensor system), 
Microfluidic paper-based electro-
chemical DNA biosensor (-PEDB)

PLA	� Proximity ligation assay

PNA microarray‑based fluorometric assay
MaMTH	� Mammalian-membrane two-hybrid 

assay
HRMA	� High-resolution melting analysis
RT-PCR	� Reverse transcription PCR
qRT PCR	� Real-time quantitative reverse tran-

scription PCR
qPCR	� Quantitative PCR or real time PCR: 

‘BEAMing’, ‘Idylla’, ‘Cobas’ real 
time PCR, Peptide nucleic acid 
(PNA)-mediated PCR clamping

ARMS	� Amplification refractory mutation 
system, or allele specific PCR

dPCR	� Digital PCR or digital droplet PCR
SPM	� Specific PCR methods: Restriction 

fragment length polymorphism PCR 
(RFLP-PCR), PCR Invader method, 
Single-strand conformation polymor-
phism (PCR-SSCP), Mutant enriched 
PCR, Non-enriched PCR (NE-PCR), 
Cycleave assays, Multiplexed PCR 
SERS Surface enhanced Raman 
spectroscopy, PNA-aPCR-Liquid chip 
(PAPL) method

Introduction

Revealing the sequence of human DNA with over 3 billion 
base pairs, the Human Genome Project (HGP) revolution-
ized the science and increased the understanding of the 
DNA variants (mutations or polymorphisms) in biomedical 
researches [1–3]. They have also become crucial in oncology 
research, particularly when recognized as cancer hallmarks 
[4, 5]. Either they were therapy response predictors or asso-
ciated with overall survival, the most important was their 
correlation with patients’ quality of life [6, 7].

Furthermore, molecularly guided therapy needs precise 
molecular tests. The sequencing technologies and their 
advances, accompanied with PCR approaches, enabled 
these tremendous discoveries, followed by an acceleration 
of researches toward personalized medicine and a new, ‘digi-
tal’ era in biology [3, 8, 9]. However, there are still many 
challenging issues for obtaining appropriate quality DNA or 
RNA sample from biological material [10, 11], or to identify 
the harmful change in the genetic material in the multistep 
process of tumor progression, with diagnostic or prognostic 
potential. So, the modern methods have been developing 
over the years through different regions becoming more sen-
sitive, specific, but cost-effective indeed.

NSCLC is the predominant form for approximately 80% 
of all lung cancers (LC), reported as one of the leading 
causes of death worldwide [12]. The variants of the EGFR 
gene as well as the signaling pathway of its altered protein 
in the neoplastic cells became very important in oncology, 
particularly in NSCLC research. The EGFR is a trans-
membrane protein whose signaling network is involved in 
healthy cellular development, growth, and differentiation. 
In neoplastic cells, its protein usually over-expressed [13, 
14], and its intracellular, altered kinase domain is shift-
ing the signals towards cancerogenesis [15]. Those altera-
tions refer to the variety of mutations and usually affect-
ing 18–21 exons of the EGFR gene, for instance, in-frame 
deletions, in-frame insertions/duplications, and point muta-
tions [16–18]. Approximately 90% of them account for two 
oncogenic-driver mutations E746-A750 deletion in exon 19, 
and L858R point mutation in exon 21 [19–21]. They sig-
nificantly correlated with clinical response to TK inhibitors-
gefitinib (Iressa®; AstraZeneca, London, UK) and erlotinib 
(Tarceva®; Roche, Basel, Switzerland). Besides the high 
mutation rate, the EGFR gene is usually amplified [17, 18], 
on the other hand, it is highly polymorphic [22–24]. The 
most studied were single nucleotide polymorphisms (SNPs) 
able to alter TKI therapy response, and this refers particu-
larly to -216G>T (rs712829) [25], CA repeat (rs11568315) 
[26, 27], and D994D (rs2293347) [7, 28]. The importance 
of this specific EGFR genetic background in advance-staged 
NSCLC patients in the context of either the mutations or the 
SNPs, is in their association with progression-free survival 
(PFS) and overall survival (OS) [19, 29–31]. That is to say, 
the influence and the rising knowledge of EGFR variants 
in oncologic research have been evolving over the years all 
around the world by conventional or recently developed 
methods applied in basic and clinical research of NSCLC 
patients.

A decade ago, the performed search recognized the diver-
sity, frequency, and significance of both screening and target 
methods for analyzing EGFR variants [32]. It also empha-
sized their advantages or disadvantages for routine labora-
tory manipulations in clinical or basic investigations. In this 
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review, we assumed current perspectives and novelties of 
diverse methods in the last 10 years through different regions 
thus investigating EGFR variants of NSCLC patients.

The methodology of literature search

The search of three electronic databases, ISI Web of Science, 
Pub Med, and Scopus were performed on April 2nd, 2020 for 
eligible papers considering methods for detection of EGFR 
variants in NSCLC patients. The search interval comprised 
papers published from 2010 until 2020 with the following 
searched terms for Pub Med database, with appropriate mod-
ifications for ISI Web of Science and Scopus: (receptor, epi-
dermal growth factor [MeSH Terms]) OR EGFR) AND gene 
[MeSH Terms]) OR polymorphism, genetic [MeSH Terms]) 
AND carcinoma, non-small-cell lung [MeSH Terms]) OR 
NSCLC [All Fields]) AND methods [MeSH Terms]) AND 
humans [MeSH Terms] AND (“last 10 years” [PDat] AND 
Humans [Mesh]). If the studies until April 2nd, 2020 were 
written in English or Russian, they were included in the 
search, while the reviews, meta-analyses, editorials, case 
reports were actually excluded from this search. Available 
studies were collected, merged and then all duplicates were 
removed. According to the inclusion and exclusion crite-
ria, titles and abstracts screened considering methods for 
detection EGFR variants (mutations or polymorphisms) 
in NSCLC patients to assess final full-text eligible studies. 
Those studies were afterwards analyzed as full-text articles 
in clinical research according to the year of publication or 
region (geographical). If the study team was from different 
countries or even continents, those papers summarized as 
‘consortium’. Russia and Turkey merged as Euro-Asia while 
America analyzed alone or usually as a part of the consor-
tium of different countries.

All results are shown for the last 10 years, although the 
ones concerning 2020 (with particularly 3 months results) 
are not included in further discussion. Because of the redun-
dancy of results, similar methods merged to simplify inter-
pretation. Descriptive statistics performed using a pivot table 
in Microsoft Excel (2007).

In this literature search, PCR methods are summarized 
based on the standardized abbreviations in guidelines 
reported in ‘Minimum Information for Publication of Quan-
titative Real-Time PCR Experiments’ (MIQE) [33]. Con-
cerning this, real-time PCR is interpreted as quantitative 
PCR (qPCR) and reverse transcription PCR, as RT-PCR (not 
‘Real-Time’ PCR, as reported in earlier papers), but qRT 
PCR as Real-Time Quantitative Reverse Transcription PCR 
[34], indeed. The abbreviated terms such as qPCR, ‘HRMA’, 
‘ARMS’, ‘dPCR’, and ‘SPM’ include appropriate methods 
(see “Abbreviations”).

Results

The eligibility triage of available studies started with 5647 
and ended with 987 full-text articles to be analyzed as 
‘clinical’ research (Supplementary material 1). Clinical 
research results showed that immunostaining, hybridi-
zation techniques, and the proteomic used in the 2010s 
had a downward trend over the years. Moreover, among 
all searched methods, PCR and sequencing dominate in 
the applications with similar trends. Although the year 
2013 had the highest usage score for both methods, NGS 
had an uptrend with an obvious increase in 2019 (Fig. 1). 
Recently developed methods were expectedly represented 
in a lower percentage but prevalently applied in 2014 and 
2015 (Fig. 1). The percent of PCR methods followed by 
sequencing methods (as well as NGS) was highest in Asia, 
Europe, America, and a consortium of different countries 
(Fig. 2).

The diversity of PCR methods were detected and 
included the following: classical PCR, HRMA, ARMS, 
qPCR, qRT PCR, RT PCR, digital PCR, or specific PCR. 
Figures 3 and 4 present the classical, endpoint PCR imple-
mented the most in 2013, and Asia, of course, but with a 
downward trend over the years. It is important to empha-
size that qPCR, ARMS, and digital PCR had an uptrend 
over the years, while others such as HRMA, qRT PCR, 
RT PCR, or specific PCR methods, have had a downtrend 
in recent years (Fig. 3). All PCR methods are much more 
used in Asia than in the rest of the regions, indeed (Fig. 4). 
In Europe and a consortium of countries, qPCR and con-
ventional PCR, as well as digital PCR are involved in a 
higher percentage than other PCR methods (Fig. 4).

Discussion

This review has analyzed screening or target methods in 
clinical research for the detection of the EGFR variants 
in NSCLC patients in the last decade and through dif-
ferent regions, indeed. These issues are leaning to our 
previous work [32] and showing that the immunostain-
ing techniques have been used in the early 2000s, usu-
ally in combination with some other techniques but with a 
dropdown trend. Contrary to PCR-like or the sequencing 
techniques, whose usage increased over the years, these 
trends continued within here. Considering that the studies 
of the EGFR variants revealed the potential variances in 
genetic patterns in NSCLC of various populations [22, 
35, 36], this review extended the analysis of new methods 
applications in the regions worldwide. Anyhow, to explain 
the complexity of interactions between the variants of the 
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EGFR and NSCLC patients, it was clear that a comprehen-
sive approach is necessary-from the conventional ones to 
the novel, high-through output methods.

The diagnostic potential of two oncogene-driver muta-
tions, the deletion in exon 19 and point mutation in exon 
21 was evident and the methods of choice for their iden-
tification were direct DNA sequencing and PCR, but with 
limited clinical application. Immunostaining techniques are 

convenient screening methods for routine practice in clini-
cal laboratories since they could recognize these hot-spot 
mutations with mutation-specific rabbit monoclonal antibod-
ies, and also they are cost-effective, rapid, with high speci-
ficity, and sensitivity [37, 38]. Despite all this, they could 
detect the well-known only, not the novel EGFR alterations, 
significant for the introduction of the new therapeutics. In 
further, their effectiveness is concerning since the PCR or 

Fig. 1   Percent of methods in clinical research over the years for 
EGFR variants in NSCLC patients. *Counted in the relation to total 
number of 987 full text articles for clinical research. Immuno-Immu-
nostaining techniques; Hy hybridization techniques; PCR polymerase 

chain reaction; Seq-Direct sequencing; NGS next generation sequenc-
ing; Proteomics- Mass spectrometry, ELISA, DHPLC, and HPLC; 
RD recently developed

Fig. 2   Percent of methods in clinical research through regions for 
EGFR variants in NSCLC patients. *Counted in the relation to total 
number of 987 full text articles for clinical research. Immuno-Immu-
nostaining techniques; Hy hybridization techniques; PCR polymerase 

chain reaction; Seq-Direct sequencing; NGS next generation sequenc-
ing; Proteomics- Mass spectrometry, ELISA, DHPLC, and HPLC; 
RD recently developed
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sequencing methods, usually applied as the competitive 
methods, confirmed some of the EGFR mutations missed 
by immunostaining techniques [37]. All mentioned could 
refer to the decrease in applications in recent years in clini-
cal research (Fig. 1).

Starting from the 2010s, over the years, the similarities 
in usage decrease was evidenced not only for immunostain-
ing techniques in clinical researches but also for hybridi-
zation and proteomic techniques (Fig. 1). Previous reports 
showed the improved response rate, time-to-progression, and 

Fig. 3   Percent of various PCR methods over the years in clinical 
research for EGFR variants in NSCLC patients. *Counted in the rela-
tion to total number of 987 full text articles for clinical research. PCR 
polymerase chain reaction; HRMA high-resolution melting analysis; 

ARMS amplification refractory mutation system; qPCR quantitative 
PCR, qRT-PCR real-time quantitative reverse transcription PCR; RT-
PCR reverse transcription PCR; dPCR digital PCR; SPM Specific 
PCR methods

Fig. 4   Percent of various PCR methods through the region in clini-
cal research for EGFR variants in NSCLC patients. *Counted in the 
relation to total number of 987 full text articles for clinical research. 
PCR polymerase chain reaction; HRMA high-resolution melting anal-

ysis; ARMS amplification refractory mutation system; qPCR quantita-
tive PCR; qRT-PCR real-time quantitative reverse transcription PCR; 
RT-PCR reverse transcription PCR; dPCR digital PCR; SPM specific 
PCR methods
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survival in NSCLC patients associated significantly with the 
high EGFR gene copy number or high polysomy evaluated 
by fluorescence in-situ hybridization (FISH) [39, 40]. There-
fore, at that time, the FISH was a method of choice, and 
the predictive role of EGFR gene amplification suggested 
for the clinical benefit either with EGFR monoclonal anti-
bodies or TKI therapy [40, 41]. But the others found FISH 
inconsistency with the outcome and favored EGFR mutation 
detection with sequence analysis for predicting response and 
prolonged progression-free survival in NSCLC patients [42]. 
Also, the technical robustness of hybridization techniques in 
the clinical application [39, 41] might be a reason for usage 
decrease over the years, found in this review (Fig. 1).

DNA sequencing, usually combined with PCR-based 
methods had important diagnostic or prognostic potential 
[42]. Among the whole set of methods analyzed here over 
the years, direct sequencing and PCR dominate in the appli-
cations (Fig. 1). This is the most frequent combination of 
methods applied prevalently in Asia, but also in the rest 
of the examined regions with a similar trend (Fig. 2). The 
direct or Sanger sequencing method was the first-generation-
sequencing method with only several genes sequenced at a 
time [43, 44]. In the years that followed, the fast progress of 
the sequencing techniques revealed the second generation 
in 2005 [45], the third-generation in 2010 [44, 46, 47], and 
even the fourth-generation of sequencing methods appeared 
in 2012 [48]. Contrary to all the advances in sequencing 
technologies, the Sanger sequencing remains a gold standard 
for the confirmation of the results, despite the robustness 
and all the other constraints [49]. Even with the appearance 
of novel generations in the sequencing of DNA or RNA in 
the early 2010s, the prevalent application in that period for 
EGFR variants in NSCLC patients was direct sequencing 
and PCR with the highest score in 2013 (Fig. 1). One can 
notice their slight descending trend till 2019, but with the 
evident rising of the next generation sequencing (NGS) 
applications (Fig. 1).

To elucidate the importance of the next generation 
sequencing herein results were separated from direct 
sequencing and showed an uptrend over the years with 
the highest percentage in the application in 2019 (Fig. 1). 
Namely, the sequencing methods evolved in terms of lower-
ing the costs, reducing time, and increasing the length read, 
enabling the sequencing of the whole-genome, the whole-
exome, but also the whole-transcriptome [48, 50, 51]. The 
second-generation or the NGS performed as massively paral-
lel, simultaneous sequencing reactions [45], thus referring to 
Roche 454, Illumina Solexa, and ABI-SOLiD technologies 
[48]. The main advantage of the NGS is the ability to reveal 
the novel variations that cannot detect with genotyping, 
particularly the SNPs that could affect the activity of anti-
cancer therapeutics [7, 25–28, 52]. The NGS relay on PCR 
that could introduce some errors, but it generally improved 

higher sensitivity. In this review, various applications of the 
NGS identified, i.e., SEQUENOM MassARRAYiPLEX 
assay is applied frequently for the EGFR SNP detection 
[53, 54]. Another NGS method is CAPP‐Seq-cancer per-
sonalized profiling by deep sequencing performed in cir-
culating tumor DNA obtained from patients with NSCLC 
who developed T790M mutation connected with acquired 
resistance of EGFR‐TKIs, and recurrence of the lung cancer 
[55]. The technological advancements enabled the variety of 
platforms as the third or even fourth generation sequencing 
technologies, reported as accurate, faster, without previous 
PCR amplification step, with the lower amount of starting 
sample, and lower costs than the NGS [44, 46–48, 52, 56]. 
Anyhow, these methods are still time-consuming for the 
clinical setting, labor-intensive, they require bioinformatics 
expertise in management and extraction of clinically relevant 
data, and due to equipment costs, almost not applicable in 
low- to middle-income counties [1, 44, 51, 57].

Another set of methods reported lower costs, simplicity 
but also high specificity and sensitivity, under this review 
termed recently developed (RD) methods. It involved cer-
tain novelties, applied prevalently in 2014 and 2015, but 
in lower percent than PCR or sequencing methods (Figs. 1, 
2). Still, their involvement is not in the terms of single 
methods usage, but usually with confirmation of sequenc-
ing methods. For their broad application, further clinical 
investigations are recommended. The several following 
methods reported for high sensitivity, but they are referred 
usually to as common, activating, or acquired EGFR muta-
tions, not to the novel EGFR variants in NSCLC patients. 
For example, gold nanoparticle (AuNP)–based platform [58, 
59], or Mach–Zehnder Interferometer sensor and isother-
mal solid-phase DNA amplification technique (MZI-IDA 
sensor system) could detect even 1% of the mutant allele 
and could be applied without thermal cycling [60]. Sensi-
tive and noninvasive methods for EGFR mutation detec-
tion were microfluidic paper-based electrochemical DNA 
biosensor (-PEDB) that used saliva of the patient [61], and 
the liquid-chip array for fast EGFR mutation detection in 
plasma [62]. A few of them were non-molecularly based 
methods applied to detect the interaction of EGFR in pro-
tein complexes like proximity ligation assay (PLA) in the 
terms of downstream EGFR signaling [63]. The mamma-
lian-membrane two-hybrid assay (MaMTH) able to detect 
changes in those proteins caused by EGFR mutations [64], 
or PNA microarray-based fluorometric assay, detected com-
mon EGFR mutations in a highly sensitive and high spe-
cific manner [65]. Fluorescence resonance energy transfer-
based preferential homoduplex formation assay (F-PHFA) 
is presented as an assay with a short turnaround time and 
relatively low cost. It could be implemented with real-time 
PCR equipment for the detection of the EGFR mutations in 
NSCLC patients derived from cell free-DNA samples [66]. 
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Recently, two scientists Emmanuelle Charpentier and Jen-
nifer A. Doudna have shared the Nobel Prize, for the dis-
covery of DNA editing with clustered regularly interspaced 
short palindromic repeats (CRISP/Cas9) [67]. Thus, among 
all of these recently developed methods, the most promising 
is the CRISP/Cas9 reported as cost-effective, easily applica-
ble, and suitable for clinic researches, for example in detec-
tion of the mutation with low allele frequency in cell-free 
DNA [68, 69].

Among all the NSCLC patients in Asia, a subset with 
good response to TKI had specific phenotype: Asian ances-
try, women, adenocarcinoma histology, and non-smokers 
[16, 19, 22]. All the applied methods screened with this 
review were predominant in Asia (Figs. 2, 4). That cor-
responds with the evidenced larger fraction of mutant 
NSCLC cases there [22, 36, 70], and the technological pro-
gress related to economic development might be reflected 
in this application [71, 72]. The application of methods 
in all examined regions was in the following order: PCR, 
direct sequencing, and NGS, prevalently in Asia, followed 
by Europe and America, or consortium of different coun-
tries (Fig. 2). But to notice, the percent accounted for the 
final sum of eligible full-text articles, not for the number of 
patients included in the studies.

Oncological societies, the College of American Patholo-
gists (CAP), the International Association for the Study of 
Lung Cancer (IASLC), and the Association for Molecular 
Pathology (AMP) gave very detailed recommendations for 
usage of adequate assays in the specific molecular guide-
lines. Usually, they refer to the sequencing and PCR-based 
methods for advanced NSCLC [73–75]. In 2016, Food and 
Drug Administration (FDA) approved the Cobas® EGFR 
Mutation Test v2 (P120019/S007), based on the qPCR tech-
nology, as a diagnostic test in helping NSCLC stratification 
for treatment decisions [76], but the system and reagents 
might not be cost-effective for whole regions applications 
[65].

The sensitivity of methods for EGFR mutation detection 
in NSCLC patients in the context of molecular diagnostics 
is indispensable but affected by several limitations. Obtain-
ing a good quality and high quantity of the DNA sample is 
a challenging issue from formalin-fixed paraffin-embedded 
(FFPE) tissues that might be contaminated with wild-type 
DNA [76]. Also, a high mutation detection limit of direct 
DNA sequencing (approximately 25%) and long turnaround 
time could affect further the clinical-decision making. To 
overcome this, highly sensitive tests have been developed 
and usually referred to PCR-based methods like amplifica-
tion refractory mutation system (ARMS), with high specific-
ity and sensitivity up to 1% [77], or even higher sensitivity of 
0.12–2.73% reported with digital droplet PCR (ddPCR) [78]. 
However, in clinical researches, conventional PCR is still 
mostly utilized, followed by quantitative PCR, ARMS, and 

ddPCR (Fig. 3). But in the time of use context-the qPCR, 
dPCR, or even ARMS increased in usage from 2010 to 2019 
(Fig. 3) contrary to the traditional PCR that has had a slight 
decrease in recent years, probably due to lower sensitiv-
ity than the methods mentioned above. Others applied in 
smaller percent with inconsistency in trends like HRMA, 
qRT PCR, RT PCR, or specific PCR methods (Fig. 3).

Adaptability is probably the most important issue con-
nected with the advantages of the PCR-based methods that 
explain their numerous applications in the detection of 
the EGFR variants of NSCLC patients evidenced by this 
review. The progression was from endpoint PCR to more 
sophisticated methods [79–82]. Several novel PCR platforms 
detected here reported a higher sensitivity than conventional 
sequencing but referred to common mutations. The PCR-
invader method [80], or the PNA clamping method might 
detect even 1% of mutant alleles [83, 84], and i.e. nanoflu-
idic digital PCR arrays, able to detect and quantify EGFR 
mutations with a detection limit down to (0.02–9.26%) in 
a low amount of lung cancer tissue sample [81]. Some of 
the laboratory-developed tests, often affordable, and in here 
termed-the specific PCR methods, with relative simplicity 
in a real‐life clinical setting were applied in the early 2010s 
mostly in Asia (Figs. 3, 4). Although they have significant 
application potential, usually referred to as highly sensi-
tive, but also without clear and transparent procedures, for 
broader usage they need to be officially validated. It includes 
restriction fragment length polymorphism PCR (RFLP-
PCR) [25], PCR invader method, and Cycleave assays [85], 
single-strand conformation polymorphism (PCR-SSCP) 
[86], mutant enriched PCR [87], and others.

The invasiveness of the surgical resections in usually 
inoperable advance-staged NSCLC patients accompanied 
with other comorbidities is replaced with the small biop-
sies which were proposed by the World Health Organiza-
tion in 2015 [88]. The tendency of EGFR mutation detec-
tion is towards replacement with non-invasive, cell-free 
DNA-based assays with high sensitivity and specificity. 
Besides, the tissue-based assays usually require re-biopsy 
and have certain constraints due to the small quantity of 
sample, tumor heterogeneity, which might contain a low 
amount of the mutated cells, and high background of the 
wild-type DNA [89–91]. One of that highly precise and 
reproducible approaches is the digital PCR (dPCR) based 
on the water-in-oil emulsion, where simultaneously PCR 
reactions amplified in more than a million nanoliter drop-
lets. It showed good performances even with poor quality 
of the DNA sample degraded by FFPE lung tumor tis-
sue [78], but in further the good correlation for EGFR 
mutation detection in tissue and plasma samples [92]. 
Despite the evident increase in usage of dPCR in recent 
years (Fig. 3), it is predominantly applied in Asia (Fig. 4). 
However, the NGS methods and the dPCR have high costs 
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[93] that probably interfere with wide clinical applications 
of these approaches. Furthermore, the cost-effectiveness 
of qPCR, classical PCR, as well as ARMS, makes them 
mostly applied in Asia, Europe, or in the rest of the exam-
ined regions for EGFR variants detection (Fig. 4).

Conclusions

With this review, the focus was on methods for all reported 
and clinically relevant  EGFR  variants connected to 
response to therapy, progression-free survival, or overall 
survival of NSCLC patients through different regions of 
the world. Immunostaining techniques were applied earlier 
but with a decrease in usage in clinical research similar to 
the hybridization and proteomic techniques. The PCR and 
sequencing methods remain a golden standard in clinics, 
with evident influence and increase in usage of the NGS 
approach. A variety of sequencing and PCR platforms 
exist nowadays, reporting high sensitivity, and specificity 
for the EGFR variant detection, short turnaround time, 
high reproducibility, or even simplicity in procedures, but 
the costs usually restrict their broader application. Among 
recently developed methods, the most promising are the 
CRISP/Cas9 and the ddPCR. Concerning the key issues 
from this review, all the tested methods are prevalently 
applied in Asia. A precise, rapid, uniform, and widely 
applicable test with diagnostic or prognostic purposes is 
a big challenge for the future, with the improvement of 
NSCLC patients’ quality of life as the main and urgent 
aim.
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