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Abstract
Liver cancer is the sixth most common cancer and the fourth leading cause of cancer deaths in the world. The most com-
mon type of liver cancers is hepatocellular carcinoma (HCC). Autophagy is the cellular digestion of harmful components 
by sequestering the waste products into autophagosomes followed by lysosomal degradation for the maintenance of cellular 
homeostasis. The impairment of autophagy is highly associated with the development and progression of HCC although 
autophagy may be involved in tumour-suppressing cellular events. In regards to its protecting role, autophagy also shelters 
the cells from anoikis- a programmed cell death in anchorage-dependent cells detached from the surrounding extracellular 
matrix which facilitates metastasis in HCC. Liver cancer stem cells (LCSCs) have the ability for self-renewal and differentia-
tion and are associated with the development and progression of HCC by regulating stemness, resistance and angiogenesis. 
Interestingly, autophagy is also known to regulate normal stem cells by promoting cellular survival and differentiation and 
maintaining cellular homeostasis. In this review, we discuss the basal autophagic mechanisms and double-faceted roles of 
autophagy as both tumour suppressor and tumour promoter in HCC, as well as its association with and contribution to self-
renewal and differentiation of LCSCs.
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NIX	� BNIP3L/Receptor for mitochondrial 
protein

OPTN	� Optineurin
LAMP2	� Lysosome-associated membrane protein 2
GRASP55	� Golgi reassembly-stacking protein 55
EMS	� Eukaryotic endomembrane system
ILVs	� Intraluminal vesicles
MVBs	� Multivesicular bodies
MDB	� Mallory-Denk bodies
ATP	� Adenosine triphosphate
ROS	� Reactive oxygen species
RNS	� Reactive nitrogen species
Nrf2-Keap1	� Nuclear factor erythroid 2-related factor 

2-kelch-like ECH-associated protein 1
HIF	� Hypoxia inducible factor
BNIP3	� BCL2 and adenovirus E1B 19-kDa-inter-

acting protein 3
BNIP3L	� BCL2: adenovirus E1B 19-kDa-interact-

ing protein 3-like
COX2	� Cyclooxygenase-2
PGE2	� Prostaglandin E(2)
TNM	� Tumour, node, metastasis
CTC​	� Circulatory tumour cells
EMT	� Epithelial-mesenchymal transition
TGF-β	� Transforming growth factor β
TRAF6	� Tumour necrosis factor receptor-associ-

ated factor-6
TAK1	� TGF-β activated kinase 1
DRAM1	� DNA damage modulator 1
CREB	� CAMP response element binding
HO-1	� ROS/heme oxygenase 1
UPR	� Unfolded protein response
HSP	� Heat shock protein
5-FU	� 5-Fluorouracil
TAE	� Transarterial embolization
TACE	� Transarterial chemoembolization
Egr-1	� Early growth response-1
IR	� Ionizing radiation
VEGFR	� Vascular endothelial growth factor 

receptor
PDGFR-β	� Platelet-derived growth factor receptor β
GSTM1	� Glutathione transferase Mu 1
LCSC	� Liver cancer stem cells
AFP	� Alpha fetoprotein
FGFs	� Fibroblast growth factors
ECM	� Extracellular matrix
SIRT1	� Gene encoding Sirtuin1 protein
ALDH	� Aldehyde dehydrogenase
ABC	� ATP-binding cassette
4-HNE	� 4-Hydroxy-2-nonenal
NAD	� Nicotinamide adenosine dinucleotide
MEK	� Mitogen-activated protein kinase
MRPS5	� Mitochondrial ribosomal protein S5

AC	� Acetyl
TCF/LEF	� T-cell factor/lymphoid enhancer factor
CSL, CBF-1	� Suppressor hairless lag-1
MAML	� Mastermind-like protein
NICD	� Notch intracellular domain
NECD	� Notch extracellular domain
LSD1	� Lysine demethylase 1
UPRmt	� Mitochondrial unfolded protein response
HPC/LPC	� Hepatic/liver progenitor cells
PINK1	� PTEN-induced putative kinase
HGF	� Hepatocyte growth factor
FGFR	� Fibroblast growth factor receptor

Introduction

Autophagy is an intracellular self-digestive mechanism that 
degrades damaged cellular materials and wastes through lys-
osomal degradation [1]. It is essential for cell survival and is 
highly conserved across various species [2]. In Saccharomy-
ces cerevisiae, the autophagic machinery was first identified 
and was then described in other mammalian models [3, 4] 
This process involves a variety of autophagy-related (ATG) 
proteins and require diverse signalling pathways as it starts 
off with the initiation phase, elongation of the phagophore 
and maturation of the vesicle. The matured autophagosome 
then fuses with the lysosome and subsequent degradation 
occurs [5]. Over the years, autophagy has been linked to the 
pathophysiology of various diseases including myopathies, 
ageing, cancer and metabolic diseases such as diabetes, 
liver and heart diseases [6]. In fact, the dysregulation of 
autophagy had been observed in various cancers including 
breast, ovarian, and liver cancers [7].

Liver cancer is the sixth most common cancer and the 
fourth leading cause of cancer-related deaths in the world. 
The incidence and mortality rates are approximately 2 to 3 
times higher in males than in females [8]. Hepatocellular 
carcinoma (HCC) is the most common form of liver malig-
nancy which accounts for 85–90% of the total cases [9]. The 
aetiology of HCC is linked to dietary, lifestyle, environmen-
tal factors and genetic predispositions [10]. Chronic hepa-
titis B virus (HBV) and hepatitis C virus (HCV) infection, 
alcohol consumption, and non-alcoholic fatty liver remain 
the major risk factors for HCC. Approximately 75% of HCC 
cases are related to chronic HBV and HCV infections [11]. 
HBV can induce activation of oncogenes and genetic insta-
bility [12] while HCV damages liver cells by causing hepatic 
necrosis, accumulation of oxidative stress and steatosis prior 
to the development of HCC [13]. Other risk factors of HCC 
include the exposure of aflatoxin B1, primary biliary cir-
rhosis, genetically associated predispositions including 
hereditary hemochromatosis, alpha1-antitrypsin deficiency, 
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glycogen storage disease type-1, autoimmune hepatitis and 
type-2 diabetes [14].

HCC commonly emerges from chronic liver cirrhosis 
which is a progressive, fibrosing and nodular condition that 
disrupts the structure and functions of the liver [15]. Typi-
cally, liver cirrhosis develops after persistent chronic inflam-
mation and could contribute to carcinogenesis by inducing 
chromosomal instability and molecular alterations includ-
ing disruption of cell cycle checkpoints and activation of 
oncogenic pathways [14]. HCC is usually detected either 
by active periodical screening, or due to clinical presenta-
tions such as abdominal pain, and/or liver decompensation 
[16]. This disease is often diagnosed at late stages which 
significantly affects the treatment efficacies [17]. Treatment 
options include surgical resection, tumour ablation, liver 
transplantation, percutaneous treatments and chemoembo-
lization [18, 19]. For HCC detected in early stages, 5-year 
survival of patients after resection and transplantation can 
achieve 60–70%. Patients with intermediate-stage HCC 
have a 3-year survival rate of 50%, while advanced stage 
have a 3-year survival rate of 8%. Patients who are diag-
nosed in the late stages have a very poor prognosis and can 
have less than 6 months life expectancy [17, 18].

HCC tumour suppression and promotion are modulated 
by several regulatory components and pathways, of which 
some of them confers both fates depending on the tumour 
niche and cancer progression. The double-sided role of 
autophagy as a tumour suppressor or promoter in HCC 
has been previously reported and is known to play a part 
in cancer progression [20]. Under normal circumstances, 
autophagy is responsible for maintaining homeostasis by 
degrading abnormal proteins and damaged organelles, thus 
preventing abnormal cell growth which eventually leads to 
tumour development [21]. However, this autophagic mecha-
nism seems to be “hijacked” by cancer cells to recycle and 
reuse the nutrients produced by the waste metabolic products 
to support cancer growth [22]. The energy generated from 
this process is then used to strive and counteract against 
environmental stress such as hypoxia, oxidative stress and 
energy deprivation which consequently contributes to the 
survival and proliferation of liver cancer cells. In addition, 
autophagy also contributes to the promotion of drug resist-
ance [23]. Signalling pathways involving proto-oncogenes 
such as PI3K, AKT and mTOR, and tumour suppressors 
such as BECN1 and TP53, as well as non-coding RNAs 
are involved in autophagy regulation. These oncogenes can 
either promote or suppress autophagy, which eventually con-
tributes to HCC or otherwise [24].

In recent years, a comprehensive understanding of cancer 
as a disease and the underlying mechanisms driving can-
cer progression has been developed. Intriguingly, cancer 
stem cells (CSCs) are found to be one of the key drivers 
of tumour progression and aggressiveness which leads to 

failure of treatments [25]. These are small subpopulations 
of cells found within the tumours in various cancers such 
as leukaemia, breast cancer, glioblastoma, prostate, lung, 
gastric and ovarian cancer [26]. CSCs possess unique char-
acteristics including self-renewal, differentiation and chem-
oresistance [27]. They are enriched with unique markers 
such as CD133, CD90, CD13, CD44, and EpCAM [27, 28]. 
The number of CSCs present in solid tumours varies largely 
and its role in cancer regulation may vary depending on the 
cancer type and disease staging [29]. CSCs are also readily 
found in HCC tumours and have shown to contribute to the 
metastasis, tumour recurrence and drug-resistant nature of 
HCC [27, 30].

In liver cancer stem cells (LCSCs), autophagy was found 
to be involved in the stem cell regulation for cell mainte-
nance, self-renewal, and stem cell differentiation [31]. The 
interplay of autophagy and the different signalling pathways 
involved in stem cell regulation provides a clearer picture 
of how it can influence HCC development and progression. 
Thus, understanding the role of autophagy in LCSCs in HCC 
progression and developing treatment targeting CSCs have 
emerged as an important effort. In this review, we aim to 
discuss the role of autophagy and CSCs in HCC progression 
and aggressiveness. We also attempt to provide insights on 
the interplay between autophagy and LCSCs in promoting 
HCC.

Role of autophagy in hepatocellular 
carcinoma

Basic mechanism and functions of autophagy

Autophagy was first described and coined in 1963 by bio-
chemist, Christian de Duve following the observation of 
the degradation of the mitochondria and other intracellular 
structures in rat liver shortly after the injection of glucagon 
[32]. The mechanisms of protein degradation in the cells 
were soon delineated after the discovery of lysosomes from 
the cell fractionation of rat liver homogenate which con-
tained acid phosphatase and other hydrolytic enzymes [33]. 
The autophagosome, a double membrane structure that con-
tains organelles and cytoplasmic components, was formed 
in the early stages of autophagy. Ensuing this process, the 
structure was later observed and termed as autophagolyso-
some which embodies various proteins and organelles for 
degradation by hydrolytic enzymes [34].

Autophagy possesses sequential pathways which ulti-
mately leads to the degradation of damaged proteins and 
cytoplasmic constituents to maintain cellular homeostasis 
and survival [35]. It is also activated in response to physi-
ological stress in cells such as oxidative stress and nutri-
ent starvation [36]. In mammals, autophagy induction 



3698	 Molecular Biology Reports (2021) 48:3695–3717

1 3

is primarily regulated by class III phosphatidylinositol 
3-kinase (PI3K) complexes such as vacuolar protein sorting 
34 (VPS34) and ATG6/Beclin-1 complex [37], and mam-
malian target of rapamycin complex (mTORC1) (Fig. 1). 
In the event of a growth-favourable environment, mTORC1 
phosphorylates and represses unc-51 like kinase 1 (ULK1), 
mammalian autophagy-related protein 13 (ATG13), and 
focal adhesion kinase family-interacting protein of 200 kDa 
(FIP200) which form a kinase complex that is required to 
activate the autophagy pathway [38]. When the cells undergo 
nutrient deprivation, ULK1 alternatively dissociates with 5` 
adenosine monophosphate-activated protein kinase (AMPK) 
to induce autophagy [39]. ATG13 binds to ULK1/2 and 
FIP200 and subsequently, ULK1/2 phosphorylates FIP200 
along with the ULK1-ATG13-FIP200 complex. This event 
activates a cascade, whereby the PI3K complexes consisting 
of Beclin-1, ATG14L, AMBRA1, VPS34 and p150 are acti-
vated [40]. Following that, VPS34 facilitates the formation 
of phosphatidylinositol triphosphate (PI3P) to recruit other 

complexes for subsequent phagophore elongation and the 
formation of the autophagosome [41].

Autophagy is initiated from a phagophore formation 
that originates and assembles from the plasma membrane, 
Golgi complex, endosomes and endoplasmic reticulum (ER) 
[42] (Fig. 1). As the phagophore elongates, there are two 
types of ubiquitylation-like conjugation systems that are 
involved. These systems are the ATG12-ATG5-ATG16L1 
and ATG8 system. ATG12 is first conjugated to ATG5 by 
E1-like activating enzyme ATG7 and E2-like conjugating 
enzyme ATG10 followed by the conjugation of ATG16L1. 
The conjugated ATG12-ATG5-ATG16L1 acts as an E3-like 
enzyme which plays a role in the second conjugation system 
by promoting lipidation of ATG8 for cargo recognition and 
autophagosome formation [43]. ATG12-ATG5-ATG16L1 is 
also involved in membrane tethering and the aggregation 
of vesicles for phagophore elongation [44]. Microtubule-
associated protein 1A/1B-light chain 3 (LC3) are distributed 
throughout the mammalian cells and they are the ortholog 

Fig.1   Autophagic processes in a cell. Stress signals generated from 
nutrient or growth factor deprivation and mTORC1 inhibition lead 
to the activation of (1) ULK complexes including ULK1/2, ATG13 
and FIP200. ULK phosphorylates Beclin-1, activating the PI3K com-
plexes consisting of Beclin-1, ATG14L, VPS34, AMBRA and P150 
followed by phagophore formation. (2) The source of membrane used 
to form the phagophore assembled from the mitochondria, Golgi 
complex, recycling endosomes and plasma membrane. (3) Two ubiq-
uitin-like conjugation systems: ATG12-5-16L1 complex and the LC3 
conjugation system are involved in the elongation of the phagophore. 
The catalysation of LC3 to LC3-II and its conjugation to phosphati-
dylethanolamine (PE) forms the LC3 conjugation system. (4) Both 

are then incorporated into the phagophore for elongation. (5) LC3-
II exists as a site for binding of adaptor proteins such as SQSTM1/
p62 and NIX with respective cargos allowing cargo sequestration. 
(6) The sealing of the phagophore marks the end of autophagosome 
formation and it eventually fuses with the lysosome which allows the 
release of acid proteases. (7) The lysosome is completely fused with 
the autophagosome to form the autolysosome. (8) Proteins or other 
cellular components are degraded, and the nutrients released from the 
hydrolysed waste products are recycled to generate additional energy 
for the maintenance of cell viability and proliferation including in 
cancer cells
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of ATG8 in yeast [45]. In the second conjugation system, 
the LC3 protein is cleaved by cysteine protease ATG4 to 
form the cytosolic LC3-I protein. LC3-I is then conjugated 
to phosphatidylethanolamine (PE) by E1-like enzyme ATG7 
and E2-like enzyme ATG3 to form lipidated LC3-II [45]. 
LC3-II then binds to the phagophore membrane to form an 
autophagosome. ATG18/WIPI proteins are also involved in 
the elongation of the phagophore by recognizing and binding 
to PI3P and assembling the two conjugation systems [46]. 
Transmembrane protein ATG9, which is accumulated at the 
trans-Golgi and late endosomes, also facilitates membrane 
transfer and phagophore elongation [47].

Cargo recognition is enabled by autophagy adaptor pro-
teins and cargo receptors such as sequestosome-1/ubiqui-
tin-binding protein p62 (SQSTM1/p62), the receptor for 
mitochondrial protein (NIX), optineurin (OPTN), NDP52/
CALCOCO2 and NBR1. These cargo receptors allow bind-
ing to specific target cargos and ubiquitination. The cargo 
receptors then interact with receptor protein LC3-II on the 
autophagosome membrane to direct the cargo delivery to the 
autophagosome [48, 49]. After the cargoes are delivered, the 
autophagosome is elongated until it is sealed. The lysosome 
then fuses with the autophagosome to mature into an autol-
ysosome. In this process, the lysosome-associated mem-
brane protein 2 (LAMP2) and LC3-II facilitate the fusion 
by interacting with Golgi reassembly-stacking protein 55 
(GRASP55) [50]. The bidirectional movement of lysosomes 
and autophagosomes are mediated by motor protein dynein 
and kinesin [51]. The degraded metabolites, including mon-
osaccharides and amino acids, are then released out through 
the lysosomal efflux transporters on the lysosomal mem-
brane [52]. The completion of autophagy triggers lysosomal 
reformation. This marks the end of the autophagic process 
as vesicles are extruded and proto-lysosomal tubules extend 
from the autolysosome to mature into fully functional lys-
osomes [53] (Fig. 1).

As previously mentioned, the autophagosome biogenesis 
and membrane nucleation is initiated by a plethora of sig-
nalling pathways which ultimately involves the modulation 
of AMPK and mTORC1 activity in initiating the autophagic 
process as a whole [38–42]. The autolysosome however, is 
formed from either the direct fusion of the autophagosome 
with a lysosome or the fusion of the intermediate amphisome 
(formed when an endosome fuses with the autophagosome) 
with a lysosome [54]. The result of this process would be the 
degradation of cargos within the autolysosome [55].

Autophagy in the liver

The basal autophagy machinery plays an important role in 
maintaining normal liver homeostasis. The liver is respon-
sible for several functions from the metabolism of carbohy-
drate, protein and fat to the secretion of bile [56]. In order 

to compensate for the high energy demand, hepatocytes rely 
on autophagy for energy production. A disruption in normal 
function can alter the amino acid levels in the blood, result-
ing in metabolic disorders such as fatty liver, impaired liver 
function and the development of diseases such as fibrosis, 
cirrhosis and HCC [57]. Autophagy plays important roles 
in the physiological processes in the normal liver [58]. 
Autophagy in bulk provides a supply of amino acids for 
the sustenance of protein synthesis [59]. Further starvation 
or shortage of nutrients would lead to the breakdown of 
lipids and glycogen. Lipid droplet turnover occurs through 
autophagy is termed lipophagy. It is responsible in supply-
ing free fatty acids for energy and ketone production [60]. In 
glycophagy, autophagosomes envelop glycogen granules and 
is subsequently catabolized into glucose by α-glycosidase 
present in lysosomes [61]. In addition, autophagy is associ-
ated with the catabolism of inclusion bodies including Mal-
lory-Denk bodies (MDBs) which are found in the cytoplasm 
of hepatocytes [62, 63]. MDBs are hyaline inclusions that 
are found in various liver diseases such as fatty liver and 
HCC as the result of a malfunction in protein quality control. 
Protein misfolding, p62 expression and autophagy are found 
to contribute to MDBs formation [63].

Cumulative studies suggest that autophagy has double-
faceted roles in HCC [64], these will be discussed in detail 
in the following sections.

Autophagy in HCC suppression and prevention

Autophagy exerts tumour-suppressing activity by removing 
damaged mitochondria, abnormal proteins, protein aggre-
gates and oncogenic proteins [21, 65] (Fig. 2). A study has 
shown that autophagy plays an important role in regulat-
ing lipid content, especially in the liver where the storage 
of triglycerides takes place. During nutrient starvation, 
the autophagy mechanism of lipid, known as lipophagy, is 
required to break down the fat storage to supply fatty acids 
as an alternate energy source [60]. Autophagy impairment 
can lead to the shortage of fatty acids source as well as 
slowing down the amino acid recovery which is essential 
for the synthesis of nucleic acid and protein as well as ATP 
generation to support the cellular metabolism, thus causing 
tissue damage and death in normal liver cells [21]. Chronic 
inflammation of the liver, which leads to oxidative stress, 
nitrosative stress and aldehydes through the generation of 
reactive oxygen species (ROS) and reactive nitrogen species 
(RNS), is associated with more than 90% of HCC cases. 
These generated aldehydes could induce mutations in the 
genomic DNA [66]. Oxidative stress is the key driver for 
both hepatocarcinogenesis and the progression of HCC [66, 
67]. In HCC with persistent inflammation, several studies 
suggested that inhibiting the autophagy in these cells could 
worsen the inflammation in the liver and further promote 
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HCC, which highlights the role of autophagy in tumour 
suppression (Fig.  2). One of the mechanisms in which 
autophagy functions as a tumour suppressor in response 
to oxidative stress is through mitophagy- a selective deg-
radation of mitochondria through autophagy [67]. Parkin 
is a cytosolic E3 ubiquitin ligase that is associated with the 
maintenance of mitochondria. Parkin regulates mitochon-
drial maintenance by translocating to the location of the 
dysfunctional mitochondria and facilitating ubiquitylation 
[68]. NIX proteins are then recruited to the mitochondria 
to initiate mitophagy [69]. A study has demonstrated that 
PARK2 (encodes for Parkin) deletion in mice resulted in a 
high proliferation rate of hepatocytes and the development 
of hepatic tumours. The deficiency of parkin also caused the 
inhibition of caspase activity which prevented apoptosis in 
hepatocytes [70]. This study highlights the importance of 
Parkin-induced mitophagy in the suppression of HCC.

Several other studies have also shown that the knockout 
or deletion of various autophagic genes could induce HCC, 
highlighting the role of autophagy in preventing cancer. 
ATG5 and ATG7 are important proteins that function in the 
ubiquitin conjugation systems in the process of autophagy 
[43]. A report showed that mice with ATG5 and ATG7 dele-
tion developed multiple liver adenomas as the result of 
impaired autophagy with the accumulation of high-level 
oxidative stress and DNA damages [71]. In another study, 
allelic deletion of BECN1 and ATG5 also led to deficient 
autophagy in the cells, resulting in the accumulation of p62 

which drove DNA damage, genomic instability and tumour 
development [72]. The accumulation of p62 and ubiquit-
inated proteins are characteristics of impaired autophagy. 
Autophagy deficiency resulted in the inhibition of nuclear 
factor erythroid 2-related factor 2-kelch-like ECH-associated 
protein 1 (Nrf2-Keap1) system due to the p62 accumula-
tion as reported by Inami and colleagues [73]. Nrf2 is a 
transcription factor that binds to Keap1 which is a ubiquitin 
ligase adaptor [74]. Under normal circumstances, Nrf2 is 
degraded through protein catabolism in the ubiquitin–pro-
teasome pathway. In the event of autophagy impairment, the 
accumulation of p62 resulted in the inhibition of the Nrf2 
and Keap1 interaction, thus stabilizing and activating Nrf2 
which eventually led to the development of hepatoma [73].

Autophagy in HCC progression

On the other hand, autophagy may also promote tumour 
growth by allowing the cancer cells to strive and adapt the 
stressful conditions such as hypoxia, nutrient starvation and 
metabolic burden (Fig. 2). Tumours in HCC patients can 
undergo hypoxia and oxidative stress due to the lack of oxy-
gen and the increase of ROS, which subsequently induced 
autophagy in hepatocytes [75]. The hypoxia-inducible fac-
tors (HIFs) are involved in promoting glycolysis for adapta-
tion of HCC under hypoxic stress through the regulation of 
various glycolytic genes [76]. HIF1α belongs to the family 
of HIFs and it is vital for oxygen homeostasis. HIFα is also 

Fig. 2   Role of autophagy 
in hepatocellular carcinoma 
(HCC). Autophagy acts as a 
tumour suppressor in the early 
stages of cancer by removing 
damaged mitochondria and 
abnormal proteins, regulating 
lipid metabolism in liver cells, 
and repressing inflammation 
(represented by the red line). 
However, once cancer has 
established, autophagy turns 
into the tumour promoter by 
regulating the metabolism and 
maintaining oxygen homeosta-
sis to support the survival of 
cancer cells. Autophagy also 
induces anoikis resistance and 
epithelial-mesenchymal transi-
tion (EMT) in promoting the 
disease progression
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known to initiate hypoxia-induced autophagy. A study has 
shown that HIF1α upregulated pro-apoptotic Bcl-2/adeno-
virus E1B 19-kDa interacting protein 3 (BNIP3) and Bcl-2/
adenovirus E1B 19-kDa interacting protein 3-like (BNIP3L/
NIX) proteins which activated autophagy for cell survival 
[77, 78]. In normal circumstances, Bcl-2, a cell death regu-
lating protein, inhibited the progression of autophagy by 
binding to Beclin-1 via the BH3 domain to form the Bcl-
2-Beclin-1 complex [79]. However, the upregulation of 
BNIP3 and BNIP3L by HIF1α-induced autophagy could 
dissociate the Bcl-2-Beclin-1 complex, and hence, sup-
porting autophagy processes by facilitating the assembly of 
autophagosome structures [77]. On top of that, both BNIP3 
and HIF1α have also been found to play an essential role in 
promoting tumorigenicity and invasion in HCC. The silenc-
ing of BNIP3 could decrease the level of LC3-II which is 
the autophagy protein in HCC [80].

As a result of the adaptation of HCC to hypoxia, the aber-
rant expression of either HIF isoforms, HIF1 or HIF2 are fre-
quently found in tumour tissues [81]. HIF2α, an isoform of 
HIF1α, was also found to be involved in HCC cell survival. 
A study by Mendrad et al. demonstrated that the downregu-
lation of HIF2α in HCC spheroids resulted in an upregula-
tion of HIF1α, anti-apoptotic Bcl-XL (Bcl-2 protein), and 
BNIP3 which upregulates autophagy and prevents apop-
totic events [82]. In this instance, the mechanistic action of 
BNIP3 in autophagy induction is similar to the dissociation 
of Bcl-2-Beclin-1 complex in HIF1α-induced autophagy as 
previously mentioned [77, 82]. BNIP3 acts by releasing Bec-
lin-1 through the binding to Beclin-1-Bcl-XL, localized in 
the ER, which induces the formation of the autophagosome 
[83]. In contrast, the localization of Bcl-XL in the mitochon-
dria leads to apoptotic inhibitory effects [84]. Besides that, 
it was reported that the knockdown of HIF2α resulted in 
an upregulation of HIF1α and vice versa, which suggests 
that both HIF1α and HIF2α are important in HCC progres-
sion [82]. A knockdown of HIF2α diminished cell invasion, 
metastasis and angiogenesis in HCC cells. In addition, the 
cyclooxygenase-2/prostaglandin E(2) (COX-2/PGE2) axis 
is shown to be responsible for the nuclear translocation of 
HIF2α through MAPK signalling, activates TGFα/EFGR 
and regulates HIF2α, thereby promoting HCC progression 
[85].

High expression of autophagic proteins is consistently 
observed in HCC tissues. From a cohort study of 156 HCC 
patients, high LC3-II expression was observed in the tis-
sues and was associated with vascular invasion, lymph node 
metastasis and tumour, node, metastasis (TNM) staging [86]. 
Increased autophagy events were also observed in advanced 
stage HCC and were associated with poor prognosis [86, 
87]. The role of autophagy in both tumour suppression and 
promotion is summarised in Fig. 2.

Autophagy in HCC metastasis

Metastasis is the development of secondary malignancy 
away from the primary cancer site. From the primary 
tumour, the cancer cells invade into the lymphatic or circu-
latory system as circulating tumour cells (CTCs), infiltrate 
and proliferate in the distal organs [88, 89]. Anoikis are a 
form of apoptotic cell death that occurs when anchorage-
dependent cells detach from the extracellular matrix [90]. 
Both epithelial-mesenchymal transition (EMT) and anchor-
age-independent growth abilities contribute to anoikis resist-
ance which mediates metastasis [91]. Anoikis resistance is 
regulated by a plethora of complex signalling pathways 
including apoptotic-related pathways and pathways involv-
ing oncogenic Ras, PI3K/Akt or integrin-linked kinase [92]. 
Cancer cells that acquire resistance would enhance invasive-
ness and metastasis.

Owing to the tumour-promoting characteristic of 
autophagy, several studies have suggested that autophagy 
can contribute to the survival of tumour cells and support 
tumour invasiveness [93]. In a study conducted by Peng 
et al., autophagy was inhibited through the silencing of 
BECN1 and ATG5 genes in HCC cells using a lentivirus 
system. The autophagy inhibition in HCC cell lines led to 
enhanced anoikis in vitro. In the histopathological examina-
tion, the inhibition of autophagy significantly reduced pul-
monary metastases incidence, anoikis resistance and coloni-
zation of HCC in vivo [94]. Furthermore, the upregulation of 
BNIP3 in detached HCC cells via the ERK/HIF1α pathway 
also contributed to anoikis resistance and metastasis through 
autophagy induction [80].

Transforming growth factor beta (TGF-β) is a growth fac-
tor that is involved in generating multiple cellular responses 
affecting apoptosis, cell proliferation and differentiation 
[95]. TGF-β is widely known to be pro-apoptotic in many 
different cell types, and apoptosis is induced through the 
upregulation of the cyclin-dependent kinase inhibitors and 
the suppression of c-Myc, a transcriptional activator of cell 
proliferation [96]. In contrast to the pro-apoptotic effects of 
TGF-β, studies have shown that TGF-β can also promote 
cell growth and metastasis in late stages of cancer [97]. 
TGF-β is now known as an important component in EMT 
with the interplay of autophagy [98, 99]. EMT is a cellular 
phenomenon whereby epithelial cells change their charac-
teristics to acquire mesenchymal-like characteristics involv-
ing cytoskeleton reorganization, loss of cell–cell junctions 
and the expression of mesenchymal markers [100]. EMT 
enhances tumour cell metastatic capacity of epithelial cells 
and is involved in cancer cell invasion, metastasis and HCC 
progression, and this can be affected by autophagy (Fig. 2) 
[98, 101]. Increasing studies have suggested that autophagy 
can induce EMT during starvation by promoting the cell 
invasion through TGF-β/Smad3 signalling [98, 100]. In 
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a study conducted by Li and colleagues [99], autophagy 
downregulated the expression of epithelial markers E-cad-
herin and CK18 and upregulated the mesenchymal markers 
fibronectin and MMP-9, suggesting the induction of EMT 
by autophagy. The siRNA targeting ATG3 and ATG7 genes 
inhibited the autophagy in HepG2 and BEL7402 cells and 
successfully reversed invasion in HCC [99]. The TGF-β1 
expression and Smad3 phosphorylation were also found to 
be suppressed following the autophagy gene-silencing which 
suggests the involvement of the TGF-β/Smad3 pathway in 
autophagy-mediated EMT [99]. It is well established that 
autophagy works as an EMT promoter, however, the repres-
sion of autophagy can also promote cell migration and inva-
sion through EMT in cancer cells [102]. DNA-damage regu-
lated autophagy modulator 1 (DRAM1) is a transmembrane 
protein and a target of p53-mediated autophagy. DRAM1 
was found to mediate the autophagy-EMT pathway. When 
DRAM1 was knocked down, an upregulation of EMT pro-
tein E-cadherin and a downregulation of Vimentin, a fila-
ment protein expressed in mesenchymal cells, were observed 
[103]. Interestingly, the downregulation of DRAM1 also sig-
nificantly inhibited cell migration, invasion and metastasis 
through the autophagy-EMT pathway [103]. In another HCC 
model, the induction of autophagy promoted EMT as a result 
of an upregulation of TGF-β through the increased activa-
tion of cAMP response element-binding protein (CREB) and 
cAMP/PKA/CREB signalling [104]. On the other hand, the 
inhibition of autophagy could also promote EMT in cancer 
cells. As demonstrated by Wang and colleagues, impeded 
autophagy in RAS-mutated cancer cells promoted EMT with 
the upregulation of transcription factors involved in EMT 
partially through the activation of the NFKB/NF-κB path-
way. Furthermore, the knockdown of autophagy synergized 
with RAS activation to induce EMT [105]. Another exam-
ple would be in the ovarian cancer cells in which EMT is 
promoted through the ROS/heme oxygenase-1 (HO-1) path-
way due to autophagic inhibition and subsequently enhanced 
invasion and migration [106].

Autophagy in HCC treatment resistance

Cancer cells thrive and survive anticancer therapy by devel-
oping drug resistance through different mechanisms, which 
includes autophagy [24]. The administration of therapeutic 
drugs has been known to induce and upregulate autophagy 
in HCC. Cisplatin is a platinum-based anti-cancer drug that 
is used as a chemotherapeutic drug. The cytotoxicity of the 
drug owes mainly to its ability to react with the DNA to 
form DNA adducts at purine bases and resulting DNA–pro-
tein or DNA-DNA crosslinks [107, 108]. The resulting ER 
stress from cisplatin treatment triggers an unfolded protein 
response (UPR) in the attempts of overcoming ER stress 
and promoting cell viability. In HCC cells, UPR was found 

to cytoprotective properties against apoptosis induced by 
cisplatin. In the same study, results have shown that UPR 
with heat shock protein 27 (HSP27) promoted cell sur-
vival through autophagic regulation and activation [109]. 
Oxaliplatin is another platinum-based drug with a similar 
chemotherapeutic mechanism of action to cisplatin [108]. 
For example, oxaliplatin-treated HepG2 cells exhibited 
upregulated LC3 lipidation and puncta formation which are 
key processes in autophagy [110]. This response confers 
resistance and promotes cell survival [110]. Similarly, DNA 
topoisomerase II inhibitor [111] doxorubicin treatment was 
also able to induce autophagy in HCC [112]. 5-Fluoroura-
cil (5-FU) is an inhibitor of thymidylate synthase which is 
essential for DNA biosynthesis and is used in HCC treat-
ment [113]. p53 is shown to modulate autophagy induction 
and promoting cell survival with chemoresistance in nutri-
ent-deprived cells. This study suggests that p53 plays a part 
in the mechanism conferring drug resistance [114] (Table 1).

Autophagy can be targeted to restore the chemosen-
sitivity to various chemotherapeutic drugs in HCC. For 
example, siRNA-silenced ATG7 and chloroquine treatment 
increased the susceptibility of HCC to oxaliplatin [110]. In 
another study, miR-101 that inhibited autophagy by targeting 
RAB5A, STMN1 and ATG4D which are important genes in 
regulating autophagosome formation, increased the sensi-
tivity of HepG2 to cisplatin [122]. Similarly, miR-233 that 
inhibited autophagy by targeting FOXO3a, which is a tran-
scription factor associated with autophagy regulation, also 
increased the susceptibility of HCC cells to doxorubicin 
[112]. This study suggests that autophagy induced by doxo-
rubicin treatment plays a part in conferring drug resistance 
[112].

Transarterial embolization (TAE) and transarterial chem-
oembolization (TACE) remain a standard therapeutic option 
for unresectable HCC [123]. TAE involves the emboliza-
tion of the hepatic artery with the absence of chemotherapy 
drug usage, while TACE involves the injection of chemo-
therapeutic drug preceding TAE [124]. Both of the vascular 
embolization techniques aim to deprive cancer cells of nutri-
ents and oxygen, resulting in ischemic necrosis and halting 
cell growth [125]. HCC cells subjected to severe ischemia 
reduced sensitivity to the cell cycle chemotherapy drug dox-
orubicin and mitomycin C, which is correlated to induced 
quiescence in surviving cells [126]. In the same study, cell 
survival under severe ischemia was mediated by the activa-
tion of autophagy as a significant upregulation of mRNA 
expression of autophagic-related genes were observed [126].

Early growth response 1 (Egr-1) protein is a zinc finger 
transcription factor that is induced when the cells undergo 
environmental stress such as oxidative stress [121]. Egr-1 
is associated with the promotion of drug resistance in vari-
ous cancers [121,127]. In HCC, Egr-1 is highly expressed 
and is known to regulate hypoxia-induced autophagy by 
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upregulating LC3 conversion and Beclin-1. The regulation 
of autophagy by Egr-1 is conferred through its binding with 
the promoter region of LC3 [121]. Egr-1 expression induced 
autophagy and subsequently resulted in chemoresistance 
of cisplatin and epirubicin in HCC [121]. Interestingly, its 
expression is also involved in conferring radio-resistance 
in HCC through the regulation of autophagy [128]. Upon 
ionizing radiation (IR) on HCC cells, increased expres-
sion of Egr-1 was observed, and autophagy was induced 
by transcriptional activation of ATG4B [128]. ATG4B is a 
cysteine protease that is involved in LC3 lipidation which is 
an indispensable element in autophagy [129]. The inhibition 
of Egr-1 was shown to decrease the IR-induced autophagy 
and increase the radiosensitivity in HCC [128].

Sorafenib is one of the commonly-used drug and a first-
line systemic therapy used for treating HCC [130]. It is a 
multikinase inhibitor that functions by inhibiting vascular 
endothelial growth factor receptors (VEGFR), platelet-
derived growth factor receptor β (PDGFR-β) and serine-
threonine kinase (Raf kinases) [115]. However, sorafenib 
resistance tends to develop within 6 months of administra-
tion in HCC [131]. HCC develops resistance through a vari-
ety of mechanism. Phase II metabolic enzyme glutathione 
transferase Mu 1 (GSTM1) is thought to be involved in the 
drug resistance mechanism in HCC. GSTM1 acts by hydro-
lysing the chemo-drug and may be involved in mediating 
drug resistance to both sorafenib and oxaliplatin through 
autophagic activation [116]. The activation of Akt is thought 
to mediate sorafenib resistance as its inhibition reversed 
the resistance as a result of shifting from cytoprotective 
autophagy to autophagic cell death [116]. Sorafenib admin-
istration causes an upregulation of HIF2α which contributes 

to resistance through the activation of  the TGFα/EFGR 
pathway [118]. Intriguingly, another study revealed that the 
induced hypoxia from sorafenib treatment confers resistance 
to the drug via HIF1α and NF-κB activation [119]. Increased 
level of LC3-II and ATG5 which facilitate autophagosomal 
formation during autophagy has been observed in sorafenib 
treatment in HCC. Sorafenib induced ER stress which then 
activated the autophagic process [132]. Targeting autophagy 
by autophagy inhibitor, chloroquine in combination with 
sorafenib has successfully reduced the tumour volume and 
inhibited the tumour growth in HCC using mouse models 
[132].

Role of cancer stem cells in hepatocellular 
carcinoma

Liver cancer stem cell surface markers

Cancer stem cells (CSCs) are a subpopulation of cells in the 
tumour that have the ability to self-renew and differentiate 
into heterogeneous lineages. They reside in a microenviron-
ment that comprises a variety of cells that support their sur-
vival [133]. In HCC, liver CSCs (LCSCs) have been identi-
fied as precursor cells for cancer progression [134] however, 
the origins of these LCSCs remains unclear. Yamashita and 
Wang suggested that LCSCs may originate from non-CSCs 
such as hepatocyte and cholangiocyte through the process of 
“de-differentiation” [135]. The expression of distinguished 
markers on the cell surface can define the heterogeneity of 
LCSCs [28]. Cell surface markers epithelial cell adhesion 
molecules (EpCAM), CD133, CD44, CD90, CD13, OV-6 

Table 1   Resistance mechanism of chemotherapy drugs in HCC

Treatment/Drug Mode of action Target HCC Resistance Mechanism References

Sorafenib Multikinase inhibitor VEGFRs
PDGFR-β
Raf kinase

GSTM1 hydrolyzes chemodrug and protects 
against both sorafenib and oxaliplatin 
through autophagy activation

Akt activation
Upregulation of HIF2α induced contributes 

to resistance by activating TGFα/EFGR 
pathway

Induced hypoxia conferring resistance 
through HIF1α and NF-κB activation

[115–120]

Doxorubicin DNA topoisomerase II inhibitor DNA topoisomerase II Autophagy induced confers resistance [111, 112]
Cisplatin Forms DNA adducts at purines 

resulting in DNA crosslink
DNA UPR with HSP27 inhibits apoptosis via 

autophagy
Egr-1 expression induces autophagy

[108, 109, 121]

Oxaliplatin Forms DNA adducts at purines 
resulting in DNA crosslink

DNA GSTM1 hydrolyzes chemodrug and protects 
against both oxaliplatin and sorafenib 
through autophagy activation

Autophagic response suppressing apoptosis

[108, 110, 116]

5-Fluorouracil Thymidylate synthase inhibitor Thymidylate synthase p53 confers resistance/cell survival through 
autophagic modulation

[113, 114]
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and K19 are among those that are commonly expressed on 
CSCs [27, 28]. Surface markers with their phenotype and 
their clinical characteristics are summarised in Table 2.

EpCAM is a transmembrane glycoprotein on the cell 
surface that has been extensively studied as a marker for 
LCSCs. Yamashita et al. demonstrated that EpCAM + alpha-
fetoprotein (AFP) + hepatocellular carcinoma subtype 
showed stemness properties, activation of stem cell-associ-
ated genes, high metastasis occurrence and associated with 
poor prognosis [136]. The expression of EpCAM in LCSCs 
also correlated with the tumour growth and cell invasiveness 
in HCC [137]. CD133 has been reported as a CSC marker 
for the brain, prostate, colon and liver. Ma et al. demon-
strated that Huh7 cell lines that are CD133 + showed a higher 
proliferative rate and tumorigenicity ability in comparison to 
CD133- cells. The tumours arisen from CD133 + cells were 
larger in size and greater in colony number [138]. Another 
LCSC marker, CD44 is a glycoprotein that is involved in 
cell–cell adhesion, migration and invasion of liver cancer 
cells [139]. CD44 + cells co-expressing CD133 and CD90 
were more aggressive than cells presenting either CD133 or 
CD90 alone [139, 140]. CD90, a small 25–37 kDa glyco-
sylphosphatidylinositol (GPI)-anchored conserved cell sur-
face protein, has also been identified in CSCs. Expression of 
CD90 positively correlated with tumorigenicity capabilities 
and metastatic potentials of several HCC cell lines includ-
ing MHCC97L and MHCC97H [140]. CD13 or aminopepti-
dase N is a membranous glycoprotein that is associated with 
cancer progression and drug resistance [141]. CD13 are 
expressed in slow-growing or semi-quiescent LCSCs which 
contributes to tumour formation in HCC. From the limiting 
dilution analysis of Huh7, CD133 + CD13 + cells were able 
to form tumours from 100 cells while CD133 + CD13- cells 
were able to form tumours from 1000 cells. Interestingly, no 
tumour was formed from CD133- CD13- cells even up to 
5,000 cells which highlighted the importance of CD13 and 
CD133 expressing LCSCs in HCC [141]. In another study, 
OV6 + cell could be isolated from HCC and the OV6 + cells 

possess greater chemotherapeutic resistance and tumori-
genic ability compared to OV6- Cells [142]. Keratin (K)19, 
another LCSCs marker was detected in HCC with poor prog-
nosis [143]. The K19 expression exhibits a strong correla-
tion with increased EMT-related proteins, tumorigenicity, 
metastasis and invasiveness in HCC [143].

To date, there is a great variation of LCSCs surface 
marker expression across different cell types and diseases. 
According to Zheng et al. cells pre-dominantly expressing 
single markers could develop into a population with mixed 
CSCs markers due to the phenotypic heterogeneity. This 
forms a huge challenge in the identification and classifica-
tion of CSCs [144]. Zhu and colleagues revealed that only 
a minority of CD133 + isolate from HCC cell lines are stem 
cells, although CD133 + cancer cells possessed some stem 
cell-like properties, including higher proliferative potential, 
greater colony‐forming efficiency, self‐renewal and differ-
entiating capacity when compared to CD133 − counterparts 
[139]. Interestingly, it was found that CD44 was consistently 
and preferentially expressed in CD133 + cells. From the 
same experiment, Zhu identified that CD133 + CD44 + are 
more tumorigenic and more resistant to chemotherapy agents 
compared to CD133 + CD44- counterparts [139]. Hence, a 
double positive subpopulation is more likely to represent 
the actual LCSCs.

Liver cancer stem cells in HCC progression

Cumulative evidence showed that the initiation and develop-
ment of HCC can be accelerated by the presence of LCSCs 
[145]. LCSCs might also contribute to the disease metas-
tasis and recurrence after the tumour resection [27]. The 
underlying pathways in regulating the proliferation of CSCs 
include Wnt/β-catenin, Notch, fibroblast growth factors 
(FGF) and TGF-β signalling [146–149]. Similar to cancer 
cells, genetic aberrations in stem cells can cause them to 
divide uncontrollably and lead to tumorigenesis [150]. CSCs 
regulate their stemness properties and are actively involved 

Table 2   Surfaces markers, phenotype and clinical characteristic in LCSCs

Surface marker Source Phenotype/clinical characteristics References

EpCAM Huh7, Huh1, HepG2, Hep3B, Primary HCC Tumorigenesis, invasiveness, metastasis, self-renewal, 
poor clinical prognosis

[136, 137]

CD133 PLC8024, Huh7, Hep3B, SMMC-7721, Primary HCC Spheroid formation, chemoresistance, tumorigenesis, 
self-renewal, proliferation

[138]

CD44 PLC/PRL/5, Huh7, HepG2 Invasion, metastasis. chemoresistance [139]
CD90 HepG2, Huh7, Hep3B, MHCC97L, MHCC97H, Pri-

mary HCC
Tumorigenesis, metastasis, chemoresistance, self-

renewal, poor prognosis
[140]

CD13 PLC/PRF/5, Huh7, Primary HCC Spheroid formation, tumourigenesis, tumour initiation, 
chemoresistance, low survival

[141]

OV-6 Huh7, SMMC-7721, Primary HCC Invasiveness, metastasis. poor chinical prognosis [142]
K19 PLC/PLR/5, HepG2, Huh7 Tumorigenesis, metastasis, invasive, recurrence [143]
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in angiogenesis to support tumour growth and metastasis 
[25]. CSCs also recruit, transform and modify the functions 
of neighbouring cells and surrounding extracellular matrix 
(ECM) to promote tumour growth [151]. A study by Gao 
et al. revealed that HCC cells co-expressing CSC markers- 
CD44 and EMT markers: N-cadherin and Vimentin pos-
sessed accelerated cell migration and metastatic rate [152]. 
Although the clear relationship between EMT and cancer 
stemness is not well understood, the speculation is the 
stem cell traits were acquired during EMT and aggravated 
the intrahepatic metastasis [153]. Furthermore, patients 
with LCSCs have a relatively poor prognosis by having 
more frequent recurrence after the curative therapies [140, 
154]. Specifically, a study demonstrated that patients with 
CD133 + HCC subpopulation cells had a poorer prognosis 
and more frequently presented with multiple tumour lesions 
[155]. In another study, a population of CD13high subpopula-
tion cells resulted in a larger size of tumour and earlier can-
cer recurrence as compared to CD13low cells [156]. Taken 
together, it is highly evident that CSCs play a key role in 
driving cancer progression and relapse.

Liver cancer stem cells in drug resistance

One of the primary concerns of CSCs in the ineffectiveness 
of cancer therapy is its role in driving drug resistance. This 
can occur through several cellular events such as hypoxia, 
decreased ROS production, upregulation of drug-efflux 
pumps and increased expression of aldehyde dehydroge-
nase (ALDH) enzyme [157]. CSCs are mainly found close 
to the hypoxic zone of the tumour core, hence only a small 
proportion of CSCs is exposed to the anticancer agent since 
hypoxic tumour zones are distant from the blood supply 
[158]. The activation of HIF1α can promote drug resist-
ance by decreasing ROS production which enhanced cancer 
cell survival [159]. For instance, Baumann and colleagues 
demonstrated that a higher radiation dose was required to 
kill the tumour cells with low levels of ROS [159]. On the 
other hand, hypoxia drives CSCs to enter the quiescence 
state to evade cancer therapies that target actively dividing 
cells [160]. LCSCs are also known to upregulate ATP-bind-
ing cassette (ABC) transporters in the efflux of anticancer 
drugs which then leads to multidrug resistance [161]. For 
example, an elevated number of CD90 + CD133 + LCSCs 
and upregulation of ABCG2 were found in the HCC tissues 
and were responsible for drug resistance [162, 163]. ALDH 
plays a role in suppressing apoptosis in cancer cells that are 
induced by DNA damage [155]. ALDH takes part in the 
metabolism of 4-hydroxy-2-nonenal (4-HNE), converting 
it to 4-hydroxynon-2-enoic acid. This aids in detoxifying 
4-HNE and act as a defence against oxidative stress [164], as 
4-HNE is a product of lipid peroxidation which is triggered 
by oxidative stress. It can cause various protein disruption, 

DNA damage and alterations in mitochondrial metabolism 
[165, 166]. Since chemotherapy leads to elevated oxidative 
stress, the function of ALDH as a defence confers chem-
oresistance [165]. CSCs can repair DNA damage by pro-
moting the expression of nucleotide excision repair protein 
(ERCC1) [167]. Besides promoting drug resistance through 
DNA repair systems, CSCs can escape the apoptotic path-
way through mutations or inactivation of the apoptotic gene, 
p53 and its isoform p63 and p73 [168].

Role of SIRT1 in stemness maintenance and drug 
resistance in LCSCs

Mammalian sirtuins (encoded by SIRT1-7 genes) are nicoti-
namide adenosine dinucleotide (NAD)-dependent deacety-
lases that are involved in many biological processes such 
as cell survival, senescence, proliferation, apoptosis, DNA 
repair, cell metabolism and caloric restriction [169]. The 
sirtuin protein is characterized by a conserved 275 amino 
acid catalytic core domain with additional N-terminal and/
or C-terminal sequences of variable length [170]. SIRT1 
was the first SIRT family member that was discovered in the 
nucleus [170]. Later, it was found there are 7 members in 
which there have specific and overlapping functions mainly 
regulating metabolism, cell fates via epigenetic and gene 
expression modulation depending on their localisation, 
either cytoplasm, mitochondria or nucleus [171]. SIRT1 
has been reported in regulating the functions of stem cells 
that are crucial for normal embryonic development and adult 
tissue homeostasis through self-renewal and differentiation 
[172]. SIRT1 is overexpressed in various cancers including 
human myeloid leukaemia, colon cancer, prostate cancer and 
liver cancer [173]. Conversely, SIRT1 expression is reduced 
in ovarian cancers and glioblastoma [174]. Intriguingly, 
SIRT1 is found to act as a tumour promoter and suppressor 
via the Sirt1-p53 axis, thought to be localisation dependent 
[171]. However, the mechanism in which SIRT1 regulate 
tumorigenesis warrants an investigation [169].

In HCC cells and LCSCs, the SIRT1 gene was observed 
to be overly expressed [173]. This is attributed due to the 
regulatory role of SIRT1 in self-renewal, stemness mainte-
nance, cell survival and proliferation in HCC. The underly-
ing mechanisms that may be involved are Wnt/β-catenin, 
Notch, mitogen-activated protein kinase (MEK) and mito-
chondrial ribosomal protein S5 (MRPS5) deacetylation 
(Fig. 3) [175]. Wnt/β-catenin is activated through the bind-
ing of Wnt to the frizzled receptors leading to the inhibi-
tion of the degradation complex, thus stabilizing β-catenin. 
SIRT1 promotes Wnt/β-catenin signalling through inhibition 
of the pathway antagonist and stabilizing β-catenin [172]. 
Chen et al. demonstrated that SIRT1 deacetylates β-catenin 
to promote its nuclear accumulation, which then activates 
the Wnt/β-catenin signalling pathway that is involved in the 
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maintenance of stemness in the tissue and progression of 
various cancers [176].

Notch signalling is known to modulate cell prolifera-
tion, cell differentiation and cell survival [177], but its role 
in HCC is highly debatable. As reported by Qi et al. the 
overexpression of Notch1 was able to inhibit the growth 

of HCC cells in vitro and in vivo [178]. O’Callaghan et al. 
demonstrated that SIRT1 was highly expressed in LCSCs 
and downregulated the Notch signalling pathway through 
the inhibition of nuclear translocation of notch intracel-
lular domain (NCID). This then led to the inhibition of 

Fig. 3   Role of SIRT 1 and the 
related signalling pathways in 
stemness maintenance and drug 
resistance. (1) In the Wnt/β-
catenin signalling pathway, 
SIRT1 deacetylates and stabi-
lizes β-catenin leading to its 
translocation into the nucleus. 
β-catenin then activates the 
expression of downstream pro-
teins such as c-Myc, EpCAM 
and ABCB 1 that improve 
stemness and induce the drug 
resistance of LCSCs. (2) The 
notch signalling pathway 
involves the destabilization of 
NICD by SIRT1, hence inhibit-
ing the translocation of NICD 
into the nucleus. In this event, 
the expression of downstream 
proteins hes1 and hey1 is halted. 
This inhibits cell differentiation 
in LCSCs. (3) Notch signalling 
also activates SIRT1 leading 
to its translocation into the 
nucleus. SIRT1 deacetylates and 
activates LSD 1, leading to the 
transcription of the SOX2 gene, 
hence increasing the stemness 
of cells. (4) Lastly, SIRT1 dea-
cetylates MRPS5 which leads to 
its translocation into mitochon-
dria. SIRT1 also reduces the 
ROS through the activation of 
mitochondria unfolded protein 
response (UPRmt) activity. AC 
Acetyl, TCF/LEF T-cell factor/
lymphoid enhancer factor, CSL 
CBF-1, Suppressor hairless 
Lag-1, MAML mastermind like 
protein, NICD notch intracel-
lular domain, NECD notch 
extracellular domain, LSD 1 
lysine demethylase 1, UPRmt 
mitochondria unfolded protein 
response, ROS: reactive oxygen 
species
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downstream effector such as Hes1 and Hey1 which are 
involved in cell differentiation [172].

As opposed to Qi et al. [178] and O’Callaghan et al. 
[172], Ning and colleagues indicated that Notch expression 
was highly activated in HCC in comparison to the adjacent 
normal tissue and its upregulation promoted the tumo-
rigenicity of HCC [179]. As demonstrated by Farcas et al. 
Notch signalling induced the SIRT1 expression and activated 
the lysine demethylase 1 (LSD1), thus promoting LCSCs 
self-renewal and improved stemness through transcription 
of the SOX2 gene [175]. SOX2 is an embryonic transcrip-
tion factor that is associated with the self-renewal ability of 
CSCs [175]. Likewise, Liu et al. demonstrated that SIRT1 
is recruited to the promoter of SOX2 gene and regulates 
transcription of SOX2 gene by chromatin-based epigenetic 
changes [180]. SOX2 is a well-known factor to promote cell 
proliferation, survival, drug resistance and cancer stemness 
[181]. These evidence illustrated that SIRT1 promotes tumo-
rigenesis of LCSCs by upregulating the SOX-2 expression 
through the activation notch signalling pathway.

Mitochondrial ribosomal protein S5 (MRPS5) sup-
ports the mitochondria function of LCSCs to promote the 
progression of cancer [182]. The overexpressed SIRT1 in 
LCSCs deacetylates MRPS5 to promote its translocation 
into mitochondria, thus inducing oxidative phosphorylation 
and production of ROS. SIRT1 also promotes mitochondria 
unfolded protein response (UPRmt) activity that reduces the 
ROS levels, consequently improving mitochondrial function 
that helps in maintaining the stemness of LCSC [175]. Fur-
thermore, there is a positive interaction between mitogen-
activated protein kinase 1 (MEK1) signalling activation and 
SIRT1 expression with the protein stability [183]. MAPK1/
MEK1 are enzymes that phosphorylate threonine and tyros-
ine residues within the activation loop of their MAP kinase 
substrates [184]. Based on the study by Cheng et al., reduced 
MEK1 expression led to degradation of SIRT1 and resulted 
in the decrease in the stem cell markers expression in LCSC 
such as SOX2, Oct4 and NANOG that significantly contrib-
utes to self-renewal [183].

Interplay between autophagy and liver 
cancer stem cells in HCC progression

Autophagy and hepatic/liver progenitor cells in HCC

Autophagy is known to regulate the multiple processes 
in stem cells as it plays a role in the removal of damaged 
organelles and proteins during stem cell renewal, dif-
ferentiation and growth [185]. Under normal conditions, 
autophagy inhibition can disrupt the growth and prolifera-
tion of hepatic progenitor cells (HPCs) or liver progenitor 
cells (LPCs). HPCs/LPCs are the progeny of stem cells that 

reside in the liver which differentiate into hepatocytes and 
cholangiocytes, which are the two most abundant epithe-
lial cell types in the liver [186]. A study demonstrated that 
the lentiviral-mediated knockdown of the autophagic gene, 
ATG5 and BECN1 resulted in the reduced cell proliferation 
and differentiation of LPCs. ATG5 or BECN1 knockdown 
impaired stemness, suggesting that autophagy is involved in 
conferring LPC function [187]. The autophagy deficiency in 
HPCs also reduced the spheroid or colony formations and 
delayed liver regeneration in rats which suggest the impor-
tance of autophagy in preventing dysfunction of self-renewal 
and stemness [188]. The same study also demonstrated that 
autophagy inhibition resulted in the accumulation of dam-
aged mitochondria and mitochondrial ROS while decreasing 
the mitochondrial membrane potential [188].

Autophagy and liver cancer stem cells in HCC

The exact origin of CSCs remains unclear to our knowledge, 
however since CSCs have similar characteristics/markers as 
normal stem cells, it is presumed that CSCs could be derived 
from normal stem cells [189]. A study has shown that pro-
genitor cells from the mouse liver were able to develop into 
cancer, like that of human HCC following genetic manipula-
tion and transplantation into recipient mice [190]. Similarly, 
with the inactivation of TGFβ signalling and interleukin-6 
associated transformation, progenitor cells from the mouse 
liver led to carcinogenesis [191].

As the autophagic process has been proven to be pivotal 
in HPCs, it is also known to be important in LCSC survival 
through mitophagy [192]. In order for cancer stem cells to 
survive in the harsh tumour microenvironment of HCC, the 
breakdown of damaged mitochondria is important in adapta-
tion to environmental stresses such as hypoxia. Results show 
that mitophagy is involved in the suppression of p53 which 
leads to positive LCSC regulation and hepatocarcinogenesis 
[178, 192]. The inhibition of mitophagy led to p53 phos-
phorylation by PINK1 (PTEN-induced putative kinase) and 
nuclear translocation and subsequent suppression of tran-
scription factor NANOG which is responsible for stemness 
and self-renewal in CSCs [192]. Axin2, a negative regula-
tor of Wnt/β-catenin, is also involved in stem cell regula-
tion. Dysregulation of autophagy in cirrhosis demonstrated 
increased expression of hepatocyte growth factor (HGF) 
activating the Met/JNK and Met/STAT3 pathway in Axin2/
EGFP + hepatic cells and resulted in the following transition 
to Axin2/EGFP + /CD90 + cells having acquired stem cells 
characteristics. The activation of Met/JNK and Met/STAT3 
pathway via HGF expression is concluded to be an important 
process in carcinogenesis in the liver [193].

In HCC, autophagy is also closely linked to the stem 
cell characteristic of self-renewal and the maintenance of 
stemness, which is evident by observing sphere formation 
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[194]. Results revealed that CD133 + was shown to have 
higher autophagic levels with increased GFP-LC3 puncta. 
Autophagy inhibition by chloroquine enhanced apoptosis 
and diminished proliferation ability with reduced sphere-
forming ability of liver cancer cell line, Huh7. Inversely, 
the same study demonstrates an increase in the sphere-
forming capacity of CD133 + cells following the induction 
of autophagy [194].

As previously mentioned, the interplay between 
autophagy and CSC survival and self-renewal had been 
established. Yet, little is known about the interrelation 
between autophagy and LCSC differentiation. CCND1, 
which encodes for cyclin D1, is responsible for the phos-
phorylation and inactivation of the retinoblastoma protein 
[31]. Upregulated expression of CCND1 is often seen in 
HCC and is associated with poor prognosis and cancer 
recurrence [195]. It was shown that the overexpression of 
cyclin D1 enhanced the expression of the autophagic LC3-II 
and Beclin-1. On the contrary, both the expression of LC3-II 
and Beclin-1 was reduced when CCND1 was silenced, sug-
gesting that autophagy plays a role in LCSC differentiation, 
thereby contributing to the progression of HCC. Overall, 
CCND1 silencing inhibited LCSC differentiation through 
the suppression of autophagy [195].

Crosstalks of autophagy and LCSC signalling 
pathways

There are a variety of different CSC-signalling pathways that 
are also involved in the regulation of autophagy including 
FGF signalling, TGF-β signalling, Notch signalling pathway 
and Wnt/β-catenin signalling (Fig. 4).

FGFs and their receptors fibroblast growth factor recep-
tors (FGFRs) play an important role in HCC progression 
[196]. There are 22 known human FGFs and four FGFR 
types identified which act as transmembrane tyrosine kinase 
[197]. In the majority of HCC cases reported by Gauglhofer 
et al., 82% presented upregulation of FGFs and/or FGFRs. 
Further study revealed that FGF17 and FGF18 promoted 
HCC-derived myofibroblasts proliferation, while FGF8, as 
well as FGF17 and FGF18, promoted the growth of hepatic 
endothelial cells. This indicates that FGF8, FGF17 and 
FGF18 are involved in HCC malignancy and angiogenesis 
[198]. Besides, the upregulation of FGF19 led to elevated 
cyclin D1 levels through the activation of β-catenin. FGF19 
and CCND1 play an important role in tumorigenesis in HCC 
[199]. Furthermore, it is certain that the FGF signalling is 
involved in many cellular pathways and there is a growing 
interest as a therapeutic target for HCC. FGFR4 inhibitor, 
BLU9931, was shown to have a binding affinity to FGFR4, 

Fig. 4   Role of different CSC-related signalling pathways in 
autophagy. (1) FGF signalling pathway. FGF signalling suppresses 
the initiation of autophagy by activating mTOR which subsequently 
inhibits the recruitment of  the ULK complex. (2) TGF-β signalling 
pathway. TGF-β facilitates phagophore elongation. (3) Both TGF-β 
and Cyclin D1 is involved in the upregulation of LC3-II and medi-

ates the autophagosome formation. (4) Notch signalling pathway. 
Autophagy is involved in inhibiting the Notch signalling pathway 
through the degradation of Notch via uptake of ATG16L1-positive 
autophagosomes (5) Wnt/β-catenin signalling pathway. β-catenin is 
found to inhibit autophagosome formation and repressing p62 expres-
sion
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and as a result, inhibited HCC proliferation in vitro. Like-
wise, BLU9931 also exhibited antitumor activity in HCC 
xenograft in mice [200]. Anti-FGFR4 neutralizing anti-
body LD1 was generated by French and colleagues. LD1 
demonstrated colony inhibition of HCC cell lines, and 
tumour growth in vivo via modulation of FGFR4 down-
stream genes. This establishes the role of FGFR4 in HCC 
progression [201]. In CSCs, FGFR modulated proliferation 
of hepatoblasts and tumour initiating stem cells/CSCs via 
AKT-β-catenin-CBP pathway [202]. Additionally, FGF 
signalling is indeed found to be related to autophagy. The 
inhibition of FGF signalling promoted LC3 conversion to 
LC3-II. FGF signalling negatively regulates autophagy 
through activation of mTOR [203]. FGF/FGFR signalling 
was identified as a crucial element in autophagy regulation 
in bone growth [204]. Similarly, the inhibition of FGFR1 
promoted autophagy, while the activation of FGFR1 resulted 
in the autophagy suppression via Beclin-1 silencing which 
led to increased apoptosis after FGFR inhibitor, AZ4547 
treatment in lung cancer [205]. Although FGF signalling is 
related to autophagy in other cell types, its role in relation 
to autophagy in LCSCs and HCC is not well established.

TGF-β signalling is also very much involved in 
autophagic regulation and cellular processes including sur-
vival, growth and differentiation [206]. TGF-β was reported 
to induce autophagosomal formation and potentiate the 
conversion of LC3-I to LC3-II in HCC [206]. As a result, 
autophagic flux was increased. The study also revealed the 
involvement of Smad signalling which comprises of Smad 
downstream effectors of Type I and Type II receptors that 
typically binds to the signalling molecule TGF-β [206]. 
Thus, the facilitation of the autophagic pathway in the TGF-
β-related growth inhibition in HCC cells was recognised 
[206]. This phenomenon correlates to the tumour-suppress-
ing role of autophagy in HCC. On the contrary, TGF-β1, a 
subgroup/isoform of TGF-β, was found to induce autophagy 
and increase the capability for cellular invasion of HCC 
cells. With TGF-β1 treatment, elevated LC3 and Beclin-1 
levels were observed. Besides, combination treatment with 
autophagy inhibitor 3-methyladenine significantly inhibited 
cell invasion [207].

The Notch signalling pathway is involved in the dif-
ferential process of HPCs into biliary cells and in turn, 
contribute to the bile duct and liver development [208]. 
Autophagy was found to be involved in regulating biliary 
differentiation of HPCs through Notch1 signalling. Biliary 
differentiation was induced in rat HPC cell line and a low 
autophagy level was observed in both early and later stage 
of differentiation. Autophagy was found to suppress biliary 
differentiation of HPCs through the inhibition of the Notch1 
signalling pathway [209]. Notch is typically degraded/inhib-
ited by autophagy through the uptake of ATG16L1-posi-
tive autophagosomes [210]. Sustained Notch signalling is 

dependent on mTOR activation and subsequent autophagy 
inhibition [211]. Besides, Notch1 is also involved in HCC 
development as the expression of Notch1 and its ligand Jag-
ged1 were reported to be higher in normal liver tissue than 
in HCC, which implies that Notch1 can act as a tumour sup-
pressor in HCC [212]. Similarly, the knockout of Notch1 led 
to uncontrollable growth of liver cells which suggests that 
defective Notch1 may contribute to hepatocarcinogenesis 
[213].

The activation of Wnt/β-catenin signalling is often seen 
in HCC and is highly associated with poor prognosis [214]. 
Its relationship with autophagy and HCC as well as LCSCs 
has been discovered. Wnt/β-catenin pathway inhibitor, 
2,5-dichloro-N-(2-methyl-4-nitrophenyl) benzenesulfona-
mide (FH535), targets β-catenin and were used to treat 
HCC cell lines. This led to an upregulation of LC3-II and 
p62 which corresponds to the build-up of autophagosomes 
in the cells as a result of impaired lysosomal degradation 
[215]. The synergistic treatment of FH535 and sorafenib 
greatly disrupted the autophagic flux and increases apopto-
sis, which suggests that Wnt/β-catenin signalling is vital for 
the survival of HCC cells [215]. In contrast, Wnt/β-catenin 
signalling was found to negatively regulate autophagy by 
inhibiting autophagosome formation and p62 expression 
[216]. Reciprocally, autophagy activates Wnt/β-catenin as 
increased expression of β-catenin upon autophagic induc-
tion was observed in HCC [217]. HPC/stem cell differentia-
tion is facilitated by autophagy through the Wnt/β-catenin 
signalling pathway [218]. Autophagy was observed to be 
highly upregulated during the cell differentiation of HPC 
[218]. The deactivation of autophagy through downregula-
tion of the ATG5 gene was shown to disrupt HPC differen-
tiation by inhibiting the Wnt/β-catenin signalling pathway 
which is important in cell proliferation and renewal of CSCs 
[218]. The hampering of Wnt/β-catenin led to a decrease 
in cell viability and self-renewal of LCSCs as well [219]. 
Hence, autophagy and Wnt/β-catenin remains an attractive 
target for HCC treatment. Although the relationship between 
autophagy and LCSCs with the Wnt/β-catenin pathway is 
known, the mechanistic involvement of autophagy with 
Wnt/β-catenin signalling is still poorly understood to our 
knowledge.

The four signalling pathways mentioned in this section 
are also involved in the maintenance and survival of CSCs. 
Since autophagy is involved in the regulation of these signal-
ling pathways, we can speculate that autophagy also plays a 
role in CSCs via these signalling pathways.

Above we described the role of autophagy in cancer, 
including tumour suppression, promotion and metastasis. 
Some of the results from model studies may contribute to 
the linkage between autophagy and tumours growth, but the 
contribution of these autophagy-related pathway activities 
toward human cancer need extensive research. Numerous 
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studies have found an association of autophagy with cell 
survival, stemness as well as the differentiation of LCSCs, 
however, the specific and detailed mechanisms as to how 
autophagy is involved in different metabolic pathways or 
molecular processes remains unknown to our knowledge. 
To date, drug resistance still represents the most challenging 
issue in anti-cancer treatment. Autophagy and CSC remain 
as an attractive target for treatment regimen, but doubts are 
not resolved. Drugs such as chloroquine or hydroxychloro-
quine that function as autophagy modulators bring about 
some undesired side effects including retinopathy, inflamma-
tion, and impact on white blood cells [220]. Moreover, none 
of the clinical trials using autophagy modulators assures the 
hypothesis that inhibition of autophagy produces a great 
therapeutic effect in cancer patients [221]. Yet, autophagy 
is important for survival, proliferation and in some cases, 
inhibition of tumour progression. Long-period inhibition of 
autophagy (both local and systemic) could probably lead to 
unwanted outcomes in cancer patients since it is not clear 
whether the drug is sufficiently specific. Also, the under-
standing of CSC and its applicability in anti-cancer is not 
so thorough. Although CSC has similar characteristics with 
normal stem cells, it is not well explained with the origin of 
CSC, as not all CSC originate from stem cells that turned 
malignant. Instead, tumours enriched with CSC may give 
rise to non-CSC populations, while non-CSC tumours also 
produce CSC populations [221]. The diversity of CSC, and 
the possible evolution of their protective measure after treat-
ment will be one of the challenges in developing treatment 
strategies. We learned that many studies are conducted to 
clarify LCSC stemness features, but the biological differ-
ence between normal and cancer stem cells is not well-estab-
lished. In order to produce a method that eradicates only 
CSCs without affecting normal stem cells, the exploration 
of uniqueness in CSCs must be performed in-depth.

Conclusions

In conclusion, autophagy is a conserved pathway which 
involves the intracellular self-digestion mechanism that 
degrades damaged cellular materials and wastes through 
lysosomal degradation. The role of autophagy has been 
implicated in various cellular processes which are important 
for cell survival and tumour suppression in liver cells. Aber-
rant autophagic regulation is linked to hepatocarcinogen-
esis, HCC progression and malignancy. Although we now 
know that autophagy is associated with the various cellular 
pathways that are related to HPC and CSC regulation, the 
exact mechanism in which autophagy is involved is not well 
established. In normal stem cells, strict regulation of pro-
tein turnover mechanisms is vital and required for cellular 
differentiation, renewal and regeneration, without which 

malignant transformation would ensue. With the advance-
ment of research, the relationship of LCSCs with autophagy 
in HCC will be progressively established. A deeper under-
standing of the role of autophagy in the survival and the 
biology of LCSCs in HCC may advance and improve diag-
nostics and contribute to the development of new treatment 
methods through the identification of novel biomarkers and 
drug targets. By identifying and determining crucial ele-
ments that contribute to carcinogenesis and HCC progres-
sion, we will be equipped to tackle the issue of recurring 
disease and improve prognosis.
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