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Abstract
Sorghum is an essential food crop for millions of people in the semi-arid regions of the world, where its production is severely 
limited by drought stress. Drought in the early stages of crop growth and development irreversibly interferes, which leads to 
poor yield. The effect of drought stress in sorghum was studied at physiological, biochemical, and molecular levels in a set of 
two genotypes differing in their tolerance to drought. Drought stress was imposed by restraining water for 10 days on 25 days 
old seedlings. A significant influence of water stress was observed on the considered morpho-physiological and biochemical 
traits. The genotype DRT1019 exhibited physiological and biochemical indicators of drought avoidance through delayed leaf 
rolling, osmotic adjustment, ideal gas-exchange system, solute accumulation, an increased level of enzyme synthesis and 
root trait expression as compared to the ICSV95022 genotype. Furthermore, differences in the metabolite changes viz. total 
carbohydrate, total amides, and lipids were found between the two genotypes under drought stress. In addition, transcript 
profiling of potential candidate drought genes such as SbTIP3-1, SbDHN1, SbTPS, and SbDREB1A revealed up-regulation in 
DRT1019, which corresponded with other important physiological and biochemical parameters exhibited in the genotype. In 
conclusion, this study provides an improved understanding of whole plant response to drought stress in sorghum. Addition-
ally, our results provide promising candidate genes for drought tolerance in sorghum that can be used as potential markers 
for drought tolerance breeding programs.
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Introduction

Drought is an edaphic stress that affects plant growth 
and limits agricultural productivity worldwide [1]. It has 
become common in semi-arid regions due to insufficient, 
unevenly distributed, and unpredictable rainfall [2]. There 
is an increasing demand to produce crops for intense envi-
ronmental situations, viz. drought, to maximize crop pro-
ductivity. Sorghum [Sorghum bicolor (L.) Moench] is the 
major food crop for many parts of the tropics, and is also 
an important feedstock with a high industrial value [3]. 
Also, it is considered an essential staple cereal crop for 
more than 500 million people in more than 30 countries 
worldwide [4]. However, sorghum production is widely 
affected by frequent drought stress [5, 6]. Drought is 
fast becoming a significant stress affecting sorghum cul-
tivation in semi-arid regions [7], where sorghum is an 
important crop. Generally, sorghum drought tolerance is 
categorized at pre-flowering and post-flowering stages. 
Pre-flowering drought stress is a critical phase to con-
sider, as it occurs during the panicle development stage, 
which affects the survival, crop establishment, flowering, 
and fodder yield [6, 8]. On the other hand, post-flowering 
stress happens during the grain filling phase resulting 
in premature senescence causing reduced seed size and 
grain yield [9]. Sorghum drought tolerance is an intricate 
characteristic governed by genotype and environmental 
interaction that varies from one genotype to another due 
to morpho-physiological alterations [10]. In most of the 
plants, drought tolerance has been associated with reduced 
stomatal conductance and delayed leaf rolling controlled 
by root signals and leaf water potential, respectively [11]. 
In sorghum, drought stress response could be through 
morphological, physiological, or anatomical mechanisms 
for assisting in maintaining an effective water balance or 
allowing drought tolerance at reduced leaf water potential 
[6, 12, 13]. Drought stress widely affects water relations 
and photosynthesis functions in many plants, including 
sorghum [5, 14, 15]. Plants can withstand stress conditions 
through osmotic adjustment by solute accumulation, which 
has been an indication of stress or a defensive mechanism 
for reducing the effect of stress [16, 17]. Sorghum drought 
tolerance mechanisms include leaf rolling, leaf waxiness, 
stay-green, stomatal closure, osmotic adjustment, root 
morphological adjustments, and solute accumulation [6].

At the molecular level, plants respond to drought stress 
through metabolic alteration, signal transduction, and 
differential gene expression [18]. The stress responsive 
genes induced by abiotic stress to protect cellular dam-
age in plants are important in tolerance mechanism at 
molecular level [19]. Hence, understanding the expres-
sion of these genes under stress conditions is important 

in stress adaptation [20]. In sorghum, previous studies 
have reported the expression of many drought-respon-
sive candidate genes determining the drought adapta-
tion mechanisms including aquaporins (AQP), dehydrin 
proteins (DHN), drought-responsive element binding 
(DREB) proteins, trehalose phosphate synthase (TPS), 
and ABA responsive proteins [21–24]. These drought 
responsive genes are involved in several mechanisms 
including osmotic adjustment, solute accumulation, root 
water uptake, cell membrane stability, protection of pro-
tein structures, activation of drought responsive genes 
and defense systems [22, 25–28]. During drought stress, 
understanding the functional trait association of the whole 
plant by investigating the physiological and biochemical 
changes with molecular marker mechanisms continues to 
be a challenge in most plants [29, 30], including sorghum. 
As stated earlier, in sorghum, drought stress responsive 
mechanisms at the vegetative stage is more important as 
this stage is critical for survival and crop establishment.

Therefore, in this study, the emphasis is given to sorghum 
whole plant vegetative drought stress responses at physio-
chemical and molecular levels with respect to plant metabo-
lism and differential gene expression patterns.

Materials and methods

Plant materials and experimental conditions

Initially a total of 100 sorghum genotypes were evaluated 
for drought stress tolerance at the field level. The geno-
types were collected from the Department of Plant Genetic 
Resources, Tamil Nadu Agricultural University (TNAU), 
Coimbatore, India. The experiment was conducted in 
pot culture under a completely randomized block design 
(CRBD) at the Department of Crop Physiology, TNAU, 
Coimbatore, India [31]. The selected genotypes were 
screened for drought tolerance as tolerant and susceptible. 
Out of this screening, a set of genotypes were selected i.e., 
DRT1019 (drought tolerant) and ICSV95022 (drought sus-
ceptible) and were sown in standard-size (15 cm × 20 cm) 
plastic pots filled with soil, sand, and manure in the pro-
portion of 2:1:1. One plant per pot and three replications 
per genotype were maintained, with each replication had 
eight plants. All plants were watered with 1 L of water every 
day until 25 days after sowing (DAS). At 25 DAS, plants 
were subjected to moisture stress for 10 days by withholding 
water and allowing the soil moisture to reach 30%. Control 
plants were maintained at > 75% soil moisture content by 
applying 1 L of water every 24 h. The soil moisture content 
was monitored daily with a portable moisture meter (Delta 
Systems, UK).
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Morpho‑physiological traits

Observations on the morpho-physiological characteristics 
were made on three plants for each genotype. Traits viz., 
leaf rolling (LR), SPAD chlorophyll content (CHP), relative 
water content (RWC), stomatal conductance (gs), transpira-
tion rate (E), net photosynthetic rate (PN), epicuticular wax 
(ECW), and root length (RL) were recorded. Leaf rolling 
was measured as described by [32] using a scale of rolling 
from 1 to 5 (1 being only the evidence of rolling, while 5 was 
severest with the leaf being a closed cylinder). The SPAD 
leaf chlorophyll was measured in both drought-stressed and 
control plants with Minolta SPAD-502 chlorophyll meter 
(Minolta Camera Co., Ltd). RWC was estimated using the 
method as suggested by [33] and expressed as a percentage. 
Leaf gas-exchange variables (PN, E, and gs) were measured 
from each genotype, as described by [34]. The epicuticular 
wax was estimated by the method indicated by [35]. The 
osmotic adjustment was measured using a VAPRO 5520 
vapour pressure osmometer (Wescor, Logan, UT) as sug-
gested by [36]. For estimating root length, the plastic pots 
were shrunk, and the roots were exposed to measure root 
length by a ruler scale and expressed in centimeters.

Quantification of biochemical responses

The biochemical assays such as nitrate reductase activity 
(NR), proline content (PRL), and metabolite changes were 
conducted using the leaf samples of control and drought-
stressed sorghum genotypes. The fully expanded leaves were 
collected from each genotype for control and drought stress 
treatment at 12:00 to 12:30 noon and immediately flash fro-
zen with liquid nitrogen and stored at – 80 °C for further bio-
chemical analyses. The NR activity was estimated based on 
the method suggested by [37]. Proline was estimated using 
Bates et al. [38] methodology.

Changes in metabolite content

Fully expanded leaf tissues of sorghum genotypes were 
excised and flash-frozen in liquid nitrogen. The FT-IR 
(Fourier Transformation-Infrared Analysis) analysis was 
performed according to [39] using Jasco FT/IR 6800 model 
to measure the changes in metabolites (lipids, amides, and 
carbohydrates) and the data were recorded in the absorb-
ance range of 600–4000  cm−1. For instance, the spec-
tral regions of macro-molecules for lipids were recorded 
at ~ 3050–2800 cm−1, proteins at ~ 1750–1250 cm−1, and 
carbohydrates at ~ 1250–900 cm−1as previously described 
by [40–42].

Molecular analysis

Quantitative RT‑PCR (qRT‑PCR) analyses

Total RNA was isolated from drought-stressed and control 
plants using Trizol (Sigma Aldrich) according to [43]. The 
Transcriptor High Fidelity cDNA Synthesis Kit (Roche, 
Germany) was used to synthesize complementary DNA 
(cDNA) from 1 µg of total RNA following the manufactur-
er’s protocol. Reverse transcription was performed at 45 °C 
for 30 min, followed by 85 °C for 5 min. Gene-specific prim-
ers (Table 1) were developed using Primer3 [44] and 18S 
rRNA was used as an internal control [45]. qRT-PCR was 
carried out on a Real-Time PCR system (ABI Biosystem, 
Step One Plus) using the SYBR Green Master Mix (Roche, 
Diagnostics). The 15 µL reaction volume contained 8µL of 
SYBR Green ready mix, 1 µL (10 pmoL) each of the forward 
(F) and reverse (R) gene-specific primers, 2 µL of template 
cDNA (50 ng), and 3 µL of double-distilled water. The ther-
mal cycling conditions were as follows: initial denaturation 
at 95 °C for 10 min; 40 cycles of denaturation at 95 °C for 
15 s; annealing at 55 °C for 1 min; and extension at 60 °C 

Table 1   List of genes and primer sequence used for RT-PCR analysis

No Gene ID Annotated function Primer sequence Amplicon 
size (bp)

1 Sb01g018430.1 Similar to Aquaporin TIP3-1
(Tonoplast intrinsic protein) (SbTIP3-1)

F: GCC​GCC​ATC​TCC​GAG​TTC​AT
R: TGC​TCG​CCG​TGT​CGT​GGT​AGTA​

100

2 Sb09g018420.1 Similar to (Dehydrin) DHN1 (SbDHN1) F: GCG​GAA​GGA​GGA​AGA​AGG​GA
R: GTG​TGT​TCT​TGC​TGC​CCG​TAG​

121

3 Sb08g014070.1 Similar to ABA-responsive
protein;putative; expressed (SbABA)

F: GCA​CGC​TCT​ACC​TGA​CCA​ACA​
R: GGA​GTC​CAC​GGT​GAC​GAT​GT

194

4 Sb07g020270.1 Similar to Putative (trehalose6-phosphate 
synthase) (SbTPS)

F: TCC​TGA​TGT​GCG​TTG​GCA​ATGA​
R: ACC​TCT​GGT​GCT​GTG​GGT​GATA​

100

5 Sb02g030310.1 (Drought response element
Binding 1A) (SbDREB1A)

F: GTG​AAG​GCA​GGT​GAA​ACA​GCG​
R: AGG​CTG​GCG​TAG​TAC​ACA​TC

104

6 Sb18sRNA Endogenous control F: TGA​TAA​CTT​GAC​GGA​TCG​C
R: CTT​GGA​TGT​GGT​AGC​CGT​TT

200
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for 30 s. The melt curve analysis was performed to confirm 
the specificity of amplification.

Statistical analysis

The significance of morpho-physiological and biochemical 
data was tested by Duncan’s Multiple Range Test at p < 0.05 
using XLSTAT software Addinsoft, Paris, France (2018).

Results and discussion

Effect of drought stress on morpho‑physiological 
characters

It was observed that the two genotypes i.e. (susceptible 
ICSV93022; tolerant DRT1019) selected for drought sus-
ceptibility and tolerance, respectively showed differential 
responses under control conditions indicating the existing 

genetic ability or inherent genetic potential for drought 
susceptibility or drought tolerance [46, 47]. Under drought 
stress these two genotypes exhibited significant differences 
for all the morpho-physiological and biochemical traits ana-
lysed (Fig. 1). In this study, delayed leaf rolling (score 1) 
was observed in DRT1019 compared to ICSV95022 (score 
4) under drought stress conditions (Fig. 1a). The adaptive 
ability of these genotypes to drought tolerance could be due 
to the genotypic variations in leaf rolling. Delayed leaf roll-
ing and lower stomatal conductance in sorghum have been 
widely recognized as the most reliable drought avoidance 
mechanisms [48, 49].

The SPAD chlorophyll content in DRT1019 was reduced 
by 19.02%, while in ICSV95022 it was 7.61% percent, indi-
cating the effect of drought stress on the genotypes [50]. The 
chlorophyll content of drought stressed plants was reduced 
relative to the control plants. However, under control condi-
tions the chlorophyll content in DRT1019 were (38.10) and 
in ICSV95022 (19.70). This variation is due to the intrinsic 

Fig. 1   Effect of drought stress on morpho-physiological traits a leaf rolling, b total chlorophyll, c relative water content, d net photosynthetic 
rate, e transpiration rate, f stomatal conductance, g epicuticular wax, h osmotic adjustment and root length (i). The values represent mean ± SE
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genetic potential of individual genotypes. Further, the SPAD 
chlorophyll content of the two genotypes were significantly 
affected by drought stress. In stress conditions, the DRT1019 
genotype (30.85) had a significantly higher chlorophyll level 
compared with ICSV95022 (18.20) genotype (Fig. 1b). Gen-
erally, drought stress results in pigment photo-oxidation and 
degradation of chlorophyll, eventually affecting a plant’s 
chlorophyll content [51]. A higher SPAD chlorophyll con-
tent under drought stress has been widely reported in tolerant 
sorghum genotypes [52, 53].

Relative water content (RWC) is an important indicator of 
plant water status [54], which is essential for normal growth 
and physiological functions of plants. Maintenance of higher 
RWC during water stress indicates a genotype’s improved 
tolerance to drought [55, 56]. In this study, a significant dif-
ference was observed in the RWC between the genotypes. 
Under drought stress conditions, a low level of RWC was 
observed in ICSV95022 (14.16%) compared to DRT1019 
(73.52%) (Fig. 1c). Likewise, [57] reported that the toler-
ance of drought in sorghum is associated with higher RWC. 
This difference in RWC between genotypes may indicate the 
genotype’s ability to obtain more soil water or the ability to 
prevent water loss [58].

Quantifying the changes in gas exchange parameters 
is considered a key method for assessing the ability of a 
genotype under limited water conditions. In this study, the 
net photosynthetic rate (PN) and transpiration rate (E) was 
reduced in the DRT1019 genotype by 33.94% and 21.67%, 
respectively, while inICSV95022 the reduction of PN was 
(15.98%) and E (40.48%). The reduction percentages indi-
cate the effect of drought stress on these genotypes. How-
ever, under control conditions, the gas exchange parameters 
viz. PN, E, and stomatal conductance (gs) in DRT1019 were 
higher than the susceptible genotype ICSV950222 (Fig. 1). 
In stress conditions, the results indicated that a significant 
reduction of PN was observed in ICSV95022 (10.15 µmol 
(CO2) m−2 s−1) compared to DRT1019 (17.13 µmol (CO2) 
m−2  s−1) (Fig.  1d). Maintaining higher PN even under 
drought stress conditions is a sign of tolerance to drought 
stress in sorghum [59]. Similarly, the transpiration rate 
(E) was significantly different between genotypes under 
drought stress conditions (Fig. 1e). The genotype DRT1019 
(4.23 µmol (H2O) m−2  s−1) had a relatively higher E as 
compared with ICSV95022 (1.72 µmol (H2O) m−2  s−1) 
under drought stress conditions. This result indicated that a 
higher transpiration rate might make the genotype’s internal 
plant system cooler by relieving the plant’s heat. In addi-
tion, higher yields of sorghum could be associated with a 
higher transpiration rate under moisture stress. Stomatal 
conductance (gs) is an important parameter for dehydra-
tion avoidance by most plants [60]. In our study, drought 
stress significantly affected the stomatal conductance pat-
tern between genotypes (Fig. 1f). The genotype DRT1019 

(0.02 µmol m−2 s−1) had lower stomatal conductance than 
ICSV95022 (0.08 µmol m−2 s−1). This result indicated that 
under drought stress conditions in DRT1019 the lower sto-
matal conductance was accompanied by higher transpiration 
efficiency as compared to ICSV95022. Similarly, [59, 61] 
reported that, in sorghum, rice and wheat lower stomatal 
conductance is associated with higher transpiration effi-
ciency i.e. ratio of net photosynthetic rate to transpiration 
rate.

Epicuticular wax is an effective component of drought 
avoidance mechanism in sorghum, as genotypes with higher 
epicuticular wax are reported to be drought tolerant [62]. In 
our study, a significant difference was found for the accumu-
lation of epicuticular wax between the genotypes (Fig. 1g); 
DRT1019 (0.68 mg/dm2) had higher epicuticular wax than 
ICSV95022 (0.13 mg/dm2). This result indicated that a 
high concentration of leaf epicuticular wax in DRT1019 
might contribute to its enhanced drought tolerance through 
a reduction in water vapor loss from leaves compared to 
ICSV95022.

Osmotic adjustment is a key physiological process in 
drought response and involves the accumulation of cel-
lular compatible solutes [63]. Under control conditions, 
DRT1019 (0.81 MPa) had higher osmotic adjustment than 
ICSV95022 (0.43 MPa) genotype (Fig. 1h). The difference 
for osmotic adjustment under control condition is due to 
genotypic inherent potential. Under stress conditions, the 
osmotic adjustment was significantly affected (Fig. 1h). The 
genotype DRT1019 (0.93 MPa) had higher osmotic adjust-
ment than ICSV95022 (0.51 MPa) under drought stress 
conditions. Under drought stress, the osmotic adjustment 
in DRT1019 was increased relative to control by 12.90%, 
while it was increased by 15.69% in ICSV95022. However, 
the results suggested that the increased osmotic adjustment 
under drought stress in tolerant genotype was able to main-
tain greater cell membrane stability, which in turn leads to 
higher cell water potential under drought stress conditions 
for normal physiological functioning [64].

Root traits are essential parameters to assess drought 
tolerance in most plants [65]. For example, root length is 
an important component for deep water utilization [66], 
which is attributed to a greater ability to maintain high 
and relatively stable xylem water potential during drought 
stress conditions [1]. In this study, under control conditions 
the root length was higher in DRT1019 (16.80 cm) than in 
ICSV950222 (11.69 cm) (Fig. 1i). Stress conditions signifi-
cantly reduced the root length in both genotypes. (Fig. 1i). 
Under drought stress, the genotype DRT1019 (14.55 cm) 
had a higher root length than ICSV95022 (10.39 cm). In 
terms of % reduction, the root length was reduced in both 
genotypes i.e., in DRT1019 it was slightly higher (13.39%) 
than ICSV95022 (11.12%). Although, there is a reduction in 
DRT1019, the mean root length was higher than ICSV95022 
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under drought stress, which allows the roots to access water 
from deeper soil. The difference in the root length is due to 
the individual genotype’s ability to respond drought stress 
[66]. In addition, the variation in root length between geno-
types may be attributed to the difference in their ability to 
uptake water from deeper soil and was found to be higher in 
the drought tolerant genotype compared to the susceptible 
[67].

Effect of drought stress on biochemical traits

Nitrate reductase (NR) enzyme is involved in the metabolic 
regulation of nitrogen assimilation in plants. In this study, 
due to drought stress the reduction of NR enzyme activity 
was more in ICSV95022 (16.87%) than DRT1019 (9.31%) 
indicating the genotype’s response to drought stress. Oth-
erwise, in control conditions, the NR level was higher in 
DRT1019 (2.90 µmol NO2 g−1  h−1) than in ICSV95022 
(1.60 µmol NO2 g−1 h−1). Under drought stress, a significant 
difference was found between the genotypes for NR levels. 
DRT1019 (2.63 µmol NO2 g−1 h−1) had higher NR activity 
than ICSV95022 (1.33 µmol NO2 g−1 h−1) under drought 
stress conditions (Fig. 2a). The decline of NR activity dur-
ing drought stress has accompanied by reduced NR tran-
script level and leads to reduction of rate protein synthesis 
due to an inhibition of transcription. Our results are in line 
with previous findings that higher NR activity is involved 
in stable protein synthesis thereby avoiding the inactivation 
of essential enzymes under drought stress conditions [68]. 
Therefore, NR activity under drought stress conditions can 
be an index for assessing plants’ drought tolerance capacity 
[69].

Proline accumulation was found to be significantly 
increased with drought stress in both genotypes (Fig. 2b). 
The proline content were increased by 17% in DRT1019 
and 28.57% in ICSV95022. The increase in proline con-
tent within genotypes indicates the drought stress effect on 
these genotypes. Further, the results revealed that in control 

conditions, the proline level was lower in ICSV95022 
(0.75 µmol/g−1) than in DRT1019 (2.10 µmol/g−1). In stress 
conditions, the proline level was significantly higher in 
DRT1019 (2.53 µmol/g−1) than in ICSV95022 (1.05 µmol/
g−1) as shown in the Fig. 2b. The higher level of proline 
in DRT1019 might serve as a primary combat response to 
maintain osmotic pressure in the cells, which is associated 
with drought tolerance through higher osmotic adjustment 
that stabilizes membranes, enzymes, and proteins necessary 
for normal cellular functions [14]. In sorghum, proline accu-
mulation in leaves under moisture stress is also associated 
with the genotypic potential of stress recovery [70].

Metabolomic approaches have revealed that drought-
stressed plants accumulate a variety of metabolites such as 
such as amino acids, organic acids, polyamines, and lipids 
to protect plant cells against oxidative stresses [71]. In our 
study, relative changes of metabolites such as total carbo-
hydrate, amides, and lipids were investigated in two sor-
ghum genotypes (Fig. 3). The results revealed that there 
was a change in these metabolites in the genotypes under 
drought stress i.e. DRT1019 had a higher absorbance value 
than the ICSV95022 genotype. Such alterations in the levels 
of metabolites in response to drought stress possibly play 
key roles in adjusting cellular metabolism of water stressed 
plants [72]. It is also revealed that the tolerant genotype 
would alter the protein composition, metabolic pathways, 
and utilization of metabolites when acclimating to drought 
stress [73].

Sorghum transcriptional response to drought stress

Five putative drought genes were selected for analyzing the 
drought responsiveness of the selected genotypes to drought 
stress. The qRT-PCR analysis in leaf tissue revealed that 
four genes viz. SbTIP3-1, SbDHN1, SbTPS, and SbDREB1A 
were  up-regulated, and  SbABA  was down-regulated in 
DRT1019 under drought stress (Fig. 4). In contrast, all five 

Fig. 2   Effect of drought stress 
on biochemical traits a nitrate 
reductase activity (NRse) and 
b proline content. The values 
represent mean ± SE (n = 3)
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Fig. 3   FT-IR Spectra from 
tolerant (DRT1019) and suscep-
tible (ICSV95022) genotypes 
under drought stress conditions. 
FT-IR raw data were plotted 
in Origin Pro 8 (OriginLab, 
Northampton, MA)

Fig. 4   Relative fold changes of SbTIP3-1 (a), SbDHN1 (b), SbTPS (c), SbDREB1A (d) and SbABA (e) under drought stress condition in two 
sorghum genotypes. The values represent mean ± SE. 18 s rRNA was used as endogenous control
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genes (TIP3-1, DHN1, TPS, ABA, and SbDREB1A) were 
down-regulated in ICSV95022 (Fig. 4a–e).

In the DRT1019 genotype, SbTIP3-1was found to exhibit 
a 1.8 fold up-regulation as compared to in ICSV95022 dur-
ing drought stress (Fig. 4a). Increased expression of SbTIP3-
1 encoding aquaporin could be involved in water uptake, 
regulating the passive exchange of water across membranes 
[25]. Dehydrin protein belongs to a set of late embryogenesis 
abundant protein (LEA) accumulating under drought stress 
and protecting the plants by acting as molecular chaperones 
and maintaining the ion balance and cell membrane stabil-
ity [22]. In our study, tolerant genotype DRT1019 showed 
significant up-regulation of SbDHN1 by 5.0 fold (Fig. 4b), 
indicating that water stress leads to the increased role of 
SbDHN1 in this genotype. Furthermore, the higher expres-
sion of SbDHN1 confers drought tolerance in sorghum by 
protecting the protein structures and enhancing the water 
holding capacity of the genotype [26].

Trehalose functions in sugar metabolism and acts as 
osmoprotectant in response to salt and drought stress [27]. In 
our study, gene expression of SbTPS (Trehalose 6 phosphate 
synthase) was investigated in two sorghum genotypes under 
control and drought stress conditions. The DRT1019 geno-
type exhibited up-regulation of SbTPS by 6.50-fold, while 
the same gene was down-regulated in ICSV95022 (Fig. 4c). 
Similarly, genes involved in trehalose synthesis have been 
significantly up-regulated by drought stress in maize [74], 
and rice [75]. Hence, overexpression of this gene might have 
contributed to trehalose accumulation, which may increase 
the carbohydrate content in the genotype for higher energy 
supply and acts as osmoprotectant rendering the genotype 
DRT1019 more stable under drought stress conditions. 
However, future analysis of trehalose levels in the drought-
stressed DRT1019 and ICSV95022 sorghum genotypes is 
required.

Transcription factors (TFs) like drought responsive ele-
ment binding (DREB) proteins are involved in drought toler-
ance [76, 77]. In this study, SbDREB1A showed over-expres-
sion (3.75-fold) in the tolerant genotype under drought stress 
(Fig. 4d). Overexpression of SbDREB1A in DRT1019 geno-
type could help in activating ABA-independent pathways to 
drought stress [78]. In addition, overexpression of DREB1/
CBF exhibited activation of many stress-responsive genes 
for enhanced drought tolerance in sugarcane [28]. Therefore, 
these four promising candidate genes (SbTIP3-1, SbDHN1, 
SbTPS, and SbDREB1A) could be involved in drought tol-
erance and adaptability of the DRT1019 genotype under 
drought stress.

In this study, ABA-responsive protein under drought 
stress was down-regulated by 2.85- and 13.0-fold in toler-
ant and susceptible genotypes, respectively (Fig. 4e). Simi-
larly, in A. thaliana, the ABA-responsive genes involving 

plant developmental process, tolerance to environmental 
stresses, and defensive mechanisms were down-regulated, 
[79]. The downregulation of the ABA-responsive gene 
could indicate ABA-dependent gene expression in plant 
growth and developmental processes of both genotypes 
under drought stress conditions.

Conclusion

In this study the genotype DRT1019 showed increased 
physiological and biochemical functions compared to 
ICSV9001, which may be indicative of genotype stabil-
ity under drought stress. The DRT1019 genotype exhib-
ited drought avoidance through delayed leaf rolling, 
higher osmotic adjustment, optimal gas exchange sys-
tem, increased epicuticular wax, solute accumulation and 
enhanced metabolic alterations. In addition, drought stress 
greatly affected the expression of the genes and induced 
changes in the sorghum transcript profiles. The genes 
exclusively up-regulated in DRT1019 possibly indicate the 
most promising candidates for drought tolerance in sor-
ghum. Based on the known functions of these genes from 
other crop plants, the tolerant genotype DRT1019 is possi-
bly capable of higher root water uptake (SbTIP3-1), higher 
cell membrane stability (SbDHN1), higher osmotic adjust-
ment by sugar accumulation (SbTPS), and stimulation of 
various stress-responsive genes (SbDREB1A) involved 
in normal physiological functions during drought stress. 
Overall, this study offers a glimpse of sorghum whole 
plant morpho-physiological, metabolic, and molecular 
mechanisms associated with drought stress. In future, the 
genotype DRT1019 could be useful in the identification 
of drought tolerant QTLs in breeding programs through 
development of recombinant inbred lines and segregating 
populations.
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