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Abstract
An integral approach to decoding both culturable and uncultured microorganisms’ metabolic activity involves the whole 
genome sequencing (WGS) of individual/complex microbial communities. WGS of culturable microbes, amplicon sequenc-
ing, metagenomics, and single-cell genome analysis are selective techniques integrating genetic information and biochemical 
mechanisms. These approaches transform microbial biotechnology into a quick and high-throughput culture-independent 
evaluation and exploit pollutant-degrading microbes. They are windows into enzyme regulatory bioremediation pathways 
(i.e., dehalogenase) and the complete bioremediation process of organohalide pollutants. While the genome sequencing 
technique is gaining the scientific community’s interest, it is still in its infancy in the field of pollutant bioremediation. The 
techniques are becoming increasingly helpful in unraveling and predicting the enzyme structure and explore metabolic and 
biodegradation capabilities.
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Introduction

Ecological processes are associated with microbial activities, 
either indirectly or directly, where microbes perform vital 
functions in the overall biogeochemical cycling of nutrients 
and the degradation of persistent ecological pollutants [1, 
2]. Microbes’ use to remove natural or synthetic pollutants 
is the prevailing, low-cost green technology to treat different 
kinds of polluted environments [3, 4]. Microbes make fan-
tastic pollutant degraders because they possess enzymes, for 
instance, dehalogenases. The enzymes use the environmen-
tal pollutants as nutrient or carbon sources, and their natu-
rally small size enables facile contact with the pollutants [5]. 

However, the naturally occurring organohalide compounds 
are insignificant compared to anthropogenic ones [6]. Add-
ing halogen atoms to organic molecules would significantly 
improve their properties, such as solubility and toxicity [6]. 
The change would result in valuable commercial product 
improvement but may impart serious effects on microbial 
metabolism [7]. At times, halogenation decreases the vul-
nerability of chemicals significantly to enzymatic attack and 
give rise to persistent compounds [8].

Consequently, bioremediation technologies to remove 
such chemicals from the environment are still growing. 
Several microbes have been identified as promising in the 
bioremediation of these pollutants [5, 9, 10]. However, the 
main questions remain, (i) what are the enzymes involved 
in pollutants degradation pathways? (ii) how do they carry 
out their function?, and (iii) how do they respond to vari-
ous pollutants?. The questions are useful in forecasting the 
degradability and ability of the native microbial environment 
and provides valuable information about enzymes involved 
in degradation. However, the identification of critical regula-
tory genes, their structure, and the comprehension of their 
genetic responses remain challenging.

The arrival of molecular microbial tools has profoundly 
changed the microbial ecology area by providing a direct 
approach to environmental microbes’ phylogeny and 
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physiology, without depending on their cultivability [11]. 
This new microbial ecology era is defined by creating quick 
and high input techniques, which aids the culture-independ-
ent method of microbial communities dwelling in ecosys-
tems. Hence, this incapacitates the limitations of cultiva-
tion-dependent methods. Molecular methods to evaluate 
microbial ecology facilitated the essential comprehension of 
microbial communities’ structural and functional behaviors 
[12, 13], offering excellent prospects for novel bioremedia-
tion approaches. Molecular approaches permit immediate 
investigation of the transcripts, metabolites, genes, and pro-
tein of natural microbial communities in situ [12, 14]. It also 
gives insight into their relations that affect the attenuation 
of environmental pollutants, thereby restoring the polluted 
environments.

This review provides recent information on the bioreme-
diation of environmental pollutants and the various genomic 
strategies involving the WGS, metagenomics, and single-
cell genome analysis in pollutant degradation research. 
An overview of functional and structural arrangement and 
detailed application of the techniques to pollutant degrada-
tion research are also summarized. Moreover, information 
on gene arrangement, metabolic pathways, and the molecu-
lar mechanism of organohalide pollutants are lacking. The 
approaches may improve catabolic pathways and offer useful 
information on the genome, transcriptome, and proteome of 
in situ microbial communities without needing cultivation 
[12, 14].

Contaminants in natural environment

The extensive utilization of harmful organic compounds and 
the rise in pollutant concentrations in the environment are 
consequences of rapid industrialization, increased popula-
tion, military activities, changed agricultural activities, and 
urbanization. Many pollutants and waste materials contain-
ing heavy metals, petroleum hydrocarbons, and halogen-
ated organic compounds are released into the environment 
annually. The issue is exacerbated by their persistence and 
is amassed over a prolonged period. Their widespread dis-
tribution into air and groundwater has resulted in critical 
ecological and health challenges globally [15].

Categorically, common environmental pollutants are 
hydrocarbon, agricultural supplements (pesticide, her-
bicides, and synthetic insecticides), and heavy metals 
(Table 1). Petroleum hydrocarbons have multiple carbon 
bonds, which create strong, complex structures when bonded 
with other types of molecules. They exist in various forms, 
viz. short, medium, long aliphatic, aromatics, and polycy-
clic aromatic hydrocarbons (PAHs) of varying ratios [16]. 
Organohalides are also common environmental pollutants 
by spraying herbicides, fungicides, insecticides, hydraulic 
and heat fluids, plasticizers, and chemical intermediates. As 

a matter of fact, chlorinated phenolic compounds are one 
of the most abundant recalcitrant wastes discharged by the 
paper and pulp industry. Pesticides are globally applied in 
agriculture as well as in many public health sectors. Plastics 
and dyes are occasionally used, except for a few PAHs used 
in medicine [17]. However, the compounds are deemed as 
environmental pollutants in various terrestrial and aquatic 
ecosystems. Their detrimental impacts offset their useful-
ness, as they amass and are resistant to degradation. Toxici-
ties of such compounds have been reported, including oxida-
tive stress, changes in metabolic parameters, hepatic stress, 
and cellular necrosis [18, 19]. The biological consequences 
concede the survival, growth, reproduction, and the early-
stage development of organisms [19–21].

The frequently used techniques to treat polluted environ-
ments include physical and chemical technologies such as 
burying, combusting, extracting soil vapor, soil washing, 
and dispersion [22]. The methods, however, are incapable 
of totally decomposing pollutants and are economically 
unfriendly. In some cases, more toxic chemicals are formed 
compared to before the treatment [22]. Due to the high cost 
and the lack of public acceptance of these methods, bioreme-
diation seems to be an excellent alternative clean-up technol-
ogy. Bioremediation is a method that biologically degrades 
organic wastes to a safe compound under regulated condi-
tions or to levels lower than concentration limits established 
by regulating agencies [23]. The method is safe, cost-effec-
tive, and naturally eco-friendly, uses several enzymes from 
microbes to degrade toxic organic pollutants [10, 23, 24].

Classification of enzymes involve 
in bioremediation

Based on biodegradation ability, microbial enzymes are 
classified into oxidoreductases and hydrolases [24, 25]. 
Certain oxidoreductase-producing bacteria such as laccase, 
peroxidase, and oxygenase can degrade radioactive metals, 
chlorinated compounds, and petroleum containing hydro-
carbons [21, 26, 27]. In contrast, hydrolases are common 
hydrolytic enzymes that bioremediate and detoxify agro-
chemical pollutants. For instance, oil spills, organohalides, 
organophosphates, and carbamate insecticides have been 
effectively degraded by dehalogenases, lipases, cellulases, 
carboxylesterases, and phosphodiesterases [10, 28].

The study of pollutant-degrading microbes, identifying 
their genetic and biochemistry, and developing techniques 
for their use have led to crucial human endeavors. Microbes 
stand preferable as agents to clean up the environment in 
terms of cost, chemical, and physical techniques. Nonethe-
less, microbial-driven clean up of polluted environments 
remains limited, following the lack of knowledge of the fac-
tors that control and regulate their metabolism, growth, and 
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different microbial community dynamics. The recent use of 
innovative tools like proteomics, fluxomics, transcriptomics, 
genomics, and metabolomics has produced eco-friendlier 
pollutant treatment strategies [14]. Microbes can mineral-
ize and degrade the contaminants into energy sources and 
then convert them into simpler intermediates. During this 
process, the microbes can transform toxic chemicals into 
nontoxic compounds or completely degrade them into car-
bon dioxide and water by converting them from one phase 
to another. The expression of the microbial enzymes’ genes 
relies on these toxic chemicals’ presence, as the enzymes 
are substrate-specific and mobile due to their smaller size 
[24, 29, 30]. Gene expression of the enzyme depends on the 
substrate types present in the medium (Fig. 1).

Bacterial dehalogenases

Degradation of organohalides by dehalogenases isolated 
from environmental bacteria and their basic mechanisms 
have been described in great detail [31]. Dehalogenases can 
be categorized into oxidative, reductive, hydrolytic, or thio-
lytic dehalogenases [10, 31]. Hydrolytic dehalogenases are 
further categorized into haloacid dehalogenases, haloalkane 
dehalogenases, fluoroacetate dehalogenases, and halohydrin 
dehalogenases that degrade aliphatic halogenated organic 
compounds. The haloacid dehalogenases are sub-divided 
into three kinds based on their substrate selectivity. The 
L-2-haloacid dehalogenases (L-DEX) and D-2-haloacid 
dehalogenases (D-DEX) catalyze L-2-haloalkanoate and 
D-2-haloalkanoate to produce L-2-hydroxyalkanoate and 

D-2-hydroxyalkanoate, respectively. D,L-2-haloacid dehal-
ogenases (D,L-DEX) react with both D- and L-2-haloal-
kanoates, yielding 2hydroxyalkanoates, respectively [10, 
31]. Haloacid dehalogenase (HAD) enzymes belong to a 
large phosphohydrolase superfamily, which include hydro-
lases, oxygenases and dehydrogenases that degrade poly-
chlorinated biphenyls [10, 31]. Due to the rapid development 
of the WGS process, new microorganisms or enzymes (such 
as dehalogenase) can be easily identified and studied further 
by analyzing the full DNA sequence in genome databases.

Strategies for genome sequencing

The application of genome sequencing methods is clas-
sified into amplicon sequencing, shotgun metagenom-
ics, single-cell genomic sequencing, and whole-genome 
sequencing of cultured microbes, depending on the issue 
to be solved (Fig. 2). Progress in WGS has provided a bet-
ter understanding of how microbes degrade pollutants and 
their environmental adaptation at genetic levels. Many 
enzymes, for instance, dehalogenases and their pathways 
responsible for pollutant degradation, have been described. 
Complete genome sequencing techniques have unveiled 
several enzymes that participated in pollutant degradation 
in different environments, as discussed in “Application of 
whole-genome sequencing techniques to pollutants deg-
radationresearch” section. Although the various complete 
genome of distinct pollutant-degrading bacteria is known, 
the genetic basis of pollutant degradation (especially the 
regulatory function of haloacid dehalogenases) and environ-
mental adaptation to the environments are yet to be clarified. 
Therefore, this article reviews the WGS approach in pol-
lutant bioremediation by emphasizing the potential regula-
tory mechanism of haloacid dehalogenase. It is an excellent 
means for consolidating information on the complete biore-
mediation of organohalide pollutants. Identifying individual 
strains in the complex microbial communities can improve 
and, undoubtedly, expose more novel enzymes/genes capa-
ble of degrading pollutants from an individual cell.

Whole‑genome sequencing (WGS) of cultured 
microbes

Whole Genome Sequencing (WGS) is one of the best 
methods for regaining the microbes’ genetic and meta-
bolic diversity. It becomes a problem when many microbes 
evade cultivation [32], making the complete genome less 
appreciated using traditional approaches. This technique 
uses sequencing platforms such as Illumina, PacBio, Nano-
pore, Qiagen, BGISEQ, IonTorrent, or other sequencers. 
Although this technique has flaws in genome sequencing, 
it can be rectified using a targeted enrichment method. The 

Fig. 1   An overview of gene expression in the biodegradation process 
in a bacteria system. The toxic chemicals of the halogenated com-
pound must be able to enter the cells. Inside the cells, these toxic 
chemicals will trigger a specific gene in chromosomal DNA and 
allow for transcription and translation of a protein for an enzymatic 
reaction for biodegradation. The contaminants serve as carbon and/or 
energy source, and microbes can degrade/mineralize them into sim-
pler intermediate
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method enhances a particular microbe’s isolation within 
a specified community, having the biochemical property 
of interest. Pertinently, the term ‘targeted enrichment’ 
refers to the isolation of a single microbe via a physically 
enhanced cell population based on patterns of phenotypic 
traits like size, density, shape, and the native spectral trait 
[33]. Subsequently, the isolated microbes are used for a 
complete genome assembly and sequencing.

However, this technique is not suitable for complex envi-
ronmental samples because measured properties do not 
uniquely define them. This issue can be overcome by limited 
enrichment, enhancing the outcome of efforts on varying 
data sets of organisms. The procedure has successfully over-
come the problem of low-yield in selected microbes [34]. 
Regardless of the availability of next-generation sequencing 
methods, improvement in bioinformatics, and the potential 
of sequencing data, the use of WGS of cultured microbes is 
still at a nascent stage. This method has allowed microbial 
ecologists to explore, compare, and characterize microbial 
communities since ∼ 98% of bacteria in an environmental 
sample are unculturable by traditional laboratory methods. 
The issue above can be overcome by metagenomics, and sin-
gle-cell genomics, both of which allow scientists to access 
unculturable microbial genomes.

Metagenomic sequencing

Metagenomic sequencing reads DNA accurately from an 
environmental sample without cultivating individual colo-
nies. The entire method involves the extraction of DNA from 
environmental samples, amplification, and high-throughput 
sequencing. DNA fragments produced by the sequencer are 
then suitably categorized (binned) and assembled into con-
tigs by bioinformatics models. The qualified and accepted 
bins are then designated as metagenome-assembled genomes 
(MAGs) [35, 36]. According to the literature, metagenomic 
sequencing is grouped as amplicon metagenomic and shot-
gun metagenomic.

Amplicon sequencing

The partial 16S-based metagenomic technique, otherwise 
known as amplicon or targeted metagenomic, uses microbial 
marker genes like 16S rRNA, internal transcribed spacer, 
and other marker genes. The most general marker gene for 
amplicon or target sequencing is the 16S rRNA gene. It is 
used as a taxonomic marker that can resolve one significant 
query connected to microbial ecology as “who is there”, 
by conveying the sequence reads to a taxonomic ancestry 
based on identified 16S rRNA database, like Greengenes, 

Fig. 2   An overview of WGS approaches used in the bioremediation study of dehalogenase-producing microbes
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SILVA or Ribosomal database project (RDP) [37]. However, 
the bacterial roles cannot be clearly defined when the 16S 
rRNA sequence reads fail to adequately resolve or detect 
microbes at the species/strain level. Also, the marker genes 
survey only emphasizes a few common genes, as they cannot 
precisely distinguish the microbes’ functional or metabolic 
potentials [38–40].

Currently, projecting microbial functional capabili-
ties from 16S rRNA gene is a prevalent substitute over the 
shotgun metagenomic technique. The cheaper 16S rRNA 
gene sequencing offers taxonomic structure but not func-
tional interpretations. Several software packages can solve 
this challenge by identifying specific features to forecast 
the functional metagenomic abilities according to known 
16S rRNA gene sequences linked to genomes. Piphillin, 
PICRUSt (Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States), MelonnPan (Model-
based Genomically Informed High-dimensional Predictor of 
Microbial Community Metabolic Profiles), and other simi-
lar tools are publicly accessible computational software for 
predicting microbial functional capabilities from detected 
16S rRNA genes. The software uses direct nearest-neighbor 
matching or relies on reference phylogenetic trees of 16S 
rRNA gene amplicons to infer metagenomic function. The 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
BioCyc are among the reference genome databases for pre-
dicting metagenomic functions [40, 41]. Shotgun metagen-
omic sequencing can validate the purported theory using 
phylogeny and functions [42].

Shotgun metagenomics

Shotgun metagenomics sequencing can reveal the poten-
tial of microbial communities and offers insights into their 
diversity, life cycle, and functions. The metagenomic reads 
encoding genes of interest offer functional annotation 
through gene fragment recruitment, de novo gene predic-
tion, and protein family classification [43]. This technique 
provides a solution to two crucial questions associated 
with microbial ecology; “who is there” and “what are they 
doing.” Annotation is assigned to the reads to establish the 
functional gene, using databases like Non-Redundant (NR) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
eggNOG [44]. This approach offers a complete thought-
ful of the community composition at a high resolution and 
possible metabolic lane related to the microbial community 
[45]. However, the assignment of functional annotation and 
metagenome assembly may prove challenging for shotgun 
metagenomic sequencing. The microbial classification 
structure is not available, unlike the 16S rRNA reports. To 
address this setback, RiboFR-Seq and epiPCR (emulsion, 
paired isolation, and concentration PCR) techniques can 
simultaneously capture both the 16S rRNA variable areas 

and their flanking protein-coding genes. In addition, they 
link functional genes and phylogenetic markers in uncul-
tured single cells connected to metagenomic contigs and 
16S rRNA profiles [46]. However, the methods only partly 
resolve the problem and are unable to connect all the func-
tional genes of the microorganisms to their phylogeny.

There are currently two main methods in shotgun 
metagenomics, which focus on various parts of the microbial 
community within a defined environment. Firstly, the struc-
tural metagenomics’ primary emphasis is to study unculti-
vated microbial composition and other properties, i.e., the 
complex metabolic network structure between community 
members [47]. Here, the microbial community composition 
is defined as the population structure, and its dynamics in a 
specific environment is related to factors such as pressures 
and spatiotemporal parameters. Greater insight is provided 
by observing the community composition in terms of inter-
actions among the individual microbes within the commu-
nity, vital for offering biochemical functions among their 
group members [47]. The studies of 16S rRNA and shot-
gun metagenomics are not equally exclusive. The methods 
establish a link between the 16S rRNA analysis to genes, 
which showed that the metabolic pathways are beneficial 
to determine the functional potential of a microbiome [48]. 
The approaches complement each other and permit a more 
in-depth investigation of pertinent biological queries in 
microbial ecosystems like “who are the community mem-
bers?” and “what are their functional roles?”. The single-
cell sequencing is recognized as an effective technique that 
provides sequencing information on target microbe at single-
cell levels due to flaws in amplicon sequencing and shotgun 
metagenomic sequencing.

Single‑cell genomics

This term signifies an individual cell’s genomes, which 
might or might not include the complete genetic range in 
the microbiota. Single-cell sequencing of microbial cells 
is becoming an essential tool for the microbiologist. The 
technique complements other existing techniques, includ-
ing traditional culture-based methods and metagenomic 
sequencing. Genome sequencing of individual cells is a 
novel culture-independent technique that provides an evo-
lutionary record of the microbe and enables cell-to-cell 
variability studies in microbial populations. It links meta-
bolic function to specific species and creates a high-quality 
genome for species with low richness [49].

The single-cell genome sequencing has steps that incor-
porate sample preparation and single-cell isolation by 
advanced isolation methods (such as micromanipulation, 
flow cytometry, microfluidics, and encapsulation in drop-
lets). Other methods include DNA extraction, phylogenetic 
classification by 16S rRNA gene, WGA using Multiple 
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Displacement Amplification (MDA), library preparation, 
sequencing, and data analysis [49]. In the case sequence 
analysis, the distinct steps comprise of quality assurance of 
raw reads, genome assembly (using a single-cell-specific 
assembler), automated and/or manual contaminant identifi-
cation and removal, annotation, genome quality inspection, 
and categorization according to the Minimum Informa-
tion on Single Amplified Genome (MISAG) standards [49] 
and database submission. The method improves complete 
genome sequence from a single bacterium, enabling novel 
discoveries of genes/pathways capable of degrading pollut-
ants. This is made possible by studying how a specific gene 
is regulated by looking at the putative operon. Single-cell 
sequencing can unveil novel bacteria with an alternative 
genetic code, observe the gut microbial of cells that use host 
originated compounds, and quantify absolute taxon abun-
dances in the gut microbiome [50].

Application of whole‑genome sequencing 
techniques to pollutants degradation 
research

The use of WGS has led to novel discoveries on genes/path-
ways from microbes capable of degrading pollutants from 
the environment. Some of the most noticeable genes/path-
ways are summarized in Table 2. In 2009, Suenaga et al. 
found over 25 estradiol dioxygenase genes responsible 
for catalyzing the ring cleavage of dehydroxylated central 
intermediate compounds during aerobic degradation of aro-
matic hydrocarbon [51]. Monooxygenases, dioxygenases, 
hydroxylase, and ring-hydroxylating dioxygenases (RHD)-
degrading aromatic polyaromatic hydrocarbons (benzoate, 
phenol, biphenyl, polychlorinated biphenyl, hexadecane, 
naphthalene, and phenanthrene) were also reported [52–55]. 
Some researchers detected several potential genes in dehalo-
genases, laccase, and cutinases. The genes were found to 
encode the degradation of halogenated hydrocarbons, chlo-
rinated solvents, industrial dyes, and polyethylene tereph-
thalate (PET) [9, 48, 56–61].

The complete genome sequence of pollutant-degrading 
bacteria has been extensively studied [62]. Bacterial iso-
lates in oil/petroleum polluted sites, polluted marine water, 
wastewater, contaminated soils, and pharmaceutical-contam-
inated site (Table 1) have been sequenced, and the genetic 
sources of their pollutant mineralization potential had been 
revealed [62, 63]. In such cases, genome analysis of pollut-
ant-degrading bacterial strains, pollutant degradation/uptake 
mechanism, and their genetic adaption for growing in the 
pollutant stressed environments might prove useful. Though 
pollutant degrading bacteria’s complete pathway has been 
clarified, only a few reports have highlighted the degradation 
pathway [62]. Sequencing environmental/individual DNA 

via next-generation sequencing is rapid with minimum cost 
implications, and new innovative sequencing equipment is 
produced nearly every year. A large amount of data is availa-
ble from next-generation sequencing platforms, but advances 
in bioinformatics analysis are lagging. For instance, recon-
struction of a complete genome from most environments 
remains a challenge unless enrichment methods can reduce 
microbiome complexity in microcosms [64]. Till now, only 
genomes of dominants strain can be constructed from com-
plex metagenomes [65]. The situation will only change 
if there is a computational improvement to restructure or 
complete genomes of rare taxa. Genomic techniques for 
addressing biochemical roles can help assign a functional 
and taxonomic unit to access the biodegradation activity [66]

Structural and functional characteristics 
of dehalogenase genes

The structural and regulatory function of dehalogenase 
genes can be understood using a cluster of genes called 
an operon. It is depicted as clusters of genes with related 
structures and functionally allows regulation of expression 
in microbes. Since the discovery of lac operon and various 
catabolic operons, microbes/enzymes’ control strategies had 
been uncovered. Several microbial genomes show groups 
of genes within a single process that may be co-jointly tran-
scribed and regulated in classical operons or with distinct 
promoters and regulators. However, the level of operon 
gene arrangement and gene clustering varies among spe-
cies. In some bacteria, operons are reasonably unpreserved, 
and genes involved in one cellular process can be scattered 
in the genome [80]. Previously, gene cloning successfully 
revealed the gene structure of the haloacid dehalogenases in 
Rhizobium sp. RC1 (Fig. 3) is the only bacterium that pro-
duces three different haloacid dehalogenases, dehD, dehE, 
and dehL. The operon regulated a single regulatory gene 
(dehR), which controls all three structural genes of dehD, 
dehE, and dehL in Rhizobium sp. RC1. Rhizobium sp. RC1 
dehalogenase is involved in the degradation of organohalide 
compounds and its expression is stimulated only in the pres-
ence of the pollutants in the environment [81].

Dehalogenase-coding genes are jointly clustered with reg-
ulatory genes, transport or uptake proteins, accessory genes, 
and other genes that partake in organohalides catabolism. 
Regulatory genes are usually located near dehalogenases 
and, often, in the opposite direction. They are a general 
feature of transcriptional factors in bacteria that enables 
intensive expression, production of transcriptional regula-
tors nearby targeted genes, and favors efficient recognition of 
subsequent DNA-binding sites by averting spatial diffusion 
[82]. The entire genetic organization can only be studied by 
knowing the full genome sequence analysis.
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Transcriptional factors involved in organohalide detection 
having the Helix-Turn-Helix (HTH) DNA binding domain 
are found in almost all known bacteria, transcriptional regu-
lators. They make up the majority of regulators involved in 
bioremediation [83]. The binding of small ligands to this 
site induces conformational changes in transcriptional fac-
tors, thereby affecting their DNA-binding properties [84]. 
Some transcriptional factors have been associated with spe-
cific organohalide compounds, for instance, transcriptional 
regulators of the lysR family (like CatR, ClcR, LinR, PcpR). 
They typically detect aromatic or aliphatic organohalide pol-
lutants such as chlorobenzoate, chlorophenol, chloroethane, 
and chloroethene [62]. The NtrC family of transcriptional 
regulators (DmpR, MopR, XylR) can identify both aromatic 
compounds substituted with or without halogens, although 
with low affinity [84]. The MarR family transcriptional fac-
tors, on the other hand, regulate aliphatic organohalide sol-
vents [85]. However, the complete genome of Norcadia soli 
strain Y48 was found to contain the above said transcrip-
tional factors, in addition to TetR, GntR, and Ic1R-family 
transcriptional regulators [86].

Dehalogenase expression may also be affected by trans-
port/uptake proteins, which could be part of its operon. 
Genes encoding for transporters or uptake proteins in the 
uptake of organohalides are often located near dehaloge-
nase genes (Fig. 3) [87]. Generally, many enzymes/genes 
involved in pollutants degradation and transcriptional fac-
tors that respond to organohalide pollutants are not fully 
characterized [88]. The survival of bacteria and their ability 
to catalyze under harsh conditions hinge on organohalides 
and nutrient uptake systems. With regards to organohalides 
biodegradation, genomics and metagenomics approaches 
have successfully identified genes in several microbes that 
code for enzymes related to their biodegradation. Informa-
tion on the whole-genome analysis of genes of pollutant-
degrading bacteria structure and function is described in 
“Structural and functional characteristics of dehalogenase 
genes” section.

Table 3 presents the complete genomic survey of bac-
teria capable of degrading organohalide pollutants. Many 
aspects of regulatory pathways remain unexplored compared 

to extensive information on genes and enzymes responsible 
for organohalides degradation. Hence, it is unsurprising that 
some aspects of the regulatory pathways are responsible for 
limiting organohalides’ practical degradation in unpolluted 
or polluted environments.

Genomics is a powerful computer-based technology 
used to understand the structure and feature of all genes in 
an organism [101]. In this review, the structure and regu-
lation of haloacid dehalogenases are illustrated using the 
complete genome of organohalide-degrading Burkholderia 
caribensis MBA4, Pseudomonas aeruginosa N002 and 
Sphingobium chlorophenolicum strain L-1. Burkholderia 
caribensis MBA4 specifically degrades monochloroacetic 
acid and D,L-2-bromopropionic (D,L-2-BP) acid, but acts 
weakly on D, L-2- chloropropionic acid (D,L2-DCP) [56, 
58]. The haloacid utilizing operon comprising of dehalo-
genase deh4a and permease deh4p genes was discovered 
in replicon CP012747. In contrast, the deh4a eight other 
genes were annotated as haloacid dehalogenase or haloacid 
dehalogenase-like proteins for the whole genome (Fig. 4a) 
[58]. The role of permease deh4p is to transport monochlo-
roacetic acid into the cell. Figure 4b illustrates the hydrolysis 
of glycolate by a glycolate oxidase (an enzyme that has 3 
subunits; viz GlcD, GlcE and GlcF.) where the genes clus-
tered as an operon. In the case of Burkholderia caribensis 
MBA4, three glycolate oxidase operons were identified [58], 
of which one gene is located downstream of the deh4a in 
replicon CP012747 (Fig. 4b). This operon has a downstream 
malate synthase gene (glcB) and an upstream regulatory 
gene (glcC) in the opposite strand. Another glcDEF contain-
ing an upstream glcC was discovered in replicon CP012746 
with neither adjacent glcC nor glcB (Fig. 4b). Hence, the 
findings conveyed that glycolate oxidase could utilize gly-
colate in three ways [58].

In the second example, the complete genome of Pseu-
domonas aeruginosa N002 contained several genes 
involved in the degradation of alkane, alkene, aromatic 
hydrocarbon, other crude oil products and organohalides 
(including chloroalkane, chloroalkene, chlorocyclohexane 
and chlorobenzene) [62]. The 2-haloacid dehalogenase 
(had-2) at position A222_04245 was clustered with other 

Fig. 3   A proposed genetic structure of haloacid dehalogenase genes 
of Rhizobium sp. RC1. The dehR represents a regulatory gene that 
controls all three dehalogenases. The dehP is the permease gene 
encoding the dehalogenase uptake protein. P1 and P2 represent pro-

moter regions of the structural genes dehE and dehD/dehL, respec-
tively. The ? represents an unknown gap between the two sets of 
genes. It can only be resolved when the full genome sequence of RC1 
is obtained
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proteins such as, alcohol dehydrogenases (frmA, Fe-adh, 
adhP), transcriptional regulator (lysR), and other related 
proteins (Fig. 5). Other pollutants-degrading enzymes 
were also detected.

Thirdly, whole-genome analysis of Sphingobium chloro-
phenolicum strain L-1 by Copley et al. (2012) [99] showed 
that pentachlorophenol (PCP) was metabolized by three dif-
ferent enzymes. The dehalogenase (PcpC) is clustered with 
structural proteins (PcpBD, PcpA and PcpE), transcriptional 
regulators (PcpR and PcpM), transporter systems, and other 
proteins that partake in PCP hydrolysis (Fig. 6).

Conclusion

Halogenated organic compounds present a critical global 
environmental problem due to their toxicity and persis-
tence. Anthropogenic activities release an enormous 
quantity of pollutants, and it is expected that a signifi-
cant amount will remain in the environment. The problem 
can be overcome by using natural microbes to restore a 
polluted environment. Many newly discovered pollutant-
degrading enzymes represent new tools for environmental 

Table 3   The complete genomic survey of bacteria with the ability to degrade organohalide pollutants

Pollutant Pesticides/Chemicals Microbial species References

Organochlorine Chlorimuron-ethyl Rhodococcus erythropolis D301-1 [89]
Alachlor and Endosulfan Micrococcus sp. strain 2385 [90]

Pseudomonas strain W15Feb9B [73]
1,1,1-Trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) Ochrobactrum sp. DDT-2 [91]

Stenotrophomonas sp. DDT-1 [92]
Lindane (γ-Hexachlorocyclohexane) Pseudomonas aeruginosa MTB- [93]

Pseudomonas sp. strain TKP [93]
Sphingobium japonicum UT26 [94]
Sphingomonas sp. strain MM-1 [75]
Sphingobium sp.strain M11205 [74]
Sphingobium sp. strain TKS [74]
Sphingobium baderi strain LL03T [95]
Novosphingobium lindaniclasticum LE124T [96]
Sphingobium lucknowense strain F2T [97]

Chlordecone Citrobacter sp. [98]
Pentachlorophenol Sphingobium chlorophenolicum strain L-1 [99]

Sphingobium fuliginis ATTC 27,551 [100]
Chloroalkane, chloroalkene, chlorocyclohexane, chlorobenzene and 

other crude oil pollutant
Pseudomonas aeruginosa N002 [62]
Nocardia soli strain Y48 [86]

Monochloroacetate, 2-monobromopropionate and 2-monochloro-
propionate

Burkholderia caribensis MBA4 [58]

Fig. 4   Genomic organisation of a haloacid dehalogenase deh4a operon, b glycolate oxidase operon in Burkholderia caribensis MBA4 [56, 58]
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biotechnology. This broad knowledge acquired has allowed 
us to discover numerous exclusively dehalogenase-produc-
ing bacteria, profoundly improving our understanding of 
different microbes’ capabilities to degrade pollutants in 
a wide range of environments. Scientists can better com-
prehend the complete degradative potential, interactions, 
and functions of unculturable microbes. However, before 
using whole-genome approaches for uncovering microbial 
usability in bioremediation, certain areas must first be 
addressed, for instance, the specific gene’s structure, func-
tion, and regulation. Therefore, combining these genomic 
techniques with the data delivered by high-throughput 
technologies is now possible, capable of accelerating the 
discovery of enzyme regulatory bioremediation pathways 
(i.e., dehalogenase). Consequently, integrating these tech-
niques with mechanistic information of bioremediation 
processes, the elucidation of structure–function relation-
ship and knowledge on the microbes’ regulatory pathways 
will provide the basis for successful biodegradation pro-
cesses and leading to improved intervention strategies 

for bioremediation. The technology will allow a better 
understanding of the complete bioremediation process of 
organohalide pollutants.
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