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Abstract

An integral approach to decoding both culturable and uncultured microorganisms’ metabolic activity involves the whole
genome sequencing (WGS) of individual/complex microbial communities. WGS of culturable microbes, amplicon sequenc-
ing, metagenomics, and single-cell genome analysis are selective techniques integrating genetic information and biochemical
mechanisms. These approaches transform microbial biotechnology into a quick and high-throughput culture-independent
evaluation and exploit pollutant-degrading microbes. They are windows into enzyme regulatory bioremediation pathways
(i.e., dehalogenase) and the complete bioremediation process of organohalide pollutants. While the genome sequencing
technique is gaining the scientific community’s interest, it is still in its infancy in the field of pollutant bioremediation. The
techniques are becoming increasingly helpful in unraveling and predicting the enzyme structure and explore metabolic and

biodegradation capabilities.
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Introduction

Ecological processes are associated with microbial activities,
either indirectly or directly, where microbes perform vital
functions in the overall biogeochemical cycling of nutrients
and the degradation of persistent ecological pollutants [1,
2]. Microbes’ use to remove natural or synthetic pollutants
is the prevailing, low-cost green technology to treat different
kinds of polluted environments [3, 4]. Microbes make fan-
tastic pollutant degraders because they possess enzymes, for
instance, dehalogenases. The enzymes use the environmen-
tal pollutants as nutrient or carbon sources, and their natu-
rally small size enables facile contact with the pollutants [S].
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However, the naturally occurring organohalide compounds
are insignificant compared to anthropogenic ones [6]. Add-
ing halogen atoms to organic molecules would significantly
improve their properties, such as solubility and toxicity [6].
The change would result in valuable commercial product
improvement but may impart serious effects on microbial
metabolism [7]. At times, halogenation decreases the vul-
nerability of chemicals significantly to enzymatic attack and
give rise to persistent compounds [8].

Consequently, bioremediation technologies to remove
such chemicals from the environment are still growing.
Several microbes have been identified as promising in the
bioremediation of these pollutants [5, 9, 10]. However, the
main questions remain, (i) what are the enzymes involved
in pollutants degradation pathways? (ii) how do they carry
out their function?, and (iii) how do they respond to vari-
ous pollutants?. The questions are useful in forecasting the
degradability and ability of the native microbial environment
and provides valuable information about enzymes involved
in degradation. Howeyver, the identification of critical regula-
tory genes, their structure, and the comprehension of their
genetic responses remain challenging.

The arrival of molecular microbial tools has profoundly
changed the microbial ecology area by providing a direct
approach to environmental microbes’ phylogeny and
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physiology, without depending on their cultivability [11].
This new microbial ecology era is defined by creating quick
and high input techniques, which aids the culture-independ-
ent method of microbial communities dwelling in ecosys-
tems. Hence, this incapacitates the limitations of cultiva-
tion-dependent methods. Molecular methods to evaluate
microbial ecology facilitated the essential comprehension of
microbial communities’ structural and functional behaviors
[12, 13], offering excellent prospects for novel bioremedia-
tion approaches. Molecular approaches permit immediate
investigation of the transcripts, metabolites, genes, and pro-
tein of natural microbial communities in situ [12, 14]. It also
gives insight into their relations that affect the attenuation
of environmental pollutants, thereby restoring the polluted
environments.

This review provides recent information on the bioreme-
diation of environmental pollutants and the various genomic
strategies involving the WGS, metagenomics, and single-
cell genome analysis in pollutant degradation research.
An overview of functional and structural arrangement and
detailed application of the techniques to pollutant degrada-
tion research are also summarized. Moreover, information
on gene arrangement, metabolic pathways, and the molecu-
lar mechanism of organohalide pollutants are lacking. The
approaches may improve catabolic pathways and offer useful
information on the genome, transcriptome, and proteome of
in situ microbial communities without needing cultivation
[12, 14].

Contaminants in natural environment

The extensive utilization of harmful organic compounds and
the rise in pollutant concentrations in the environment are
consequences of rapid industrialization, increased popula-
tion, military activities, changed agricultural activities, and
urbanization. Many pollutants and waste materials contain-
ing heavy metals, petroleum hydrocarbons, and halogen-
ated organic compounds are released into the environment
annually. The issue is exacerbated by their persistence and
is amassed over a prolonged period. Their widespread dis-
tribution into air and groundwater has resulted in critical
ecological and health challenges globally [15].
Categorically, common environmental pollutants are
hydrocarbon, agricultural supplements (pesticide, her-
bicides, and synthetic insecticides), and heavy metals
(Table 1). Petroleum hydrocarbons have multiple carbon
bonds, which create strong, complex structures when bonded
with other types of molecules. They exist in various forms,
viz. short, medium, long aliphatic, aromatics, and polycy-
clic aromatic hydrocarbons (PAHs) of varying ratios [16].
Organohalides are also common environmental pollutants
by spraying herbicides, fungicides, insecticides, hydraulic
and heat fluids, plasticizers, and chemical intermediates. As
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a matter of fact, chlorinated phenolic compounds are one
of the most abundant recalcitrant wastes discharged by the
paper and pulp industry. Pesticides are globally applied in
agriculture as well as in many public health sectors. Plastics
and dyes are occasionally used, except for a few PAHs used
in medicine [17]. However, the compounds are deemed as
environmental pollutants in various terrestrial and aquatic
ecosystems. Their detrimental impacts offset their useful-
ness, as they amass and are resistant to degradation. Toxici-
ties of such compounds have been reported, including oxida-
tive stress, changes in metabolic parameters, hepatic stress,
and cellular necrosis [18, 19]. The biological consequences
concede the survival, growth, reproduction, and the early-
stage development of organisms [19-21].

The frequently used techniques to treat polluted environ-
ments include physical and chemical technologies such as
burying, combusting, extracting soil vapor, soil washing,
and dispersion [22]. The methods, however, are incapable
of totally decomposing pollutants and are economically
unfriendly. In some cases, more toxic chemicals are formed
compared to before the treatment [22]. Due to the high cost
and the lack of public acceptance of these methods, bioreme-
diation seems to be an excellent alternative clean-up technol-
ogy. Bioremediation is a method that biologically degrades
organic wastes to a safe compound under regulated condi-
tions or to levels lower than concentration limits established
by regulating agencies [23]. The method is safe, cost-effec-
tive, and naturally eco-friendly, uses several enzymes from
microbes to degrade toxic organic pollutants [10, 23, 24].

Classification of enzymes involve
in bioremediation

Based on biodegradation ability, microbial enzymes are
classified into oxidoreductases and hydrolases [24, 25].
Certain oxidoreductase-producing bacteria such as laccase,
peroxidase, and oxygenase can degrade radioactive metals,
chlorinated compounds, and petroleum containing hydro-
carbons [21, 26, 27]. In contrast, hydrolases are common
hydrolytic enzymes that bioremediate and detoxify agro-
chemical pollutants. For instance, oil spills, organohalides,
organophosphates, and carbamate insecticides have been
effectively degraded by dehalogenases, lipases, cellulases,
carboxylesterases, and phosphodiesterases [10, 28].

The study of pollutant-degrading microbes, identifying
their genetic and biochemistry, and developing techniques
for their use have led to crucial human endeavors. Microbes
stand preferable as agents to clean up the environment in
terms of cost, chemical, and physical techniques. Nonethe-
less, microbial-driven clean up of polluted environments
remains limited, following the lack of knowledge of the fac-
tors that control and regulate their metabolism, growth, and
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different microbial community dynamics. The recent use of
innovative tools like proteomics, fluxomics, transcriptomics,
genomics, and metabolomics has produced eco-friendlier
pollutant treatment strategies [14]. Microbes can mineral-
ize and degrade the contaminants into energy sources and
then convert them into simpler intermediates. During this
process, the microbes can transform toxic chemicals into
nontoxic compounds or completely degrade them into car-
bon dioxide and water by converting them from one phase
to another. The expression of the microbial enzymes’ genes
relies on these toxic chemicals’ presence, as the enzymes
are substrate-specific and mobile due to their smaller size
[24, 29, 30]. Gene expression of the enzyme depends on the
substrate types present in the medium (Fig. 1).

Bacterial dehalogenases

Degradation of organohalides by dehalogenases isolated
from environmental bacteria and their basic mechanisms
have been described in great detail [31]. Dehalogenases can
be categorized into oxidative, reductive, hydrolytic, or thio-
lytic dehalogenases [10, 31]. Hydrolytic dehalogenases are
further categorized into haloacid dehalogenases, haloalkane
dehalogenases, fluoroacetate dehalogenases, and halohydrin
dehalogenases that degrade aliphatic halogenated organic
compounds. The haloacid dehalogenases are sub-divided
into three kinds based on their substrate selectivity. The
L-2-haloacid dehalogenases (L-DEX) and D-2-haloacid
dehalogenases (D-DEX) catalyze L-2-haloalkanoate and
D-2-haloalkanoate to produce L-2-hydroxyalkanoate and
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Fig.1 An overview of gene expression in the biodegradation process
in a bacteria system. The toxic chemicals of the halogenated com-
pound must be able to enter the cells. Inside the cells, these toxic
chemicals will trigger a specific gene in chromosomal DNA and
allow for transcription and translation of a protein for an enzymatic
reaction for biodegradation. The contaminants serve as carbon and/or
energy source, and microbes can degrade/mineralize them into sim-
pler intermediate
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D-2-hydroxyalkanoate, respectively. D,L-2-haloacid dehal-
ogenases (D,L-DEX) react with both D- and L-2-haloal-
kanoates, yielding 2hydroxyalkanoates, respectively [10,
31]. Haloacid dehalogenase (HAD) enzymes belong to a
large phosphohydrolase superfamily, which include hydro-
lases, oxygenases and dehydrogenases that degrade poly-
chlorinated biphenyls [10, 31]. Due to the rapid development
of the WGS process, new microorganisms or enzymes (such
as dehalogenase) can be easily identified and studied further
by analyzing the full DNA sequence in genome databases.

Strategies for genome sequencing

The application of genome sequencing methods is clas-
sified into amplicon sequencing, shotgun metagenom-
ics, single-cell genomic sequencing, and whole-genome
sequencing of cultured microbes, depending on the issue
to be solved (Fig. 2). Progress in WGS has provided a bet-
ter understanding of how microbes degrade pollutants and
their environmental adaptation at genetic levels. Many
enzymes, for instance, dehalogenases and their pathways
responsible for pollutant degradation, have been described.
Complete genome sequencing techniques have unveiled
several enzymes that participated in pollutant degradation
in different environments, as discussed in “Application of
whole-genome sequencing techniques to pollutants deg-
radationresearch” section. Although the various complete
genome of distinct pollutant-degrading bacteria is known,
the genetic basis of pollutant degradation (especially the
regulatory function of haloacid dehalogenases) and environ-
mental adaptation to the environments are yet to be clarified.
Therefore, this article reviews the WGS approach in pol-
lutant bioremediation by emphasizing the potential regula-
tory mechanism of haloacid dehalogenase. It is an excellent
means for consolidating information on the complete biore-
mediation of organohalide pollutants. Identifying individual
strains in the complex microbial communities can improve
and, undoubtedly, expose more novel enzymes/genes capa-
ble of degrading pollutants from an individual cell.

Whole-genome sequencing (WGS) of cultured
microbes

Whole Genome Sequencing (WGS) is one of the best
methods for regaining the microbes’ genetic and meta-
bolic diversity. It becomes a problem when many microbes
evade cultivation [32], making the complete genome less
appreciated using traditional approaches. This technique
uses sequencing platforms such as Illumina, PacBio, Nano-
pore, Qiagen, BGISEQ, IonTorrent, or other sequencers.
Although this technique has flaws in genome sequencing,
it can be rectified using a targeted enrichment method. The
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Fig.2 An overview of WGS approaches used in the bioremediation study of dehalogenase-producing microbes

method enhances a particular microbe’s isolation within
a specified community, having the biochemical property
of interest. Pertinently, the term ‘targeted enrichment’
refers to the isolation of a single microbe via a physically
enhanced cell population based on patterns of phenotypic
traits like size, density, shape, and the native spectral trait
[33]. Subsequently, the isolated microbes are used for a
complete genome assembly and sequencing.

However, this technique is not suitable for complex envi-
ronmental samples because measured properties do not
uniquely define them. This issue can be overcome by limited
enrichment, enhancing the outcome of efforts on varying
data sets of organisms. The procedure has successfully over-
come the problem of low-yield in selected microbes [34].
Regardless of the availability of next-generation sequencing
methods, improvement in bioinformatics, and the potential
of sequencing data, the use of WGS of cultured microbes is
still at a nascent stage. This method has allowed microbial
ecologists to explore, compare, and characterize microbial
communities since ~ 98% of bacteria in an environmental
sample are unculturable by traditional laboratory methods.
The issue above can be overcome by metagenomics, and sin-
gle-cell genomics, both of which allow scientists to access
unculturable microbial genomes.

Metagenomic sequencing

Metagenomic sequencing reads DNA accurately from an
environmental sample without cultivating individual colo-
nies. The entire method involves the extraction of DNA from
environmental samples, amplification, and high-throughput
sequencing. DNA fragments produced by the sequencer are
then suitably categorized (binned) and assembled into con-
tigs by bioinformatics models. The qualified and accepted
bins are then designated as metagenome-assembled genomes
(MAGsS) [35, 36]. According to the literature, metagenomic
sequencing is grouped as amplicon metagenomic and shot-
gun metagenomic.

Amplicon sequencing

The partial 16S-based metagenomic technique, otherwise
known as amplicon or targeted metagenomic, uses microbial
marker genes like 16S rRNA, internal transcribed spacer,
and other marker genes. The most general marker gene for
amplicon or target sequencing is the 16S rRNA gene. It is
used as a taxonomic marker that can resolve one significant
query connected to microbial ecology as “who is there”,
by conveying the sequence reads to a taxonomic ancestry
based on identified 16S rRNA database, like Greengenes,

@ Springer
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SILVA or Ribosomal database project (RDP) [37]. However,
the bacterial roles cannot be clearly defined when the 16S
rRNA sequence reads fail to adequately resolve or detect
microbes at the species/strain level. Also, the marker genes
survey only emphasizes a few common genes, as they cannot
precisely distinguish the microbes’ functional or metabolic
potentials [38—40].

Currently, projecting microbial functional capabili-
ties from 16S rRNA gene is a prevalent substitute over the
shotgun metagenomic technique. The cheaper 16S rRNA
gene sequencing offers taxonomic structure but not func-
tional interpretations. Several software packages can solve
this challenge by identifying specific features to forecast
the functional metagenomic abilities according to known
16S rRNA gene sequences linked to genomes. Piphillin,
PICRUSt (Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States), MelonnPan (Model-
based Genomically Informed High-dimensional Predictor of
Microbial Community Metabolic Profiles), and other simi-
lar tools are publicly accessible computational software for
predicting microbial functional capabilities from detected
16S rRNA genes. The software uses direct nearest-neighbor
matching or relies on reference phylogenetic trees of 16S
rRNA gene amplicons to infer metagenomic function. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
BioCyc are among the reference genome databases for pre-
dicting metagenomic functions [40, 41]. Shotgun metagen-
omic sequencing can validate the purported theory using
phylogeny and functions [42].

Shotgun metagenomics

Shotgun metagenomics sequencing can reveal the poten-
tial of microbial communities and offers insights into their
diversity, life cycle, and functions. The metagenomic reads
encoding genes of interest offer functional annotation
through gene fragment recruitment, de novo gene predic-
tion, and protein family classification [43]. This technique
provides a solution to two crucial questions associated
with microbial ecology; “who is there” and “what are they
doing.” Annotation is assigned to the reads to establish the
functional gene, using databases like Non-Redundant (NR)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
eggNOG [44]. This approach offers a complete thought-
ful of the community composition at a high resolution and
possible metabolic lane related to the microbial community
[45]. However, the assignment of functional annotation and
metagenome assembly may prove challenging for shotgun
metagenomic sequencing. The microbial classification
structure is not available, unlike the 16S rRNA reports. To
address this setback, RiboFR-Seq and epiPCR (emulsion,
paired isolation, and concentration PCR) techniques can
simultaneously capture both the 16S rRNA variable areas
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and their flanking protein-coding genes. In addition, they
link functional genes and phylogenetic markers in uncul-
tured single cells connected to metagenomic contigs and
16S rRNA profiles [46]. However, the methods only partly
resolve the problem and are unable to connect all the func-
tional genes of the microorganisms to their phylogeny.

There are currently two main methods in shotgun
metagenomics, which focus on various parts of the microbial
community within a defined environment. Firstly, the struc-
tural metagenomics’ primary emphasis is to study unculti-
vated microbial composition and other properties, i.e., the
complex metabolic network structure between community
members [47]. Here, the microbial community composition
is defined as the population structure, and its dynamics in a
specific environment is related to factors such as pressures
and spatiotemporal parameters. Greater insight is provided
by observing the community composition in terms of inter-
actions among the individual microbes within the commu-
nity, vital for offering biochemical functions among their
group members [47]. The studies of 16S rRNA and shot-
gun metagenomics are not equally exclusive. The methods
establish a link between the 16S rRNA analysis to genes,
which showed that the metabolic pathways are beneficial
to determine the functional potential of a microbiome [48].
The approaches complement each other and permit a more
in-depth investigation of pertinent biological queries in
microbial ecosystems like “who are the community mem-
bers?” and “what are their functional roles?”. The single-
cell sequencing is recognized as an effective technique that
provides sequencing information on target microbe at single-
cell levels due to flaws in amplicon sequencing and shotgun
metagenomic sequencing.

Single-cell genomics

This term signifies an individual cell’s genomes, which
might or might not include the complete genetic range in
the microbiota. Single-cell sequencing of microbial cells
is becoming an essential tool for the microbiologist. The
technique complements other existing techniques, includ-
ing traditional culture-based methods and metagenomic
sequencing. Genome sequencing of individual cells is a
novel culture-independent technique that provides an evo-
lutionary record of the microbe and enables cell-to-cell
variability studies in microbial populations. It links meta-
bolic function to specific species and creates a high-quality
genome for species with low richness [49].

The single-cell genome sequencing has steps that incor-
porate sample preparation and single-cell isolation by
advanced isolation methods (such as micromanipulation,
flow cytometry, microfluidics, and encapsulation in drop-
lets). Other methods include DNA extraction, phylogenetic
classification by 16S rRNA gene, WGA using Multiple
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Displacement Amplification (MDA), library preparation,
sequencing, and data analysis [49]. In the case sequence
analysis, the distinct steps comprise of quality assurance of
raw reads, genome assembly (using a single-cell-specific
assembler), automated and/or manual contaminant identifi-
cation and removal, annotation, genome quality inspection,
and categorization according to the Minimum Informa-
tion on Single Amplified Genome (MISAG) standards [49]
and database submission. The method improves complete
genome sequence from a single bacterium, enabling novel
discoveries of genes/pathways capable of degrading pollut-
ants. This is made possible by studying how a specific gene
is regulated by looking at the putative operon. Single-cell
sequencing can unveil novel bacteria with an alternative
genetic code, observe the gut microbial of cells that use host
originated compounds, and quantify absolute taxon abun-
dances in the gut microbiome [50].

Application of whole-genome sequencing
techniques to pollutants degradation
research

The use of WGS has led to novel discoveries on genes/path-
ways from microbes capable of degrading pollutants from
the environment. Some of the most noticeable genes/path-
ways are summarized in Table 2. In 2009, Suenaga et al.
found over 25 estradiol dioxygenase genes responsible
for catalyzing the ring cleavage of dehydroxylated central
intermediate compounds during aerobic degradation of aro-
matic hydrocarbon [51]. Monooxygenases, dioxygenases,
hydroxylase, and ring-hydroxylating dioxygenases (RHD)-
degrading aromatic polyaromatic hydrocarbons (benzoate,
phenol, biphenyl, polychlorinated biphenyl, hexadecane,
naphthalene, and phenanthrene) were also reported [52-55].
Some researchers detected several potential genes in dehalo-
genases, laccase, and cutinases. The genes were found to
encode the degradation of halogenated hydrocarbons, chlo-
rinated solvents, industrial dyes, and polyethylene tereph-
thalate (PET) [9, 48, 56-61].

The complete genome sequence of pollutant-degrading
bacteria has been extensively studied [62]. Bacterial iso-
lates in oil/petroleum polluted sites, polluted marine water,
wastewater, contaminated soils, and pharmaceutical-contam-
inated site (Table 1) have been sequenced, and the genetic
sources of their pollutant mineralization potential had been
revealed [62, 63]. In such cases, genome analysis of pollut-
ant-degrading bacterial strains, pollutant degradation/uptake
mechanism, and their genetic adaption for growing in the
pollutant stressed environments might prove useful. Though
pollutant degrading bacteria’s complete pathway has been
clarified, only a few reports have highlighted the degradation
pathway [62]. Sequencing environmental/individual DNA

via next-generation sequencing is rapid with minimum cost
implications, and new innovative sequencing equipment is
produced nearly every year. A large amount of data is availa-
ble from next-generation sequencing platforms, but advances
in bioinformatics analysis are lagging. For instance, recon-
struction of a complete genome from most environments
remains a challenge unless enrichment methods can reduce
microbiome complexity in microcosms [64]. Till now, only
genomes of dominants strain can be constructed from com-
plex metagenomes [65]. The situation will only change
if there is a computational improvement to restructure or
complete genomes of rare taxa. Genomic techniques for
addressing biochemical roles can help assign a functional
and taxonomic unit to access the biodegradation activity [66]

Structural and functional characteristics
of dehalogenase genes

The structural and regulatory function of dehalogenase
genes can be understood using a cluster of genes called
an operon. It is depicted as clusters of genes with related
structures and functionally allows regulation of expression
in microbes. Since the discovery of lac operon and various
catabolic operons, microbes/enzymes’ control strategies had
been uncovered. Several microbial genomes show groups
of genes within a single process that may be co-jointly tran-
scribed and regulated in classical operons or with distinct
promoters and regulators. However, the level of operon
gene arrangement and gene clustering varies among spe-
cies. In some bacteria, operons are reasonably unpreserved,
and genes involved in one cellular process can be scattered
in the genome [80]. Previously, gene cloning successfully
revealed the gene structure of the haloacid dehalogenases in
Rhizobium sp. RC1 (Fig. 3) is the only bacterium that pro-
duces three different haloacid dehalogenases, dehD, dehE,
and dehL. The operon regulated a single regulatory gene
(dehR), which controls all three structural genes of dehD,
dehE, and dehL in Rhizobium sp. RC1. Rhizobium sp. RC1
dehalogenase is involved in the degradation of organohalide
compounds and its expression is stimulated only in the pres-
ence of the pollutants in the environment [81].

Dehalogenase-coding genes are jointly clustered with reg-
ulatory genes, transport or uptake proteins, accessory genes,
and other genes that partake in organohalides catabolism.
Regulatory genes are usually located near dehalogenases
and, often, in the opposite direction. They are a general
feature of transcriptional factors in bacteria that enables
intensive expression, production of transcriptional regula-
tors nearby targeted genes, and favors efficient recognition of
subsequent DNA-binding sites by averting spatial diffusion
[82]. The entire genetic organization can only be studied by
knowing the full genome sequence analysis.
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900 bp

1236bp  511bp 798bp _ 840bp

293 b,

< p 5 >
?
dehR (1704 bp) —. dehE —~Jy.~ dehP —. dehD

Fig.3 A proposed genetic structure of haloacid dehalogenase genes
of Rhizobium sp. RC1. The dehR represents a regulatory gene that
controls all three dehalogenases. The dehP is the permease gene
encoding the dehalogenase uptake protein. P1 and P2 represent pro-

Transcriptional factors involved in organohalide detection
having the Helix-Turn-Helix (HTH) DNA binding domain
are found in almost all known bacteria, transcriptional regu-
lators. They make up the majority of regulators involved in
bioremediation [83]. The binding of small ligands to this
site induces conformational changes in transcriptional fac-
tors, thereby affecting their DNA-binding properties [84].
Some transcriptional factors have been associated with spe-
cific organohalide compounds, for instance, transcriptional
regulators of the /ysR family (like CatR, CIcR, LinR, PcpR).
They typically detect aromatic or aliphatic organohalide pol-
lutants such as chlorobenzoate, chlorophenol, chloroethane,
and chloroethene [62]. The NtrC family of transcriptional
regulators (DmpR, MopR, XyIR) can identify both aromatic
compounds substituted with or without halogens, although
with low affinity [84]. The MarR family transcriptional fac-
tors, on the other hand, regulate aliphatic organohalide sol-
vents [85]. However, the complete genome of Norcadia soli
strain Y48 was found to contain the above said transcrip-
tional factors, in addition to TetR, GntR, and IcIR-family
transcriptional regulators [86].

Dehalogenase expression may also be affected by trans-
port/uptake proteins, which could be part of its operon.
Genes encoding for transporters or uptake proteins in the
uptake of organohalides are often located near dehaloge-
nase genes (Fig. 3) [87]. Generally, many enzymes/genes
involved in pollutants degradation and transcriptional fac-
tors that respond to organohalide pollutants are not fully
characterized [88]. The survival of bacteria and their ability
to catalyze under harsh conditions hinge on organohalides
and nutrient uptake systems. With regards to organohalides
biodegradation, genomics and metagenomics approaches
have successfully identified genes in several microbes that
code for enzymes related to their biodegradation. Informa-
tion on the whole-genome analysis of genes of pollutant-
degrading bacteria structure and function is described in
“Structural and functional characteristics of dehalogenase
genes” section.

Table 3 presents the complete genomic survey of bac-
teria capable of degrading organohalide pollutants. Many
aspects of regulatory pathways remain unexplored compared

@ Springer

L >

— dehl

177 bp
Non-coding

moter regions of the structural genes dehE and dehD/dehL, respec-
tively. The ? represents an unknown gap between the two sets of
genes. It can only be resolved when the full genome sequence of RC1
is obtained

to extensive information on genes and enzymes responsible
for organohalides degradation. Hence, it is unsurprising that
some aspects of the regulatory pathways are responsible for
limiting organohalides’ practical degradation in unpolluted
or polluted environments.

Genomics is a powerful computer-based technology
used to understand the structure and feature of all genes in
an organism [101]. In this review, the structure and regu-
lation of haloacid dehalogenases are illustrated using the
complete genome of organohalide-degrading Burkholderia
caribensis MBA4, Pseudomonas aeruginosa N002 and
Sphingobium chlorophenolicum strain L-1. Burkholderia
caribensis MBA4 specifically degrades monochloroacetic
acid and D,L-2-bromopropionic (D,L-2-BP) acid, but acts
weakly on D, L-2- chloropropionic acid (D,L2-DCP) [56,
58]. The haloacid utilizing operon comprising of dehalo-
genase deh4a and permease deh4p genes was discovered
in replicon CP012747. In contrast, the deh4a eight other
genes were annotated as haloacid dehalogenase or haloacid
dehalogenase-like proteins for the whole genome (Fig. 4a)
[58]. The role of permease deh4p is to transport monochlo-
roacetic acid into the cell. Figure 4b illustrates the hydrolysis
of glycolate by a glycolate oxidase (an enzyme that has 3
subunits; viz GlcD, GIcE and GlcF.) where the genes clus-
tered as an operon. In the case of Burkholderia caribensis
MBAA4, three glycolate oxidase operons were identified [58],
of which one gene is located downstream of the deh4a in
replicon CP012747 (Fig. 4b). This operon has a downstream
malate synthase gene (g/cB) and an upstream regulatory
gene (glcC) in the opposite strand. Another glcDEF contain-
ing an upstream glcC was discovered in replicon CP012746
with neither adjacent glcC nor glcB (Fig. 4b). Hence, the
findings conveyed that glycolate oxidase could utilize gly-
colate in three ways [58].

In the second example, the complete genome of Pseu-
domonas aeruginosa N002 contained several genes
involved in the degradation of alkane, alkene, aromatic
hydrocarbon, other crude oil products and organohalides
(including chloroalkane, chloroalkene, chlorocyclohexane
and chlorobenzene) [62]. The 2-haloacid dehalogenase
(had-2) at position A222_04245 was clustered with other
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Table 3 The complete genomic survey of bacteria with the ability to degrade organohalide pollutants
Pollutant Pesticides/Chemicals Microbial species References
Organochlorine Chlorimuron-ethyl Rhodococcus erythropolis D301-1 [89]
Alachlor and Endosulfan Micrococcus sp. strain 2385 [90]
Pseudomonas strain W 15Feb9B [73]
1,1,1-Trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) Ochrobactrum sp. DDT-2 [91]
Stenotrophomonas sp. DDT-1 [92]
Lindane (y-Hexachlorocyclohexane) Pseudomonas aeruginosa MTB- [93]
Pseudomonas sp. strain TKP [93]
Sphingobium japonicum UT26 [94]
Sphingomonas sp. strain MM-1 [75]
Sphingobium sp.strain M11205 [74]
Sphingobium sp. strain TKS [74]
Sphingobium baderi strain LL03T [95]
Novosphingobium lindaniclasticum LE124T [96]
Sphingobium lucknowense strain F2T [97]
Chlordecone Citrobacter sp. [98]
Pentachlorophenol Sphingobium chlorophenolicum strain L-1 ~ [99]
Sphingobium fuliginis ATTC 27,551 [100]
Chloroalkane, chloroalkene, chlorocyclohexane, chlorobenzene and  Pseudomonas aeruginosa N002 [62]
other crude oil pollutant Nocardia soli strain Y48 [86]
Monochloroacetate, 2-monobromopropionate and 2-monochloro- Burkholderia caribensis MBA4 [58]
propionate
a
Dehdp  pehaa ek as e sing GIcC  GIcD, GIE,  GIcF,  GlcB

m— w5 D55 5 5 5

GlcC GlcD GIcE

CP12748

GlcC GlcD

CP12747

GlcD GIcE
CP12746 — —

- o

GlcF

— — —

E——— ) E—,

GlcF

GlcB Malate synthasi

GlicF

—

Fig.4 Genomic organisation of a haloacid dehalogenase deh4a operon, b glycolate oxidase operon in Burkholderia caribensis MBA4 [56, 58]

proteins such as, alcohol dehydrogenases (frmA, Fe-adh,
adhP), transcriptional regulator (lysR), and other related
proteins (Fig. 5). Other pollutants-degrading enzymes
were also detected.

Thirdly, whole-genome analysis of Sphingobium chloro-
phenolicum strain L-1 by Copley et al. (2012) [99] showed
that pentachlorophenol (PCP) was metabolized by three dif-
ferent enzymes. The dehalogenase (PcpC) is clustered with
structural proteins (PcpBD, PcpA and PcpE), transcriptional
regulators (PcpR and PcpM), transporter systems, and other
proteins that partake in PCP hydrolysis (Fig. 6).

Conclusion

Halogenated organic compounds present a critical global
environmental problem due to their toxicity and persis-
tence. Anthropogenic activities release an enormous
quantity of pollutants, and it is expected that a signifi-
cant amount will remain in the environment. The problem
can be overcome by using natural microbes to restore a
polluted environment. Many newly discovered pollutant-
degrading enzymes represent new tools for environmental

@ Springer
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had-2 adhP-lysR

> o

2698
exaC lysR-frmA dehH Aldedh-cytC-exaA Fe-adh
> p 2
< | < < | <
A222_942 A222_1344-1345 A222_2938

Fig.5 Genome organisations of 2-haloacid dehalogenase (had-2) of
Pseudomonas aeruginosa N0OO2 in cluster with other genes. NAD-
dependent aldehyde dehydrogenases (exaC), transcriptional regula-
tor (lysR), class III alcohol dehydrogenase (frmA), predicted hydro-

A222_3041-3042-3043

A222_3895 A222_4245 A222_5630-5631

lases (dehH), NAD-dependent aldehyde dehydrogenases (aldedh),
cytochrome C (cytC), alcohol dehydrogenase, class IV (Fe-adh) and
Zn-dependent alcohol dehydrogenases (adhP)

pcpB  pcpD pcpR 4 7 9 10 11 pcpA
| 4 D Db b »
a3 » | ¢ | 4 4 a 6d@4ledad
1 2 3 5 6 8 PcpE pecpM 1213 14 pcpC 15 16
1. Predicted transcriptional regulator 10. Formyltetrahydrofolate deformylase
2. Putative NABP-dependent 11. Methenyltetrahydrofolate
oxidoreductases cyclohydrolase/methylene tetrahydrofolate
3. Hypothetical protein dehydrogenase
4. Glycosyl transferase family 2 12. Kef-type K p transport systems, membrane
5. Outer membrane receptor protein components
(mostly Fe transport), 13. Metal-dependent hydrolase, -lactamase
6. Outer membrane receptors for superfamily 111
ferrienterochelin and colicins 14. Outer membrane receptor proteins, mostly
7. Glucose/sorbosone dehydrogenase Fe transport
8. Outer membrane cobalamin acceptor 15. Predicted glutathione S-transferase
protein 16. Putative LysR-type transcriptional regulator.
9. Predicted esterase

Fig.6 Genomic orientation of PCP degrading genes. PcpR and PcpM encode transcriptional regulators that control the expression of structural

genes pcpB,D, pcpA, pepE, and pcpC

biotechnology. This broad knowledge acquired has allowed
us to discover numerous exclusively dehalogenase-produc-
ing bacteria, profoundly improving our understanding of
different microbes’ capabilities to degrade pollutants in
a wide range of environments. Scientists can better com-
prehend the complete degradative potential, interactions,
and functions of unculturable microbes. However, before
using whole-genome approaches for uncovering microbial
usability in bioremediation, certain areas must first be
addressed, for instance, the specific gene’s structure, func-
tion, and regulation. Therefore, combining these genomic
techniques with the data delivered by high-throughput
technologies is now possible, capable of accelerating the
discovery of enzyme regulatory bioremediation pathways
(i.e., dehalogenase). Consequently, integrating these tech-
niques with mechanistic information of bioremediation
processes, the elucidation of structure—function relation-
ship and knowledge on the microbes’ regulatory pathways
will provide the basis for successful biodegradation pro-
cesses and leading to improved intervention strategies

@ Springer

for bioremediation. The technology will allow a better
understanding of the complete bioremediation process of
organohalide pollutants.
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