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Abstract
The literature has shown the beneficial effects of microcurrent (MC) therapy on tissue repair. We investigated if the applica-
tion of MC at 10 μA/90 s could modulate the expression of remodeling genes transforming growth factor beta (Tgfb), con-
nective tissue growth factor (Ctgf), insulin-like growth factor 1 (Igf1), tenascin C (Tnc), Fibronectin (Fn1), Scleraxis (Scx), 
Fibromodulin (Fmod) and tenomodulin in NIH/3T3 fibroblasts in a wound healing assay. The cell migration was analyzed 
between days 0 and 4 in both fibroblasts (F) and fibroblasts + MC (F+MC) groups. On the 4th day, cell viability and gene 
expression were also analyzed after daily MC application. Higher expression of Ctgf and lower expression of Tnc and Fmod, 
respectively, were observed in the F+MC group in relation to F group (p < 0.05), and no difference was observed between 
the groups for the genes Tgfb, Fn1 and Scx. In cell migration, a higher number of cells in the scratch region was observed in 
group F+MC (p < 0.05) compared to group F on the 4th day, and the cell viability assay showed no difference between the 
groups. In conclusion, MC therapy at an intensity/time of 10 μA/90 s with 4 daily applications did not affect cell viability, 
stimulated fibroblasts migration with the involvement of Ctgf, and reduced the Tnc and Fmod expression.
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Introduction

For decades, low-intensity electrical stimulation therapy, 
microcurrent (MC), has been reported as an auxiliary thera-
peutic method to promote wound healing [1], as it triggers 
multiple events such as increased cell proliferation, collagen 
synthesis, tissue contraction, neovascularization, cell mem-
brane permeability and normalization of tissue bioelectricity 
[2]. MC activates and rearranges both ion channels as carrier 
proteins across the cell, regardless of external chemical gra-
dient and ion flux, contributing to intracellular polarization 

and cellular response [3]. Each cell type exhibits specific 
behavior under electrostimulation that may exhibit signifi-
cant reduction in cell viability or cytotoxic effect [3].

The MC effect has been tested in vitro on different cell 
types involved in wound healing, such as macrophages, 
fibroblasts, epidermal cells, endothelial cells and has shown 
beneficial effects on cell migration and viability, prolifera-
tion, orientation, protein augmentation and DNA synthesis 
[3]. Still in vitro, Uemura et al. [4] observed that MC with 
200 μA intensity favored the migration of human dermal 
fibroblasts within 24 h after application. Data from Sugi-
moto et al. [5] demonstrated that migration of human dermal 
fibroblasts treated with 100 μA was greater than in controls. 
According to a study by Leppik et al. [6] involving osteoblast 
culture and application of MC therapy (10–150 mV/mm) for 
1 h daily for 3 weeks increased cell viability. However, intra-
cellular changes induced by MC are not completely defined.

The literature describes different protocols for apply-
ing MC in different tissues. De Campos et al. [7] inves-
tigated MC stimulation (20 μA) in the xiphoid cartilage 
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repair process and the animals treated with MC showed an 
increase in the number of chondroblasts and proteoglycans 
from the 21st day, showing the effect of MC on the accel-
eration of healing process. In skin, Neves et al. [8] used 
MC therapy (10 μA/3 min) and observed a reduction in the 
number of inflammatory cells, an increase in fibroblasts 
and blood vessels. Data from Belli et al. [9] demonstrated 
that the treatment of burns with MC (10 μA/3 min) alone 
or alternating with laser therapy, decreased inflammation, 
increased angiogenesis and favored tissue reorganiza-
tion. In bone tissue, Mendonça et al. [10] evaluated MC 
stimulation (10 μA/5 min) in rat calvary excision and the 
results demonstrated a reduction in inflammatory cells, 
an increase in blood vessels and fibroblasts, as well as an 
increase in the organization of collagen fibers. Zaniboni 
et al. [11] used MC (10 μA/5 min) during orthodontic 
movement and observed that MC decreased inflammation, 
increased angiogenesis and favored bone remodeling.

During healing processes, especially of connective tis-
sues, some genes play fundamental role in the structural 
and functional tissue restoration, such as Tgfb (transform-
ing growth factor-β1), Ctgf (connective tissue growth fac-
tor), Igf1 (insulin-like growth factor 1), Tnc (tenascin C), 
Fn1 (Fibronectin), Fmod (Fibromodulin), Scx (Scleraxis) 
and Tnmd (tenomodulin). Tgfb acts as a chemotactic agent 
for neutrophils, monocytes and fibroblasts [12], orches-
trates many cellular responses during wound healing 
as fibroblast proliferation, angiogenesis, and increases 
extracelular matrix (ECM) production [13], including 
collagen and fibronectin [14]. Ctgf stimulates fibroblast 
proliferation, ECM production [15], cell adhesion and 
cell differentiation [16, 17]. Igf1 enhances healing process 
through cell proliferation and migration, activity of fibro-
blasts, collagen production, agiogenesis and re-epithelial-
ization of skin wounds [18–23]. Tnc is involved in a range 
of processes such as mitogenic responses, cell migration, 
cell attachment, cell spreading, focal adhesion, cell sur-
vival, matrix assembly, pro-inflammatory cytokine syn-
thesis [24], and tenascin-C can also interact with diverse 
growth factors [25]. Fn1 plays an essential role in develop-
ment, angiogenesis and in the wound healing promotion 
[26], and contains a number of binding sites for growth 
factors [27]. Fmod is involved in cell migration, collagen 
fibrillogenesis [28], angiogenesis [29], osteoclastogen-
esis [30], myogenic differentiation [31] and modulation 
of growth-factors signaling [32]. Scx facilitates tenocyte 
mechanosensing [33], it is essential for tendon [34] and 
musculoskeletal [35] development, regulates proteogly-
cans expression [36] and fracture callus formation during 
bone healing [37], and Scx also activates Tnmd expres-
sion to regulate differentiation and maturation of teno-
cytes [38]. Tnmd expression enhances cellular adhesion 
[39], prevents adipocyte accumulation and fibrovascular 

scar formation during tendon healing [40], and affects 
self-renewal and senescence properties of tendon stem/
progenitor cells [41].

In addition to the important roles of the previously 
described genes during development and tissue repair, a 
study of Zheng et al. [42] have demonstrated the interac-
tion of Fmod with Tgfb signaling on the fibroblasts function 
during skin wound healing, with Ctgf as dowstream media-
tor of Tgfb signaling. In a previous work performed by our 
group [43], the MC (10 μA/4 min) therapy applied until the 
14th day of tendon repair, increased the expression of Fmod, 
Ctgf, Tnc and Fn genes, suggesting activation of the path-
way Tnmd–Tgfb1–Ctgf. Therefore, it would be possible to 
suggest that MC therapy, without systemic influence, could 
activate the pathway Tnmd–Tgfb1–Ctgf? Although the MC 
therapy at intensity of 10 μA has improved the repair process 
of various tissues, the molecular mechanisms activated by 
MC are partially elucidated. We investigated if the applica-
tion of MC at 10 μA/90 s could modulate the expression 
of remodeling genes previously mentioned Tgfb, Ctgf, Igf1, 
Tnc, Fn1, Scx, Fmod and Tnmd in NIH/3T3 fibroblasts in a 
wound healing assay.

Materials and methods

NIH/3T3 fibroblast culture and experimental groups

NIH/3T3 mouse fibroblasts used in the present study were 
donated by the University of São Paulo-USP, Ribeirão 
Preto. The cultures were plated in 75 cm2 culture bot-
tles with DMEM (Dulbecco’s Modified Eagle’s Medium) 
supplemented with 15% fetal bovine serum (FBS, Nutri-
cell Nutrientes Celulares, Campinas, São Paulo, Brazil), 
under a humid atmosphere at 37 °C containing 5% CO2, 
until reaching 85% confluence. The culture passages 
were performed approximately every three days. On the 
21st passage, the experimental groups were established: 
(F)-NIH/3T3 fibroblasts without MC application; and 
(F+MC)-NIH/3T3 fibroblasts + MC application. Thus, 
NIH/3T3 fibroblasts were plated at a density of 1 × 104 
per well for both groups in 24-well culture plates. DMEM 
supplemented with 15% FBS were used for maintenance 
of cultures under a humid atmosphere at 37 °C containing 
5% CO2, until reaching 70% confluence. Subsequently, the 
scratch assay was performed using a 200 μL pipette tip, 
which was slid over the median extension of the previously 
marked well, creating a scratch on the cell monolayer. The 
cultures were washed with DMPBS Flush (Dulbecco’s 
Modified Phosphate-Buffered Saline) to remove cell debris 
and kept for 4 days until scratch closure. Experimental 
procedures were performed according to approval of the 
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Animal Use Ethics Committee (CEUA) of the University 
Center of Hermínio Ometto Foundation/FHO under num-
ber 013/2018.

MC application

The intensity of the MC application (10 μA) was based on 
pre-established studies obtained in the literature [10, 11, 
44–47]. To define the application time, the cell viability 
test was performed by the [3-(4,5-dimethylthiazole-2)-2,5-
diphenyltetrazolium bromide] test (MTT) test, for the 
application times of 30, 90 and 150 s. The application of 
MC was performed by immersing two electrodes in the 
culture medium (DMEM supplemented with 15% FBS) 
present in each well of the culture plate, without maintain-
ing contact with the attached cell monolayer. The device 
used for the application of MC (biphasic microgalvanic 
direct current) was the Physiotonus microcurrent© stimu-
lator (Bioset-Rio Claro, São Paulo, Brazil).

The application time of MC for 90s in the F+MC group 
was selected due to the higher cell viability observed in the 
24 h MTT assay. Thus, MC (10 μA/90 s) was applied on 
days 0, 1, 2 and 3 after scratch assay (Fig. 1). For F group, 
the disconnected electrodes were placed as described for 
group F+MC. 24 h after the last application, samples 
were collected, that is, they were collected on the 4th day. 
Samples of groups F and F+MC were analyzed for cell 
viability and gene expression by the Real Time Polymerase 
Chain Reaction (RT-qPCR) technique.

MTT Test [3‑(4,5‑dimethylthiazole‑2)‑2,5‑diphe‑
nyltetrazolium bromide] for cell viability assay

NIH/3T3 fibroblasts at 21st passage (P) were plated in 
quadruplicate at 1 × 104 density per well in 24-well cul-
ture plates. Cultures were maintained with culture medium 
(DMEM supplemented with 15% FBS) under a humid 
atmosphere at 37 °C containing 5% CO2 for 24 h for cell 
adhesion. Control wells were established: (1) Only culture 
medium to be considered as “blank” in absorbance read-
ing; (2) Positive control: NIH/3T3 fibroblasts and culture 
medium; (3) Negative control: NIH/3T3 fibroblasts, culture 
medium and 50% DMSO (dimethylsufoxide). On the 4th 
day, complete culture medium was removed and a solution 
of 0.5% MTT (Sigma-Aldrich, St. Louis, MO, USA) with 
DMEM medium without phenol red was used for incuba-
tion for 4 h protected from light in a 37 °C oven containing 
5% CO2. After MTT removal, 200 μL of DMSO was added 
and the absorbance was measured at 570 nm in a microplate 
reader. For cell viability calculation, the following formula 
was used: Cell viability (%) = (sample absorbance/positive 
control absorbance) × 100.

Cell migration assay

Images from the scratch on the cell monolayer were docu-
mented daily using inverted microscope (Carl Zeiss—Cousin 
Vert) and Microscope Software ZEN 2012 blue edition. Six 
wells were used per group, and images were captured in 3 
regions (one central and two peripheral) of each well, to ana-
lyze cell migration towards the scratch region. Images were 
captured on day 0 and were used to measure scratch size 
(cm) to obtain an average value (cm) of scratch width. This 
average was used to cut the images from days 1, 2, 3 and 4, 
to isolate only the cells that migrated to the scratch region. 
After the standardization of the photos, only the scratch area 
cells were counted by ImageJ 1.46r (“Cell Counter” Plugin) 
and the average values were calculated for each period.

Real time polymerase chain reaction

Each sample from groups F and F+MC was collected 
from a 24-well plate, totaling 4 samples per group with 
3.1 × 106 cells in each sample. After cells trypsinization and 
following centrifugation at 1800 rpm for 10 min, the RNA 
extraction from each sample was performed.

The RNeasy® Plus Mini Kit (Qiagen®, cat. No. 74104) 
was used for total RNA extraction, according to the man-
ufacturer’s instructions. The analysis of quality of the 
samples was evaluated by reading the absorbance ratios 

Fig. 1   Microcurrent application (10  μA/90  s): two metal electrodes 
were placed on the left and right side of the well for half of time (15, 
45 and 75  s). Then, the position of electrodes was inverted and the 
current applied for another half of time (15, 45 and 75 s), considering 
that total time of application was 30, 90 and 150 s
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260/280 nm and 260/230 nm in nanophotometer and the 
integrity of the RNA was verified by 1% agarose gel elec-
trophoresis under denaturing conditions.

Complementary DNA (cDNA) synthesis was per-
formed from 2.0 μg total RNA using the Applied Bio-
systems High-Capacity cDNA Reverse Transcription ™ 
kit (cat. 4368814) following the manufacturer’s instruc-
tions. The cDNA produced was used as a sample for real 
time polymerase chain reaction reactions. Reactions, 
always performed in triplicate, were performed using: 
cDNAs produced, TaqMan™Gene Expression Master 
Mix (Life Technologies—PN 4369016), RNase free water 
and Taqman assays (primer + hydrolysis probes) for the 
genes contained in Table  1 making a final volume of 
20 μL. The entire RT-qPCR procedure was performed on 
the MX3005P (GE) instrumentation platform under 95 °C 
(10 minutes) and 45 cycles of 95 °C (15 s) and 60 °C 
(1 min). The results were analyzed by the MxPro (GE) 
program and relative gene expression was obtained by the 
2−ΔΔCT method. Ppia gene was used as endogenous for 
data normalization.

Statistical analysis

All data presented normal distribution (Gaussian distri-
bution) and parametric tests were employed: for com-
parisons between groups F and F+MC, data were ana-
lyzed using the Student t test (p < 0.05); while for the cell 
viability test after the 30, 90 and 150 s of MC applica-
tion, the data of the different groups were analyzed using 
Analysis of Variance (ANOVA One-way), followed by 
Tukey test (p < 0.05). The values were represented by the 
mean ± standard deviation (SD), using GraphPad Prism® 

(GraphPad Software, La Jolla, CA, USA), version 3.0 was 
used.

Results

Cell viability

The protocol for applying MC therapy (10 μA) was defined 
24 h after the 30, 90 and 150 s times (Fig. 2). All times 
presented higher cell viability (p < 0.05) in comparison to 
positive control. However, lower cell viability (p < 0.05) was 
observed after the application of MC in the 30 s time in rela-
tion to 90 and 120 s times.

On the 4th day after scratch, there was no difference in 
cell viability between groups F and F+MC (Fig. 3).

Table 1   Taqman assays used in RT-qPCR: Ctgf (connective tissue 
growth factor), Fmod (fibromodulin), Fn1 (fibronectin 1), Igf1 (insu-
lin-like growth factor 1), Scx (scleraxis), Tgfb1 (transforming growth 
factor beta 1), Tnmd (tenomodulin), Tnc (tenascin C), Gapdh (glyc-
eraldehyde-3-phosphate dehydrogenase), Ppia (peptidylprolyl isomer-
ase A)

Gene Assays Catalog

Ctgf Mm01192933_g1 4453320
Fmod Mm00491215_m1 4448892
Fn1 Mm01256744_m1 4453320
Igf1 Mm00439560_m1 4331182
Scx Mm01205675_m1 4448892
Tgfb1 Mm01227699_m1 4448892
Tmnd Mm00491594_m1 4448892
Tnc Mm00495662_m1 4453320
Gapdh Mm99999915_g1 4453320
Ppia Mm02342430_g1 4453320

Fig. 2   Cell viability (%) observed 24 h after MC application (10 μA) 
at times of 30, 90 and 150 s. a, b = equal letters indicate differences 
between groups. Values represented by mean ± SD

Fig. 3   Cell viability (%) observed on the 4th day: no difference was 
observed between groups F and F+MC. Values represented by the 
mean ± SD
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Cell migration

Cell migration analysis was performed on days 0, 1, 2, 
3 and 4 by counting the number of cells in the scratch 
region. On day 0, no cells were observed in the scratch 
region. On the 1st day, few cells were observed in both 
groups. On the 2nd day, group F+MC presented lower 
number of cells in the scratch region compared to group 
F, however, no statistical differences were observed. On 
the 3rd day, both groups presented similar number of cells 
and, on the 4th day, scratch closure was observed in both 
groups, but with a larger number of cells in the F+MC 
group (p < 0.001) (Fig. 4a, b).

Gene expression

Higher expression of Ctgf and lower expression of Tnc 
and Fmod, respectively, were observed in the F+MC 
group in relation to F group (p < 0.05). No difference was 
observed between the groups for the genes Tgfb, Fn1 and 
Scx on the 4th day (Fig. 5). Regarding Tnmd and Igf1, no 
gene expression was observed in both groups under the 
experimental conditions studied.

Discussion

The literature has demonstrated the effectiveness of MC 
therapy in vivo during the repair of different tissues, such 
as tendon [43], skin [8], bone [48], heart [49] and cartilage 
[7]. Thus, the present study aimed to analyze the influence 
of MC on the modulation of remodeling genes in a wound 
healing assay, as well to correlate the possible activation of 
the pathway Tnmd–Tgfb1–Ctg, as described by Zheng et al. 
[42] during wound healing. In a previous work performed 
by our group [43], the MC (10 μA/4 min) therapy applied 
until the 14th day of tendon repair, increased the expres-
sion of Fmod, Ctgf, Tnc and Fn genes. In the present study, 
higher expression of Ctgf and lower expression of Tnc and 
Fmod were observed after MC daily application during 4 
days, and no difference was observed between the groups 
for the genes Tgfb, Fn1 and Scx. Zheng et al. [42, 50] stated 
that the wound repair process can be initiated by the activa-
tion of Fmod expression that can act on the modulation of 
Tgfb1 and Ctgf genes, inducing cell migration and myofibro-
blast differentiation, resulting in improved wound healing. 
Although a reduced expression of Fmod was observed, our 
results point for the involvement of Ctgf after MC therapy 
due to the higher cell migration. Fmod and Ctgf have other 

Fig. 4   (a) Images showing cell 
migration (→) to the scratch 
region on days 0, 1, 2, 3, and 
4 in groups F and F+MC. 
Notice higher number of cells 
in group F+MC on the 4th 
day. Bar = 200 μm. (b) Cell 
migration: Until day 3, no 
marked difference was observed 
between groups F and F+MC. 
On the 4th day, there was an 
increase in cell migration to the 
scratch region in group F+MC 
compared to group F. a = differ-
ence between groups (p < 0.05). 
Values represented by the 
mean ± SD
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important roles during tissue repair, in addition to participat-
ing in cell migration, such as collagen fibrillogenesis [28], 
angiogenesis [29], and modulation of other growth-factors 
signaling [32]. Regarding Tgfb, Neves et al. [8] have dem-
onstrated the influence of MC stimulating TGF-β1 expres-
sion during wound closure in vivo, while Fonseca et al. [48] 
reported that MC therapy in the bone reconstruction model 
reduced TGF-β1 expression and modulated the inflamma-
tory process.

Surprisingly, our results showed a reduced Tnc expres-
sion after MC therapy on the 4th day, when the closure 
of scratch occurred. As reviewed by Giblin and Midwood 
[25], tenascin-C has a diverse range of functions such as 
the stimulus of the cell migration, attachment and survival, 

matrix assembly, diverse cytokines synthesis, among oth-
ers. Tenascin-C transcription may be influenced by a variety 
of growth factors, cytokines, ECM proteins, biomechanical 
stimulus [25, 51, 52], and according to our results, also in 
response to the MC therapy.

An in vivo study of Zuzzi et al. [53] showed that MC 
20 μA/5 min accelerated cartilage repair by increasing the 
deposition of ECM components such as proteoglycans [53], 
glycosaminoglycans and collagen [54]. It was expected in 
the present study to show the activation of the Igf1 and Fn1 
expression, which activate essential signaling pathways that 
increase deposition and remodeling of ECM components, 
as well as cell adhesion and migration [55]. However, our 
results demonstrated the absence of Igf1 expression and no 
difference in the expression of Fn1 after MC therapy on the 
4th day.

In the present study, no alteration in the Scx expression 
was observed after MC therapy on the 4th day, and absence 
of Tnmd expression was observed in both groups. Accord-
ing to a study of Shukunami et al. [56], Scx activates Tnmd 
expression in vitro to regulate differentiation and maturation 
of tenocytes, although the Scx expression and absence of 
Tnmd expression were observed from the 20th passage of 
cells. Still in the previously mentioned study [56], no expres-
sion of Scx and Tnmd was found in the NIH/3T3 fibroblasts, 
partially corroborating our results, in which was observed 
the expression of Scx though no difference after MC appli-
cation. Kague et al. [35] reported that Scx is also related 
to secretion of ECM components, including some types of 
collagen, and Tnmd is also related to the formation of cyto-
plasmic extensions that support the organization of ECM.

In vitro studies have shown that electrical currents can 
influence migration, proliferation, viability and cell func-
tion [3, 4]. Our results showed that the application of MC 
at 10 μA/90 s on the 4th day did not affect the cell viabil-
ity, corroborating with the in vitro analysis performed by 
Uemura et al. [4], that demonstrated no difference in the 
viability of dermal fibroblasts after 24 h of electrostimula-
tion application between 100 and 300 μA (for 8 h). Lin et al. 
[57] used the intensity of 0.05 to 1.5 mA of MC applica-
tion in equine tenocytes culture for 8 min and observed no 
apoptosis after 24 h, and an increase in apoptosis after 48 
and 72 h. Thus, the effects of MC on cell viability depends 
on the intensity and time of application.

Regarding cell migration, a higher number of cells in 
the scratch region on the 4th day observed in our results, 
demonstrated a stimulatory effect of the MC therapy cor-
roborating with the literature. Our results also showed 
the involvement of the increased Ctgf gene expression 
with the enhanced cell migration after MC application. 
Uemura et al. [4] analyzed the migration of dermal fibro-
blasts 24 h after the application of electrostimulation at 
100, 200 and 300 μA intensities, and observed increased 

Fig. 5   Gene expression on the 4th day: note higher expression of 
Ctgf, and lower expression of Tnc and Fmod in the F+MC group in 
relation to F. No difference was observed between the groups for the 
genes Tgfb, Fn1 and Scx. a = difference between groups (p < 0.05). 
Values represented by the mean ± SD
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migration only using electrostimulation at the intensity of 
200 μΑ. Tai et al. [2], showed that electrical fields activate 
multiple cellular signaling mechanisms, such as the PI3K-
AKT (phosphoinositide-3 kinase-AKT serine/threonine 
kinase) mechanism, which alter cell migration, survival 
and proliferation. It is important to emphasize that, in the 
present study, on the 2nd day after the application of MC, 
there was cellular reorientation, since the cells partially 
retracted to the scratch edges and returned to migrate 
towards the scratch center from the 3rd day. Corroborat-
ing with our results, Rouabhia et al. [58] reported that 
dermal fibroblasts when electrically stimulated (50 and 
200 mV/mm for up to 6 h) showed a retractable behavior 
of fibroblasts in a collagen gel matrix. Our study has a 
translational relevance since research on understanding 
the molecular mechanisms by which MC regulates cell 
response, can contribute to the development of protocols 
for this therapy’s clinical use.

Conclusion

The present study demonstrated that the application of MC 
at an intensity of 10 μA/90 s modulated the expression of 
some important remodeling genes in a wound healing assay, 
differently of those results observed in a tendon healing 
model, and with apparently no involvement of the pathway 
Tnmd–Tgfb1–Ctgf activation on the 4th day. It is important 
to emphasize that in the in vitro experiments, there is no 
molecular signaling from other cell types that also respond 
to the effects of MC therapy, nor cellular interactions and 
therefore genes expression and protein turnover may be dif-
ferent. Thus, these variables should be considered in devel-
opment of new protocols using MC, since the effects of the 
MC depend on the intensity/time of application, of the tissue 
or cells lineage and of period of the repair process analyzed. 
In conclusion, MC therapy at an intensity/time of 10 μA/90 s 
with 4 daily applications did not affect cell viability, stimu-
lated fibroblast migration with the involvement of Ctgf, and 
reduced the Tnc and Fmod expression.
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