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Abstract
Dengue virus (DV) is the most rapidly spreading arbovirus in the world. Our previous studies indicated that Rac1, a kind of 
Rho GTPase, was related with the increased vascular permeability in DV infection. However, the molecular mechanisms that 
regulate the activity of the Rac1 pathway during DV infection is not fully understood yet. Recently, Rho-specific guanine 
nucleotide dissociated inhibitors (Rho GDIs), as a pivotal upstream regulator of Rho GTPase, attract our attention. To identify 
the role of GDI-1 in DV2 infection, the expression of GDI in Eahy926 cells was detected. Moreover, a GDI-1 down-regulated 
cell line was constructed to explore the correlation between GDI-1 and Rac1 and to further evaluate the function of GDI in 
DV life cycle. Our results indicated that DV2 infection could up-regulate GDI-1 expression, and down-regulation of GDI 
enhanced the activity of Rac1. In addition, down-regulated GDI-1 significantly inhibited all steps of DV2 replication cycle. 
GDI-1 plays an important role in DV2 infection via negatively regulating the activation of the Rac1-actin pathway. These 
results not only contribute to our further understanding of the pathogenesis of severe dengue but also provide further insight 
into the development of antiviral drugs.
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Introduction

Dengue is the most clinically common arbovirus infection 
in the world, and is caused by dengue virus (DV) from the 
genus Flavivirus in the family Flaviviridae. According to 
the recent epidemiologic studies, 390 million individuals 
are infected with DV globally per year, of which 96 million 
cases are symptomatic [1]. There are four related but distinct 
serotypes (DV 1–4). Infection with any of them can lead to 
the self-limited flu-like dengue fever (DF), and some DF 
patients might develop severe dengue, a potentially lethal 
complications previously known as dengue haemorrhagic 

fever (DHF) and dengue shock syndrome (DSS). Haemor-
rhage is one of typical manifestations for severe dengue, 
which is characterized with increased vascular permeabil-
ity and plasma leakage. Usually, kinds of chemokines and 
cytokines released from dendritic cells and monocytes upon 
infection can activate the endothelium and then disrupt the 
endothelial barrier, which are contributed to the DV-induced 
vascular permeability. Additionally, recent studies found that 
DV can also infect endothelial cell and directly contribute 
to viremia and endothelial cell dysfunction [2–4]. However, 
except for the outcome, the mechanism that triggers DV 
entry and replicate in endothelial cells is as yet only poorly 
understood.

As we know, viruses depend on the host cellular machin-
ery to replicate, and this process includes virus-cell interac-
tions involving many cellular components [5–9]. Generally, 
Rho GTPases are master regulator which involve in a vari-
ety of cellular functions, including cytoskeletal dynamics 
and vesicle traffic [10] in a number of cell types, such as 
endothelial cells. In our previous studies, we mainly inves-
tigated the role of Rho GTPases, especially Rac1, in the 
process of dengue infection [11]. We found that the Rac1-
microfilament signal pathway was involved in the life cycle 
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of DV2 in an endothelium-like Eahy926 cells. Our results 
indicated that the activities of Rac1 decreased during the 
early phrase and gradually increased at the late phase of 
infection [11]. Accordingly, Rac1 activation likely serves 
as an important regulating factor in the DV-induced mor-
phological changes in endothelial cells, which subsequently 
cause the vascular leakage observed in severe dengue. Thus, 
clarifying the molecular mechanisms that regulate the activ-
ity of the Rac1 pathway during DV infection is necessary.

Usually, Rho GTPases exert their function by a cycling 
between an active GTP-load state and an inactive GDP-load 
state, which are mainly regulated by three classes of pro-
teins. Rho guanine nucleotide exchange factors (Rho GEFs) 
can facilitate the exchange of GDP for GTP, which convert 
Rho GTPase to their active state. Conversely, Rho GTPase 
activating proteins (Rho GAPs) catalyze the hydrolysis of 
GTP to GDP to inhibit Rho GTPase function. Besides GFFs 
and GAPs, a set of Rho specific guanine nucleotide dissoci-
ated inhibitors (Rho GDIs) act as a pivotal upstream regula-
tor of Rho GTPase. Three species of Rho GDIs have been 
identified, namely, GDI-1, GDI-2 and GDI-3 [12, 13]. GDI-1 
(also known as GDIα), the ubiquitously expressed form, is 
the best characterized GDI family member, while GDI-2 
(also known as D4-GDI or Ly-GDI or GDIβ) is predomi-
nantly found in lymphocytic and hematopoietic tissues [14, 
15], and GDI-3 (also known as GDIγ), the most divergent 
of the three, usually distributes in individual organs (such as 
brain and pancreas, etc.) [16]. The main function of GDIs is 
to block GDP dissociation from Rho GTPases, which main-
tains the Rho GTPases in inactive complex. Thus, as a pri-
mary modulator for limiting Rho GTPase activation [17], 
Rho-GDI interactions involve in many pathogenic process 
in vivo. For instance, the over-expression of GDIs induces 
the disruption of Rho-dependent cellular activities, including 
the organization of actin cytoskeleton and the loss of stress 
fibers and focal contact sites [18]. Because many studies 
have demonstrated that GDIs play a critical role in regulating 
cancer cell invasiveness by modulating the activities of Rho 
proteins and actin, GDIs have been considered as drug tar-
gets for cancer treatment [19–22]. In addition, a lymphoid-
specific GDI-2 may also serve as a cytoskeletal-localized 
regulator at specific intracellular locations of platelets in a 
PKC-dependent manner [23]. However, only a few studies 
have demonstrated the involvement of GDIs in viral infec-
tions. Rho GDI-2 has been implicated in negatively regulat-
ing HIV-1 replication by weakening the activities of Rac1 
and RhoA [24]. Kramer et al. reported that tobacco mosaic 
virus (TMV) infection could alter the localization of GDI-2 
from the cytoplasm to ER-associated complexes. Addition-
ally, partial silencing of GDI-2 significantly increases TMV 
infection [25]. However, little is known regarding whether 
GDI-1 plays a role in DV infection via regulating the activi-
ties of Rac1.

In the present study, the endothelium-like cell line, 
EAhy926, was used as a cell model to investigate the effect 
of GDI-1 on DV2 infection. We found that DV2 infection 
induced the up-regulation of GDI-1 and the down-regulation 
of active Rac1 during the early phase of infection, which 
promoted DV2 entry. GDI-1 knock-down inhibited all steps 
of DV2 replication cycle. Because increased Rac1 activi-
ties and disrupted actin filaments were detected in EAhy926 
cells which GDI-1 level was down-regulated, we suggest 
that GDI-1 plays an important role in DV2 infection via 
negatively regulating the activation of the Rac1-actin path-
way. Taken together, these results not only contribute to our 
further understanding of the pathogenesis of severe dengue 
but also provide further insight into the development of anti-
viral drugs.

Materials and methods

Cells and virus

The Aedes albopictus C6/36 cells were grown in RPMI 1640 
supplemented with 10% fetal bovine serum (FBS) at 28 °C. 
Vero cells were grown in minimal essential medium (MEM) 
supplemented with 5% FBS at 37 °C. Vascular endothelial 
cell-like EAhy926 cells were grown in Dulbecco’s modified 
Eagle’s medium (DMEM) with 15% FBS.

DV2 (Tr1751), isolated from a patient with dengue fever, 
was propagated in C6/36 cells and stored at − 80 °C until 
use. Virus titers were determined by plaque assay on Vero 
cells. In addition, no patient with dengue fever was involved 
in the study.

Antibodies and chemicals

Mouse anti-DV2 E monoclonal antibodies (mAbs) were 
kindly provided by Dr. XY Che (Zhujiang Hospital, South-
ern Medical University, Guangzhou, China). Rabbit anti-
GAPDH pAbs were purchased by Bioworld Technology 
(China). Horseradish peroxidase (HRP)-conjugated goat 
anti-mouse immunoglobulin (IgG) and HRP-conjugated goat 
anti-rabbit IgG were purchased from Dingguo Changsheng 
Biotechnology (China). Rabbit-anti-GDI mAb was pur-
chased from Abcam (Britain). Lipofectamine was purchased 
from Invitrogen (USA). And the FBS was purchased from 
Gibico.

Detection of GDI expression levels after DV2 
infection

EAhy926 cells were infected with DV2 (MOI = 10). At dif-
ferent time points after infection, total RNAs were obtained 
for the determination of GDI RNA levels by quantitative 
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reverse transcription-polymerase chain reaction (qRT-PCR) 
with specific primers (GDI-1–F: 5′-GGT ATT GTC CTG 
CCT CTG -3′, GDI-1–R: 5′-CTT GGT CCC TTG TTT GTT 
-3′). Meanwhile, GDI expression levels in the lysates were 
determined by Western blotting. The blots were incubated 
with anti-GDI antibody (1:1000) at 4 °C overnight, followed 
by the addition of HRP-conjugated goat anti-rabbit IgG 
(1:2000). Subsequently, the protein levels were examined 
by ECL luminous intensities.

Generation of EAhy926 cells with down‑regulated 
GDI expression by RNA interference (RNAi)

RNAi was used to target a GDI nucleotide sequence from 
445 to 463 (5′-TGA AGG AGG GTG TGG AGT A-3′). The 
GDI-RNAi plasmid (pGDI-RNAi) was constructed using 
the EASY-shRNA eukaryotic expression vector pGV248 
from GeneChem (China). And a negative control vector 
(pGDI-cont) was constructed similarly with an unrelated 
shRNA sequence (5′-TTC TCC GAA CGT GTC ACG T-3′). 
Then EAhy926 cells were transfected with 4 μg of pGDI-
RNAi or pGDI-cont plasmid, respectively. At 48 h after 
transfection, the medium was replaced with fresh DMEM 
with 15% FBS. For the screening, the cells were cultured in 
medium containing 3 μg/ml of puromycin dihydrochloride 
at 37 °C for 14 days, and then single cell colonies carrying 
pGDI-RNAi or pGDI-cont were obtained and named EAhy-
GDI-RNAi and EAhy-GDI-cont, respectively. After being 
identified by Western blotting and qRT-PCR, the cells were 
used for investigating the effect of GDI on DV2 infection.

Effect of GDI on DV2 infection

EAhy-GDI-RNAi and EAhy-GDI-cont cells were infected 
with DV2 (MOI = 10) at 37 °C for 1 h, and then the superna-
tants and cell lysates were collected at 1 h, 4 h and 8 h after 
infection. Plaque assay and Western blotting were used to 
detect the viral titers and E protein expressions, respectively, 
to analyze the effect of GDI on DV2 infection. The viral 
titer in EAhy-GDI-cont cells was considered 100%. Three 
independent experiments were performed for each group at 
each time point.

Analysis of Rac1 GTPase expression and of actin 
organization in EAhy‑GDI‑RNAi and EAhy‑GDI‑cont 
cells

The Rac1 GTPase expression were detected by immuno-
histochemistry as described previously [11, 26]. Activated 
Rac1 was identified by binding specifically to the GST-fused 
Rac/cdc42-binding domain (CRIB) of human p21 activated 
kinase 1 protein (PAK1). EAhy-GDI-RNAi and EAhy-
GDI-cont cells grown on coverslips were fixed and blocked. 

Then, the cells were incubated with GST-CRIB (expressed 
in E.coli, 10 μg/mL) at 4 °C overnight. Subsequently, GST-
CRIB was detected using anti-GST antibody (1:100) and 
HRP-conjugated secondary antibody. Meanwhile, total pro-
teins of the cells were also collected for the detection of 
Rac1 GTPase expression by Western blotting.

Moreover, morphology of actin in EAhy-GDI-RNAi 
and EAhy-GDI-cont cells was revealed by incubation with 
TRITC-conjugated phalloidine (1:100, 37 °C, 1 h, Sigma) 
[26]. Three independent experiments were performed for 
each group.

Statistical analysis

A statistical analysis was performed using SPSS 16.0 soft-
ware. The quantitative data between two groups were com-
pared using Student’s t-test. Differences among the groups 
were considered significant at p < 0.05.

Results

DV2 infection induced the up‑regulation of GDI‑1 
expression

At different time points after DV2 infection, total RNA and 
proteins were extracted from EAhy926 cells to detect the 
levels of GDI-1 mRNA and protein. As shown in Fig. 1, the 
level of GDI-1 mRNA increased by 16.0-fold at 20 min and 
reached 18.5-fold at 1 h, which were significantly different 
from those in mock-infected cells (p < 0.01). Then, mRNA 
levels of GDI-1 reverted, but still maintained high levels at 
8 h and 24 h, respectively (p < 0.05, Fig. 1a). Accordingly, 
the markedly elevated GDI-1 expression was also observed 
at 20 min and 1 h, and then it showed a gradually decreasing 
trend, maintaining high levels at 4 h, 8 h and 24 h (Fig. 1b). 
These results indicated that DV2 infection induced the up-
regulation of GDI-1 expression.

Down‑regulation of GDI disrupted Rac1‑actin 
pathway

To further analyze the effects of GDI-1 on DV2 infection, we 
established a cell line with down-regulated GDI-1 expres-
sion using RNAi. The cell line was identified and named 
EAhy-GDI-RNAi. Significantly reduced levels of GDI-1 
mRNA and protein were observed in EAhy-GDI-RNAi cells 
(Fig. 2a and b, p < 0.01), in which Rac-1 (GTP-Rac1) activ-
ity clearly enhanced (Fig. 2c and d, p < 0.05), and actin fila-
ment mainly distributed in the peri-nucleus compared with 
that in the control cell line, which was named EAhy-GDI-
cont (Fig. 2e). These findings indicated that down-regulation 
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of GDI-1 disrupted Rac1-actin pathway and that our cells 
could be used in the subsequent experiments.

GDI‑1 was involved in the DV2 life cycle

The lysates of EAhy-GDI-RNAi and EAhy-GDI-cont cells 
were collected at 1 h after infection to investigate the effect 
of GDI-1 on DV2 entry. The viral titer in EAhy-GDI-cont 
cells was considered 100%. As shown in Fig. 3a, the virus 
entry markedly decreased to 51% in EAhy-GDI-RNAi cells 
and significantly different from that in EAhy-GDI-cont cells 
(p < 0.01), indicating that GDI-1 is required for DV2 entry.

Next, the lysates of EAhy-GDI-RNAi and EAhy-GDI-
cont cells were collected for the detection of E protein 
expression. As shown in Fig. 3b, the down-regulation of 
GDI-1 led to reduced E protein expression levels at 4 h and 
8 h. Moreover, the lysates and supernatants of EAhy-GDI-
RNAi and EAhy-GDI-cont cells were also harvested to 
evaluate the intra- and extracellular viral titers at 4 h and 
8 h after infection. The titers in control cells (EAhy-GDI-
cont) were considered as 100%. The intracellular viral titers 
in EAhy-GDI-RNAi cells decreased to 21% of the control 
cells at 4 h and 28% at 8 h, respectively; while the extracel-
lular viral titers in EAhy-GDI-RNAi cells decreased to 13% 
at 4 h and 10% at 8 h, respectively. The changes of intra- and 

extracellular viral titers showed significantly different with 
those in EAhy-GDI-cont cells (Fig. 3c and d, p < 0.01). The 
ratios of extra- to intracellular viral titers decreased to 62% 
at 4 h and 35% at 8 h (Fig. 3e, p < 0.01). These findings 
indicated that GDI-1 is required for the replication, assemble 
and release of DV2 and that GDI-1 down-regulation signifi-
cantly inhibited all steps of the DV2 replication cycle.

Discussion

According to the reports of WHO, the incidence of dengue 
has grown dramatically around the world in recent decades 
[27]. Although, Dengvixia, the first commercial DV vaccine, 
was licensed in more than ten countries, it shows the risk 
of severe disease in non-immunes and those less than nine 
years old. In addition, there is no specific antiviral treatment 
against DV infection, and the pathogenesis of severe dengue, 
which is characterized with increased vascular permeabil-
ity and hemorrhage, is not fully understood yet. Thus it is 
imperative to explore the mechanism that trigger the dys-
function of vascular endothelium in severe dengue.

As a kind of obligate intracellular parasite, viruses must 
commandeer the cellular machinery of host cells to com-
plete their replication cycle and produce progeny viruses. 
Previously, we demonstrated that the reorganization of actin 
filaments and the altered activities of Rac1 were involved 
in DV2 infection in ECV304 cells and EAhy926 cells [11, 
26]. Rac1, as a member of the Rho GTPase family, have 
also been proved to play important roles in many virus 
infections via the regulation of actin organization [28–31]. 
Despite the critical roles of Rho GTPases and their regu-
lation in the rearrangement of cytoskeleton in the process 
of viral replication, many relevant Rho GTPase regulatory 
proteins remain uncharacterized for their effect in dengue 
infection. As mentioned above, three major regulators of the 
Rho GTPases cycle have been identified: GEFs, GAPs and 
Rho GDIs. Especially, the Rho GDIs, which operate in the 
background, might serve as an “invisible hand” to regulate 
the Rho-GTPase cycle through sequestering the inactivated 
GDP form of GTPases in the cytosol [13]. In addition, GDIs 
can also protect GTPase from degradation [32].

Generally, Rho GDIs have been proved to be associated 
with cell differentiation. Previous studies primarily focused 
on the relationship between RhoGDIs and the development 
of cancers [33]. Most of these reports demonstrated that Rho 
GDIs plays dual opposite roles as both promoters and metas-
tasis suppressors in different tissues during tumor progres-
sion [19, 21, 34–38]. Thus, Rho GDIs may be useful as a 
diagnostic biomarker and/or a therapeutic target for tumor.

However, few reports have examined the role of Rho 
GDIs in virus infection. A study by Watanabe et al. showed 
[24] that the modest up-regulation of the Rho GDI-2, the 

Fig. 1  Expression of GDI-1 in DV2-infected EAhy926 cells. a, b 
The lysates of DV2-infected EAhy926 cells were collected at differ-
ent time points as indicated after infection, and the levels of GDI-1 
mRNA and protein were analyzed by qRT-PCR and Western blot-
ting, respectively. The data of qRT-PCR represent the mean ± SD 
from three independent experiments relative to mock-infected cells 
(**p < 0.01; *p < 0.05 vs. mock infection). GAPDH was used as load-
ing control
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hematopoietic cell-specific form, attenuated HIV-1 infection 
at the Env-dependent early phase of the viral life cycle in 
various T cell lines. However, this up-regulation appeared 

to have no effect on cell proliferation, indicating that Rho 
GDI might be a potential target for the treatment of HIV-1 
infection. Furthermore, transfection with several HIV 

Fig. 2  Identification of EAhy-GDI-RNAi and EAhy-GDI-cont cells 
line, and analysis of Rac-1 (Rac1-GTP) activity and actin organiza-
tion in those cells. a The mRNA expression levels of GDI-1 were 
analyzed by qRT-PCR in EAhy-GDI-RNAi and EAhy-GDI-cont 
cells (**p < 0.01 vs. EAhy-GDI-cont cells). The data represent the 
mean ± SD from three independent experiments relative to EAhy-
GDI-cont cells. b Expression of GDI-1 protein was detected by 
Western blotting in EAhy-GDI-RNAi and EAhy-GDI-cont cells 
(**p < 0.01 vs. EAhy-GDI-cont cells). GAPDH was used as loading 

control. c Rac1 activity in EAhy-GDI-RNAi was detected by in situ 
detection with GST-CRIB, and activated Rac1 (GTP-Rac1) was 
mainly distributed in the peri-nucleus compared with EAhy-GDI-cont 
cells (× 200). d Elevated Rac-1 activity (GTP-Rac1) was detected in 
EAhy-GDI-RNAi cells by Western blotting compared with EAhy-
GDI-cont cells (p < 0.05 vs. EAhy-GDI-cont cells). e Actin organiza-
tion was detected by TRITC-conjugated phalloidine in EAhy-GDI-
RNAi cells and EAhy-GDI-cont cells (Bar = 1 mm)
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Fig. 3  The effect of GDI-1 on DV2 infection. a The lysates of EAhy-
GDI-RNAi and EAhy-GDI-cont cells were collected at 1  h after 
infection and the entry of DV2 was determined by plaque assay 
(n = 3). b The lysates of EAhy-GDI-RNAi and EAhy-GDI-cont cells 
were collected at 4 h and 8 h after infection and expression levels of 
E protein were detected by Western blotting. GAPDH was used as 
loading control. c, d The lysates or supernatants of EAhy-GDI-RNAi 

and EAhy-GDI-cont cells were collected at 4 h and 8 h after infection 
for determining the DV2 titers by plaque assay. The titers in control 
cells (EAhy-GDI-cont) were considered as 100% (n = 3). e The ratios 
of extra- to intracellular viral titer are shown as percentages. The 
data represent the mean ± SD from three independent experiments 
(**p < 0.01; *p < 0.05 vs. EAhy-GDI-cont cells)
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proteins, such as Tat or Nef, was observed to down-regulate 
the expression of the Rho GDIs [39, 40], which might be 
responsible for continuous HIV production. Another study 
reported that Rho GDI-2 was an essential component of the 
vesicle trafficking pathways of TMV [25].

In addition to these findings, in the present study, we 
mainly focused on the role of Rho GDI-1, the most ubiq-
uitously expressed form, in DV2 infection. We found that 
DV2 infection significantly enhanced the expression levels 
of Rho GDI mRNA and protein in EAhy926 cells, which 
accompanied the viral replication cycle, suggesting a link-
age between Rho GDI-1 levels and DV2 infection (Fig. 1). 
Then, we evaluated the variation in GDI-1 expression levels 
during the early phase of infection, and the down-regulation 
of GDI-1 caused an inhibitory effect on various steps of the 
DV2 life cycle (Fig. 3).

Additionally, we provided further evidence to demon-
strate the molecular mechanisms that regulate the activity of 
the Rac1-actin pathway in the DV2 replication cycle. In par-
allel with our previous investigation [11], the dramatically 
enhanced GDI-1 level observed in present study (Fig. 1) is 
accompanied with the reduced activities of the Rac1, which 
indicated that both the up-regulation of GDI-1 expression 
and the down-regulation of Rac1 activities are necessary 
for the entry of DV2 into EAhy926 cells. Moreover, GDI-1 
down-regulation enhanced the activities of Rac1 in EAhy-
GDI-RNAi cells (Fig. 2c and d). Considering these results, 
we suggested that GDI-1 promoted DV2 entry by negatively 
regulating the activities of Rac1 during the early phase of 
infection. However, at 4 h and 8 h after infection, the GDI-1 
levels in EAhy926 cells gradually decreased but remained 
high, accompanied by no obvious changes in the activities of 
Rac1 [11]. Simultaneously, significantly decreased E protein 
levels, intra- and extra-cellular viral titers, ratios of extra- to 
intracellular viral titers were also observed in DV2-infected 
EAhy-GDI-RNAi cells during this period (Fig. 3). These 
findings indicate that GDI-1 down-regulation inhibits the 
steps of the viral replication and release, and GDI-1 plays 
a more important role in DV2 infection than Rac1. Thus, 
taken together, GDI-1 may be a novel target for limiting DV 
infection.

According to our results and to other reports, we infer 
some possible regulatory roles of GDI-1 during DV2 
infection. During the early phase of infection, interactions 
between DV2 and the receptors on the surface of host 
cells triggered the up-regulation of GDI-1 expression, and 
then Rac1 activity could be down-modulated by seques-
tering Rho GTPases in the GDI-bound form in the cyto-
sol. The reduced Rac1 activity led to an enhanced viral 
entry into EAhy926 cells via regulating the reorganization 
of actin filaments, which is a key factor involved in the 
endocytosis and phagocytosis of several pathogens [41, 

42]. Alternatively, the activated GDI-1 and Rac1 pathway 
may affect the normal function of the plasma membrane 
by gathering viral receptor proteins and actin filaments 
at local sites, facilitating virus entry. Our results revealed 
that DV2 creates a suitable microenvironment by manipu-
lating cellular machines to establish effective infection 
during the early phase of infection. However, the changes 
in GDI-1 and active Rac1 were not coordinated at 4 h and 
8 h. According to our previous results, the active Rac1 
levels gradually returned to the control levels [11], while 
GDI-1 still maintained a higher expression levels than 
that in mock-infection at 4 h and 8 h. The continuously 
enhanced GDI-1 levels observed during DV2 infection 
lead to the reorganization of actin filaments and to the 
loss of cell to cell adhesion by regulating the activities of 
Rac1 [43], which further interfere with cellular junctions 
and then contribute to the pathogeneses of severe DF by 
increasing vascular permeability. Therefore, during the 
early phase of infection, down-regulating GDI-1, which 
is an up-stream regulator of the GDI-Rac1-actin pathway, 
may be a feasible strategy for limiting viral entry and DF 
progression.

In summary, the present study demonstrated that 
the GDI-Rac1-actin pathway has a complex role in the 
DV2 replication cycle. Increased GDI-1 expression and 
decreased Rac1 activity facilitates virus entry during 
the early phase of infection. These results suggested that 
GDI-1 is involved in DV2 entry and replication by regulat-
ing Rac1 activity and actin reorganization. Overall, this 
study revealed a mode by which the GDI-1–Rac1–actin 
pathway can be co-opted by DV2 to create a microenviron-
ment for establishing successful infection. Insights into the 
DV2-host interaction, such as those provided in this study, 
not only aid in the design of novel anti-viral drugs but also 
contribute to our understanding of viral pathogenesis.
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