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Abstract
To investigate the functional role of fasudil in optic nerve crush (ONC), and further explore its possible molecular mechanism. 
After ONC injury, the rats were injected intraperitoneally either with fasudil or normal saline once a day until euthanized. 
RGCs survival was assessed by retrograde labeling with FluoroGold. Retinal glial cells activation and population changes 
(GFAP, iba-1) were measured by immunofluorescence. The expressions of cleaved caspase 3 and 9, p-ERK1/2 and p-AKT 
were detected by western blot. The levels of the pro-inflammatory cytokines were determined using real-time polymerase 
chain reaction. Fasudil treatment inhibited RGCs apoptosis and reduced RGCs loss demonstrated by the decreased apop-
tosis-associated proteins expression and the increased fluorogold labeling of RGCs after ONC, respectively. In addition, 
the ONC + fasudil group compared had a significantly lower expression of GFAP and iba1 compared with the ONC group. 
The levels of pro-inflammatory cytokines were significantly reduced in the ONC + fasudil group than in the ONC group. 
Furthermore, the phosphorylation levels of ERK1/2 and AKT (p-ERK1/2 and p-AKT) were obviously elevated by the fas-
udil treatment. Our study demonstrated that fasudil attenuated glial cell-mediated neuroinflammation by up-regulating the 
ERK1/2 and AKT signaling pathways in rats ONC models. We conclude that fasudil may be a novel treatment for traumatic 
optic neuropathy.
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Introduction

Traumatic optic neuropathy (TON), characterized by signifi-
cant visual impairment and even blindness, is an irreversible 
injury of the optic nerve caused bytrauma [1–7]. The main 
mechanism of TON is retinal ganglion cells (RGCs) apop-
tosis [7] and axon degeneration, which may be mediated by 
glial cells dysfunction and optic nerve inflammation. Optic 
nerve crush (ONC) have been reported and share similar 
features, indicating that ONC is an excellent working animal 
model of TON. However, the underlying pathophysiologic 
and molecular mechanisms remain far from clear.

Inflammation is the basic response to optic nerve injury 
[8]. Growing evidence shows that ONC triggers inflam-
matory response produced by activated retinal glial cells, 
further aggravates the loss of RGCs [9–12]. Indeed, neuro-
inflammation involves the activation of glial cells and the 
release of proinflammatory cytokines [13]. Retinal glial 
cells, including microglia, astrocytes, Müller cells and so 
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on, play crucial roles in maintaining retinal homeostasis and 
protecting retinal neurons [14]. Under pathological condi-
tions, glial cells become activated and produce pro-inflam-
matory cytokines [15–17] such as IL-1β, IL-6, COX-2, and 
TNF-α [18]. These pro-inflammatory cytokines can con-
vey neurotoxicity to RGCs [16–19]. In view of this, agents 
aimed at modulating the neuroinflammatory responses have 
attracted the attention of researchers. Although many agents 
have been tested in animal models where they have been 
effective in attenuating glial cell-mediated neuroinflamma-
tion [8, 20, 21]. To date, however, there is no effective clini-
cal treatment for TON. Thus, searching for novel agents that 
can attenuate glial cell-mediated neuroinflammation may be 
particularly beneficial [7, 22].

Recently, some studies provided evidence that the 
ERK1/2 and Akt pathways mediated neuroprotection after 
injury [23–26]. Pernet et al. have shown that the activation of 
ERK1/2 by ciliary neurotrophic factor attenuated glial cells-
mediated neuroinflammation and increased RGCs survival 
after optic nerve injured [27]. Besides, the ERK1/2 path-
ways was known to participate in LPA1-driven microglial 
activation [28]. Furthermore, compound C (CC) inhibited 
neuroinflammation and protected nerve through the activa-
tion of the ERK1/2 and AKT pathways [29, 30]. Moreover, 
G-CSF may play a neuroprotective role by activating AKT 
phosphorylation after ONC [31, 32]. In addition, Brimoni-
dine fueled optic nerve regeneration after injury by activat-
ing ERK1/2 [23]. Therefore, the activation of ERK1/2 and 
AKT signaling pathways may inhibit the activation of glial 
cells and attenuate glial cells-mediated neuroinflammation.

Fasudil, a selective Rho-Associated Protein Kinase 
(ROCK) inhibitor [4, 5, 7, 33–35], is primarily used to 
treat subarachnoid hemorrhage (SAH) [34, 36], pulmonary 
hypertension [37, 38], cardiovascular diseases [39] and 
cerebral vasospasms after subarachnoid hemorrhage [40]. 
Most studies to date showed beneficial treatment effects of 
fasudil in treating central nervous system disease in animal 
models, such as stroke [41], cerebral infarct [42], cerebral 
vasospasm [33, 42, 43], Parkinson [11, 44], and traumatic 
spinal cord injury [33, 36]. Mounting amount of evidence 
have shown that the neuroprotective and cardioprotective 
effects of fasudil was via the AKT and ERK1/2 pathways 
[45–50]. Furthermore, fasudil attenuates the inflammatory 
response by shifting of microglial M1 polarization toward 
the M2 phenotype [51, 52]. Also, fasudil has been found to 
attenuate glial cells-mediated neuroinflammation in a New 
Zealand rabbit optic nerve injury model [7]. However, the 
mechanism by which fasudil attenuates glial cells-mediated 
neuroinflammation in the rats ONC model remain unclear.

The purpose of this research, therefore, is to verify the 
hypothesis that fasudil attenuates glial cells-mediated neuro-
inflammation via activating the ERK1/2 and AKT signaling 
pathways in the rats ONC model.

Materials and methods

Animals

Adult male Sprague Dawley rats (10  weeks, weight 
250 ± 30  g) were cared for by the Medical Laboratory 
Animal Center of Guangxi Medical University (Nanning, 
China). All experiments were approved by the Ethics Com-
mittee of the People’s Hospital of Guangxi Zhuang Autono-
mous Region and performed in accordance with the Asso-
ciation for Research in Vision and Ophthalmology (ARVO) 
Statement for the Use of Animals in Ophthalmic and Vision 
Research.

ONC model

The ONC model was constructed on 10-week-old rats as 
described previously with slight modification [50, 53–56]. 
1% Pentobarbital Sodium (50 mg/kg) was injected intra-
peritoneally to anesthesia rats. After anesthesia, the eye 
was routinely disinfected. The left optic nerve was surgically 
exposed and squeezed 2 mm behind the eyeball for 10 s. 
After the operation, funduscopic examination revealed that 
the retinal blood supply remained intact, and then ofloxa-
cin ointment was applied topically. The right optic nerve 
was exposed but without crushed. The study of Berkelaar 
et al. suggests that axotomy causes a loss of RGCs in a 
delayed pattern, and the number of RGCs was significantly 
reduced at days 14 [57]. Besides, there are studies also have 
shown that ONC caused a significant decrease of RGCs 
and a increase of retinal glial cells, which peaks on day 14 
[58–61]. Therefore, the 14-day time point was chosen for the 
subsequent experiments. All rats were euthanized by CO2 
pneumoperitoneum 14 days after ONC.

Fasudil administration

The rats were randomly assigned to four groups: control 
group (sham surgery control), fasudil group, ONC group, 
and ONC + fasudil group). Animals were given an intraperi-
toneal injection of normal saline or fasudil (10 mg/kg/day, 
30 rats) (Sigma Chemical Co., St. Louis, MO) once daily for 
14 consecutive days following model building. The choice 
of concentrations of fasudil for this study were based on 
previous research [33, 62, 63]. None of the rats were lost or 
died during the specified survival time.

Retrograde labeling of RGCs with FluoroGold

The retrograde labeling of FluoroGold (FG) has been used 
for morphometry analysis of RGCs after injury as described 
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in previous studies [64, 65]. To distinguish RGCs from glial 
cells, RGCs were retrogradely labeled with FG (4%, Colo-
rado). Briefly, 7 days before the establishment of rats ONC 
model [59, 66–68], midline incisions of approximately 
1.2 cm in length were made on the rat head, exposing the 
sagittal and lambda suture. Holes (1 mm diameter) were then 
drilled into the skull 2.5 mm rostral to lambda and 1.2 mm 
lateral to the sagittal sutures based on rat brain stereotaxic 
coordinates. 4 μl FG was injected 3 mm deep into the supe-
rior colliculi using a 10 μl microsyringe. Following eutha-
nasia of the rats, eye balls were enucleated immediately and 
fixed with 4% paraformaldehyde (PFA). Retinas dissected 
and flat mounted. Labeled RGCs were counted in three areas 
(62,500 μm2 each) per retinal quadrant (n > 6 in each group) 
and the average was calculated under fluorescence micro-
scope (Leica Microsystems; Mannheim, Germany). RGC 
survival percentage was defined as RGCs density ratios 
between left eyes with an right eyes multiplied by 100 [69, 
70].

Western blot analysis

Western blot were performed as described previously [50, 
55, 71]. Retinal tissues of 5 rats each group were collected 
and stored at − 80 °C. Retinal proteins were extracted using 
RIPA buffer (Beyotime) and quantified using the BCA 
assay (Thermo). After SDS-PAGE, PVDF membranes were 
blocked with 5% non fat milk, followed by overnight incuba-
tion with primary antibodies for mouse monoclonal anti-cas-
pase-3, mouse monoclonal anti-caspase-9, rabbit polyclonal 
anti-cleaved-caspase-3, rabbit polyclonal anti-cleaved-
caspase-9, mouse monoclonal anti-p44/42 (ERK1/2), rab-
bit monoclonal anti-Phospho-p44/42 MAPK (p-ERK1/2), 
mouse monoclonal anti-AKT, mouse monoclonal anti-
Phospho-AKT, or rabbit polyclonal anti-β-actin at 4℃. All 
labeled antibodies were purchased from Cell Signaling Tech-
nology, except antibody against β-actin (Abcam). After three 
5-min PBST washes, the membranes were incubated with 
secondary antibodies (SouthernBiotech) for additional 1 h 
at room temperature. Finally, the bands were visualized by 
ECL Plus(Amersham), and quantified by ImageJ software 
(NIH, Bethesda, MD).

Immunofluorescence and cell counting of microglial 
and macroglia

Eyes from euthanized rats were removed, fixed overnight in 
4% PFA, cryoprotected with 30% sucrose afterwards. Tis-
sues were embedded in optimum cutting temperature com-
pound (OCT, Leica Biosystems, Shanghai, China) overnight 
and 7 μm thick frozen sections were prepared for immuno-
fluorescence staining. After being washed with PBS, non-
specific sites were blocked by incubation with 5% bovine 
serum albumin (BSA) for 2 h Subsequently, the sections 
were incubated overnight with either rabbit polyclonal anti-
iba1 (a microglial cells marker; #019-19741, Wako) or rabbit 
monoclonal anti-GFAP (an astrocyte marker; #MAB3402, 
Millipore) primary antibody in a humidified box, followed 
by Alexa Fluor 488 or 555 (Invitrogen) secondary antibodies 
2 h at room temperature and finally DAPI (Sigma-Aldrich). 
Finally, imaging of the stained sections were photographed 
using confocal microscopy (Germany). The number of 
microglia or macroglia was calculated and then average was 
worked out. Finally, the numbers of iba1-positive cells and 
GFAP-positive cells were quantified using the cellcounter 
tool in ImageJ.

Quantitative real‑time PCR (qPCR)

Sample collection, RNA isolations and qPCR were carried 
out as previously described [53, 72]. Total RNA of retinal 
cells was extracted by Trizol (Invitrogen) and reversed-tran-
scribed into cDNA by using a cDNA first-strand synthe-
sis kit (Fermentas). The Primers were designed to amplify 
within a 200-bp length according to the NCBI Primer-Blast 
(Table 1). PCR steps was as follows: 50 °C for 2 min, 95 °C 
for 10 min, followed by 40 cycles of 95 °C for 15 s and 
60 °C for 1 min. Fluorescence signals were detected during 
the extended phase. Each sample was detected three times 
with the 6-point standard curve. qPCR was performed with 
SYBR Green (Biotool, Houston). The results were expressed 
as percentages. The expression of target genes calculated as 
normalized ratio and normalized to β-actin using the  2−∆∆Cq 
method.

Table 1.  The primer sequences of TNF-α, IL-6, IL-1β, COX-2 and ß-actin

Gene Forward primer sequences Reverse primer sequences Length (bp)

TNF-α 5-CCA CGC TCT TCT GTC TAC TG-3 5-GCT ACG GGC TTG TCA CTC -3 145
IL-6 5-AGC CAC TGC CTT CCC TAC -3 5-TTG CCA TTG CAC AAC TCT T-3 156
IL-1β 5-TGT GAT GTT CCC ATT AGA C-3 5-AAT ACC ACT TGT TGG CTT A-3 131
COX-2 5-AGA GTC AGT TAG TGG GTA GT-3 5-CTT GTA GTA GGC TTA AAC ATAG-3 170
β-actin 5-GTC AGG TCA TCA CTA TCG GCAAT-3 5-AGA GGT CTT TAC GGA TGT CAA CGT -3 147
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Statistical analysis

All of the values were presented as mean ± standard devia-
tion (SD) and analyzed using one-way analysis of variance 
(ANOVA) followed by Turkey’s posthoc multiple compari-
son tests. All statistical analysis were done using GraphPad 
Prism 6.0 (GraphPad Software). A p-value < 0.05 was con-
sidered statistically significant. Each experiment involved at 
least three repetitions.

Results

Fasudil reduced the loss of RGCs after ONC

To investigate the protective effects of fasudil on optic 
nerve injury induced by ONC, FG retrograde labeling 
was performed in all groups, and the surviving RGCs 
were visible as a round shape (Fig. 1a–d). FG-positive 
RGCs were remained viable 14 days post-ONC, but in 
significantly decreased number(1043 ± 52 cells/mm2, 
Fig. 1b, e, #p < 0.001). Notably, fasudil dramatically inhib-
ited the loss of RGCs and improved survival after ONC 
(1890 ± 83 cells/mm2, **p < 0.001). After 14 days of treat-
ment, no notable differences in the number of RGCs were 
found between the control (2642 ± 182 cells/mm2) and 

control + fasudil (2530 ± 231 cells/mm2) groups, indicat-
ing that fasudil had no cytotoxicity to RGCs. These results 
suggested that fasudil played a neuroprotective role in the 
ONC animal model.

Fasudil attenuated apoptosis of RGCs after ONC

ONC is an acute axonal damage model that leads to cell 
apoptotic in RGCs. Caspase-3 and caspase-9 are the prin-
cipal effector caspases in the execution of apoptotic cell 
death [25, 73, 74]. To further explore the impact of fas-
udil on RGCs apoptosis, we used western blot to assess 
the expression of apoptosis-related proteins as men-
tioned above (Fig. 2a). The relative amount of cleavage 
of caspases 3 or 9, normalized to respective total pro-
tein as a loading control, was calculated as a ratio. The 
results showed that there was no significant difference 
in the protein expression level of total caspases 9 and 3 
between all groups. Of note, the ONC group showed sta-
tistically increased levels of cleavage of caspases 3 and 9 
(#p < 0.001). However, after treatment with fasudil, these 
expression levels were significantly reduced (**p < 0.001). 
In general, these results indicate that fasudil may upregu-
late the phosphorylation levels of caspase 3 and 9, which 
is further favorable to the anti-apoptotic effect on RGCs 
(Fig. 2b, c).

Fig. 1  The protective effects of fasudil in RGCs after ONC. The pho-
tos of retina in each group were captured using a fluorescence micro-
scope. Scale bar = 100  μm. a Con group; b fasudil group; c ONC 
group; d ONC + fasudil group. e The number of FG-positive RGCs in 

each group was counted (mean ± SEM, n = 6). (#p < 0.001 vs. the con-
trol group; **p < 0.001 vs. the ONC group). Con control, ONC optic 
nerve crush, RGCs retinal ganglion cells
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Fasudil restrained the activation of retinal glial cells 
after ONC

The retinal glial cells undergo significantly morphological 
and behavioral changes and switch from a quiescent state 
to a highly active state after ONC injury [22, 75]. Then, to 
determine whether the effect of fasudil on retinal glial cells 
was correlated with its neuroprotective function, the expres-
sions of the GFAP and iba-1 were detected and the number 
of microglia or macroglia cells was counted by immuno-
fluorescence (Fig. 3). As showed in Fig. 3a, the expression 
of GFAP and iba-1 was dramatically elevated in the ONC 
group compared with the control group (#p < 0.001), and 
was markedly reduced after fasudil treatment (**p < 0.001). 
In addition, ONC resulted in the increases in the number of 
microglia and macroglia cells (#p < 0.001). However, these 
expansion in cell numbers were inhibited by fasudil treat-
ment (**p < 0.001). Overall, our results suggested that fas-
udil inhibited the activation of retinal glial cells after ONC.

Fasudil inhibited optic nerve inflammation 
after ONC

Then, to further investigate the anti-inflammatory effects 
of fasudil, we determined the mRNA level of IL-6, IL-1β, 
COX-2, and TNF-α in the retina by qPCR. As expected, the 
mRNA expression levels of these proinflammatory cytokines 
were significantly increased after ONC (#p < 0.001), while 

were decreased after treatment with fasudil (**p < 0.001) 
(Fig. 4a–d). Our results indicated that fasudil inhibited the 
mRNA expression of proinflammatory cytokines after ONC. 
Namely, fasudil played a key anti-inflammatory role during 
optic nerve provoked by ONC.

Fasudil up‑regulated ERK1/2 and AKT pathway 
after ONC

Previous studies demonstrated that fasudil administration 
leads to ERK1/2 and AKT phosphorylation [27, 76]. To 
explore whether fasudil protect RGCs from apoptosis via 
ERK1/2 and AKT pathways, the total and phosphorylated 
levels of ERK1/2 and AKT were detected by western blot 
(Fig. 5a). The relative amount of phosphoprotein levels, 
normalized to total level of the corresponding protein as 
a loading control respectively was calculated as a ratio. As 
expected, there was no significant difference between the 
total levels of ERK1/2 or AKT for each group. Moreover, 
the phosphorylation levels of ERK1/2 and AKT increased 
slightly after ONC, but the change was not statistically 
(#p > 0.05). And we considered this change was triggered 
by ONC stress. Following treatment with fasudil, the levels 
of the above phosphorylated protein significantly increased 
(Fig. 5, **p < 0.001). The above results further implicate 
that fasudil can activate the ERK1/2 and AKT pathway, and 
the activation of these signalings can inhibited the activation 
of retinal glial cells and the apoptosis of RGCs after ONC.

Fig. 2  Fasudil inhibited ONC-
induced caspase-3/9 activation 
in the retina after ONC. a West-
ern blot analysis assessed the 
protein level of total caspases 
9/3 and cleavage of caspases 
9/3. β-actin was used as a load-
ing control. Gel bands were sub-
jected to densitometric analysis, 
and the relative cleaved-cas-
pase-3/9 level was calculated 
as cleaved-caspase-3/9 level 
divided by totalcaspase3/9 
level (mean ± SEM, n = 10). 
(#p < 0.001 vs. the control 
group, **p < 0.001 vs. the ONC 
group). ONC optic nerve crush
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Discussion

TON is a serious vision threatening condition. However, 
there is no proven-effective therapy and interventions that 
can reverse the optic nerve degeneration and recover the 
vision. In this present study, our results demonstrated that 
fasudil directly attenuated RGCs apoptosis and increased the 
survival rate of RGCs via inhibiting caspase3 and caspase9 
cleavage in retina after ONC. In addition, fasudil administra-
tion specifically attenuates glial cells-mediated neuroinflam-
mation, played a neuroprotective and anti-inflammatory role 
by up-regulating the phosphorylation of ERK1/2 and AKT 
in rats ONC model. In general, these findings provided con-
vincing evidence that fasudil exerts neuroprotective effects 
through attenuating glial cells-mediated neuroinflammation.

Fasudil, a widely used compound for many preclini-
cal studies, may offer a novel therapeutic option for TON 

due to its potential neuroprotective and anti-inflammatory 
properties [4]. Yamamoto et al. revealed that fasudil had 
a concentration-dependent neuroprotective effect against 
ROCK activation in retina after ONC by inhibiting RGC 
apoptosis [67]. Moreover, fasudil could ameliorates dam-
age of the optic nerve through Rho/ROCK signaling path-
way, suggesting that fasudil is efficacious for the treatment 
of ONC injury [7, 35, 36]. Our results displayed that the 
fasudil treated group had significantly more viable RGCs 
after ONC as compared to the untreated group, suggesting 
that fasudil could resist the apoptosis of RGCs after ONC.

The effector caspases become activated through cleavage 
by initiator caspases, and lead to RGCs apoptosis after ONC 
[5, 25]. Fasudil suppressed inflammation-induced caspase 
activation that ultimately inhibited apoptosis [77]. Increas-
ing evidence suggested that the activations of caspase-3 and 
caspase-9 pathways were up-regulated after RGCs injury [5, 

Fig. 3  Fasudil exerted its 
rewarding effect through 
inhibition of ONC-induced 
glial cells activation. a Retinal 
sections were stained with the 
GFAP (green), Iba1 (red) and 
DAPI (blue), and viewed on 
a confocal microscope. Scale 
bar = 100 μm. The stained cells 
were dropped onto slides and 
imaged by confocal microscopy. 
Densitometric analysis was 
used to quantify the number 
of macroglia (b) and macro-
glia (c). Values are expressed 
as mean ± s.e.m. *p < 0.05; 
Data were means ± SEM of 
multiple experiments (n = 8; 
#p < 0.001 vs. the control 
group; **p < 0.001 vs. the ONC 
group). GFAP glial fibrillary 
acidic protein, Iba1 ionized 
calcium binding adapter mol-
ecule 1, ONC optic nerve crush. 
(Color figure online)
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78–81], while the inhibition of cleaved caspase of 3 and 9 
significantly enhances RGCs survival rate [5, 82, 83]. Fur-
thermore, fasudil was able to inhibit caspase-3 activation and 
protect optic nerve [7]. Our findings are in line with prior 
studies that fasudil treatment significantly inhibited RGCs 
apoptosis related proteins expression after ONC.

Retinal glial cells were verified as the critical cells in the 
neuroinflammatory processes of TON, which were cause 
optic nerve inflammation and contributed to RGCs apoptosis 
when they were activated [53, 84, 85]. Therefore, inhibiting 
the activation of retinal glial cells that further reduce optic 
nerve inflammation may provide a suitable and effective 

Fig. 4  Fasudil played an anti-
inflammatory role in ONC, 
as reflected by transcriptional 
inhibition of proinflammatory 
cytokines. The mRNA levels 
of proinflammatory cytokines 
genes were assayed via qPCR 
(mean ± SEM, n = 6). a IL-6, b 
IL-1β, c COX-2, and d TNF-α 
(#p < 0.001 vs. the control 
group; **p < 0.001 vs. the ONC 
group). IL-6, interleukin 6; 
IL-1β, interleukin 1β; COX-
2, cyclooxygenase-2; TNF-α, 
tumor necrosis factor-α; ONC, 
optic nerve crush

Fig. 5  Fasudil induce activa-
tion of ERK1/2 and AKT 
pathways after ONC. a Western 
blot analysis assessed the 
phosphorylated and total levels 
of ERK1/2 and AKT. β-actin 
served as an internal loading 
control. Densitometric analysis 
of bands was performed, and 
relative p-ERK1/2 (b) or p-AKT 
(c) level was calculated as 
phosphorylated proteins level 
divided by the corresponding 
values of total proteins level, 
respectively (mean ± SEM, 
n = 10). (**p < 0.001 vs. the 
ONC group). ONC optic nerve 
crush, ERK1/2 extracellular 
regulated protein kinases ½, 
AKT protein kinase B, p phos-
phorylated, t total
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treatment for ONC. Activated retinal glial cells may upreg-
ulate the expression of GFAP and iba-1 and promotes the 
release of proinflammatory cytokines, thus resulting in neu-
roinflammation. Prior research have documented that fasudil 
can inhibit the conversion of retinal glial cells from M2 to 
M1 [51, 52, 86, 87]). In the hippocampus of the cigarette 
smoke-exposed mice model, chronic fasudil administration 
suppressed the overproduction of cytokines (IL-1β, IL-6 and 
TNF-α) and lessened the inflammatory impairments [88]. 
Our study detected that fasudil significantly inhibited the 
activation of retinal glial cells, which were manifested by 
decreased the expression of GFAP and iba-1. Moreover, 
fasudil inhibited the mRNA expression of proinflammatory 
factors after ONC. Thus, we speculate that the anti-apoptosis 
mechanism of fasudil might be associated with the inhibition 
of glial cell-mediated neuroinflammation.

Recently, ERK1/2 and AKT pathways have been dem-
onstrated to protect against cell apoptosis, and some agents 
exert neuroprotective effects by activating ERK1/2 signal-
ing pathways in the retina [89, 90]. Moreover, overexpres-
sion of MEK1 mutants resulted in a conspicuous increase in 
p-ERK1/2 levels further attenuated neuroinflammation and 
improve RGCs survival after optic nerve injury [91]. The 
activation of AKT and ERK1/2 can lead to phosphorylation 
of pro-apoptotic BAD (thus inactivation) and activation of 
anti-apoptotic Bcl-2 protein, which may work together to 
improve RGCs survival [44, 92]. Notably, fasudil attenu-
ate neuroinflammation and prevent the nerve from damage 
via ERK1/2 and AKT pathways. All the results above were 
consistent with our founding.

In summary, we reveal that the number of RGCs were 
significantly decreased, retinal glial cells were activated, 
which was accompanied by slight elevation (no statistical 
significance) in the phosphorylation of AKT and ERK1/2 
in the retina after ONC. However, fasudil treatment signifi-
cantly attenuated glial cell-mediated neuroinflammation and 
further enhanced RGCs survival by a concomitant increase 
in p-ERK1/2 expression along with p-AKT expression in 
the rats ONC model. Hence, these findings may promote 
the useful application of fasudil in the treatment of TON.
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