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Abstract
The Phytophthora genus is composed, mainly, of plant pathogens. This genus belongs to the Oomycete class, also known as 
“pseudo-fungi”, within the Chromista Kingdom. Phytophthora spp. is highlighted due to the significant plant diseases that 
they cause, which represents some of the most economically and cultural losses, such as European chestnut ink disease, which 
is caused by P. cinnamomi. Currently, there have been four genome assemblies placed at the National Center for Biotechnol-
ogy Information (NCBI), although the progress to understand and elucidate the pathogenic process of P. cinnamomi by its 
genome is progressing slowly. In this review paper, we aim to report and discuss the recent findings related to P. cinnamomi 
and its genomic information. Our research is based on paper databases that reported probable functions to P. cinnamomi 
proteins using sequence alignments, bioinformatics, and biotechnology approaches. Some of these proteins studied have 
functions that are proposed to be involved in the asexual sporulation and zoosporogenesis leading to the host colonization 
and consequently associated with pathogenicity. Some remarkable genes and proteins discussed here are related to oospore 
development, inhibition of sporangium formation and cleavage, inhibition of flagellar assembly, blockage of cyst germination 
and hyphal extension, and biofilm proteins. Lastly, we report some biotechnological approaches using biological control, 
studies with genome sequencing of P. cinnamomi resistant plants, and gene silencing through RNA interference (iRNA).
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Introduction

The species of the Phytophthora genus, which belong to the 
Oomycetes class, are a fungus-like group of organisms that 
are mainly plant pathogens and are widely spread around the 
world (Fig. 1). Among the hosts, forest species are the most 
affected [1, 2]. Indeed, this genus is highlighted due to the 
significant diseases that they are responsible for, which rep-
resents some of the most economically and cultural losses, 

such as potato late blight caused by P. infestans, the black 
shank of tobacco by P. nicotianae, stem rot of soybean by 
P. sojae and, the ink disease of chestnut caused by P. cin-
namomi [3–5].

The first known species of P. cinnamomi was described 
by Rands in 1922, the Phytophthora cinnamomi var. cinnam-
omi (Rands) [6]. Nevertheless, the other two varieties were 
described in 1993 and 2002. Kröber and Marwitz isolated 
and described P. cinnamomi var. parvispora in 1993 from 
the nursery plants Beaucarnea genus. The main differences 
between P. cinnamomi var. cinnamomi and P. cinnamomi 
var. parvispora are the smaller-sized chlamydospores and 
sporangia and the highest growth temperature of P. cinnam-
omi var. parvispora [7, 8]. However, in the recent years, a 
taxonomic re-evaluation has been proposed, stating that P. 
cinnamomi var. cinnamomi and P. cinnamomi var. parvis-
pora are separated species (reviewed in SCANU et al. 2014). 
The study conducted by Scanu and collaborators used multi-
gene phylogeny based on DNA sequences from internal tran-
scribed spacer (ITS) and β-tubulin (nuclear gene regions) 
and, cox1 and cox2 (mitochondrial gene regions) combined 
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with the study of morphological and physiological proper-
ties revealed that Phytophthora parvispora is a unique taxon 
[9]. A similar situation occurs with the P. cinnamomi var. 
robiniae (Ho), which was first isolated by Ho from Robinia 
pseudoacacia in China and differs from the others due to its 
absence of chlamydospores [10]. Nuclear and mitochondrial 
analysis conducted by Martin et al. support a new taxonomic 
classification, whereas Phytophthora robiniae would be a 
distinct species and, although the authors mentioned that a 
multilocus analysis of a larger number of isolated was in pro-
gress in 2014, to clarify this classification, up to date, there 
were no updates from these authors [11]. Notwithstanding 
that the three varieties are harmful to the ecosystems, P. cin-
namomi var. cinnamomi is most studied and also the focus 
of our review.

Castanea sativa (Mill) or the European chestnut tree is 
very important for economic interests in Portugal, due to its 
fruits and wood exploitation. This tree is one of the leading 
orchards in Portugal, mainly in the mountainous regions of 
Trás-os-Montes. However, the infection by P. cinnamomi 
has been causing low productivity and economic losses for 
several years [12]. Moreover, this oomycete is also a con-
cern in Brazil, since some regions have been reporting dam-
ages in some important crops, such as avocado trees (Persea 
americana Miller), plane trees (Platanus acerifolia), chive 
(Allium fistulosum L.) and lettuce (Lactuca sativa L.), with 
no efficient pathogen control methods [2, 13, 14].

Infection by P. cinnamomi results in wet rotting of 
the roots and collar of seedlings and trees in nurseries, 

plantations, and forests, which leads to the death of the 
plants [12]. The symptoms of the disease include reduced 
size and chlorotic leaves, thinning of the crown, and necrosis 
in the collar of the tree. Nevertheless, the roots are the part 
of the plant most infected and affected, producing a black 
exudate visible in the circumjacent soil. The necrosis in the 
main roots extends to the lateral roots and to the stem for 
some centimeters, which will lead to the death of the plant 
[12, 15, 16].

Despite the importance of pathogen control for P. cin-
namomi due to its impact on economy and biodiversity, the 
existing approaches are limited, expensive and, mainly tar-
geted to make the plant more tolerant of the infection [17]. 
The most successful option for controlling and eliminating 
P. cinnamomi is the treatment of plants with phosphite, but 
it demands repeated applications since its effectiveness 
declines over time [17, 18]. Nevertheless, data on long-term 
treatment with phosphite and its impact on the ecosystem are 
scarce, but it is known that in diseased habitats, phosphite 
treatment significantly reduced the loss of shrub cover, bare 
ground and sedge cover, but, it does not causes adverse/
negative impacts on species assemblages and structure [19, 
20]. Other options for pathogen control are the use of the 
fungicide fosetyl-aluminum [21], the treatment with cop-
per salts to improve host resistance [22] and, the extract of 
Phlomis purpurea [23]. Furthermore, according to Dunstan 
et al., the most effective control is host removal, followed 
by fumigation and fungicide application in the soil [18]. 
However, the emergence of advanced techniques for plant 

Fig. 1   Representation of geographical distribution of Phytophthora cinnamomi worldwide. From: European and Mediterranean Plant Protection 
Organization (EPPO) (2020) EPPO Global Database (available online). https​://gd.eppo.int/. Access date: July 14th, 2020

https://gd.eppo.int/
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breeding and pathogen control using molecular biology and 
biotechnology are promising tools for reducing the damage 
caused by P. cinnamomi [5].

In line with this, this review aims to discuss the mech-
anism of infection of P. cinnamomi var. cinnamomi with 
the latest advances concerning genomic information of this 
pathogen and the use of its genome to better understand its 
action and new promising findings.

Phytophthora cinnamomi strategies for plant 
infection

At the time of writing, the main questions concerning plant 
infection by P. cinnamomi are whether this pathogen can 
avoid triggering the host defence, or if it is able to suppress 
or overcome the host defence, or both of these actions. It 
is known that other species from the Phytophthora genus, 
such as P. infestans, P. sojae, and P. capsici have a restricted 
host range [24–26]. However, P. cinnamomi has an exten-
sive host range and in different climate conditions, thus, 
another important question is which molecular factors may 
be responsible for this adaptation.

Phytophthora cinnamomi is a soil-borne plant pathogen 
that belongs to the Oomycetes class, which is a group of 

fungus-like microorganisms within the Kingdom Chromista 
[27]. This pathogen can grow in a saprophytic way, in dead 
organic matter, or in a parasitic way, in susceptible hosts, 
such as the European chestnut tree [28]. P. cinnamomi has 
sexual and asexual phases in its lifecycle (Fig. 2) and both of 
them are implicated in the process of host infection [16, 29].

Currently, there are four genome assemblies deposited at 
the National Center for Biotechnology Information (NCBI) 
for P. cinnamomi var. cinnamomi. These four genome assem-
blies (https​://www.ncbi.nlm.nih.gov/genom​e/brows​e#!/
eukar​yotes​/6958/) were obtained through Whole Genome 
Sequencing (WGS), using Next-Generation Sequencing 
(NGS) [30, 31]. The samples were from three different 
locations in Australia and one location in New Zealand, 
see Table 1 for more detailed information. The Australia 
ecosystems have been significant affected by P. cinnamomi 
virulence since this pathogen decimated the Jarrah forest 
in Western Australia and more than 40% of the plant spe-
cies present in this region are susceptible to P. cinnamomi 
infection [32, 33]. However, this genomic information is 
not complete due to the lack of gene annotation for these 
genome assemblies.

Nevertheless, the use of bioinformatics tools for local 
alignments, such as BLAST (Basic Local Alignment Search 

Fig. 2   Brief representation of 
the life cycle of Phytophthora 
cinnamomi. The infection of 
the host plant by P. cinnamomi 
begins through the connection 
of zoospores with the region 
of elongation of the plant 
roots. Then zoospores enter the 
encystment phase with the for-
mation of biofilm from secreted 
proteins. Between 20–30 
minutes after the zoospore 
encysting, the cysts germinate 
and give rise to hyphae. These 
hyphae are responsible for the 
production of enzymes that 
will degrade the cell wall of 
plants, such as those belong-
ing to the Cell Wall-Degrading 
Enzymes (CWDEs) family. The 
intracellular and intercellular 
growth of hyphae in the root 
cortex towards the cortical and 
vascular tissues causes water 
stress and necrosis. Adapted 
from Hardham [33]

https://www.ncbi.nlm.nih.gov/genome/browse#!/eukaryotes/6958/
https://www.ncbi.nlm.nih.gov/genome/browse#!/eukaryotes/6958/


9182	 Molecular Biology Reports (2020) 47:9179–9188

1 3

Tools) (https​://blast​.ncbi.nlm.nih.gov/Blast​.cgi), have made 
it possible to propose a function for presumably some pro-
teins of the P. cinnamomi genome, through the alignment 
with homolog sequences. All the following mentioned genes 
are summarized in Table 2.

During the asexual phase of the P. cinnamomi lifecycle 
sporulation and zoosporogenesis occurs, and this phase is 
triggered by the reduction in the availability of nutrients 
[33]. The asexual spores are motile and capable of for-
warding movements and the resultant motile zoospores are 

thought to initiate the infectious process, as seen in many 
species of Phytophthora [3, 27]. Indeed, some proteins are 
proposed to be involved in asexual sporulation and zoospor-
ogenesis and are also associated with the pathogenicity of P. 
cinnamomi. Gao et al. [34] reported that the silencing of the 
stress-associated mitogen-activated protein kinase (MAPK) 
gene in P. sojae, (PsMPK7), inhibited the oospore develop-
ment and reduced the virulence of this pathogen; P. cinnam-
omi shares the same gene with P. sojae, probably with a con-
served function. Similarly, Li et al. [35] showed that MAPK 

Table 1    Assemblies of different strains of Phytophthora cinnamomi var. cinnamomi placed at the National Center for Biotechnology Informa-
tion (NCBI)

Organism Strain Substrate/
Host

Location Year of 
isolation

Biosample 
(NCBI)

Bioproject 
(NCBI)

Size (Mb) %GC References

P. cinnamomi 
var. cin-
namomi

MP94-48 Eucalyptus 
marginata

Western 
Australia

1994 SAMN03921829 PRJNA290836 53.69 54.00 Studholme 
et al. [31]

P. cinnamomi 
var. cin-
namomi

NZFS 3750 Pinus 
radiata

Nelson, New 
Zealand

2013 SAMN03921830 PRJNA290837 53.97 54.00 Studholme 
et al. [31]

P. cinnamomi 
var. cin-
namomi

WA94.26 Eucalyptus 
marginata

Brisbane 
Ranges, 
Australia

1994 SAMN07736482 PRJNA413098 68.06 53.20 Longmuir 
et al. [30]

P. cinnamomi 
var. cin-
namomi

DU054 Xanthor-
rhoea 
australis

Southwestern 
Western 
Australia

2003 SAMN07736481 PRJNA413098 62.80 52.80 Longmuir 
et al. [30]

Table 2   Genes of Phytophthora cinnamomi with probable involvement in the plant host infection, based on homology search. Adapted from 
Hardham et al. [16]

P. cinnamomi gene 
accession (Fun-
giDB)

Homologues and gene 
accession (FungiDB)

Probable protein function References

PHYCI_112968 P. sojae (PsMPK7)
PHYSO_355777

Stress-associated mitogen-activated protein kinase (MAPK).
Silencing: inhibited the oospore development and reduced the virulence.

Gao et al. [34]

PHYCI_90010 P. sojae (PsMPK1)
ACJ09359

MAPK.
Silencing: inhibited sporangium formation and reduced virulence

Li et al. [35]

PHYCI_91218 P. infestans (PiGK4)
PITG_05519

G-protein-coupled receptor with a C-terminal PIP kinase domain 
(PiGK4).

Silencing: inhibited the sporangial cleavage.

Hua et al. [37]

PHYCI_551329 P. parasitica (PcDLC1)
ADI77080.1

Flagellar protein dynein light chain 1 (PcDLC1).
Silencing: inhibited the flagellar assembly.

Narayan et al. [39]

PHYCI_232701 P. sojae (PsHint1)
PHYSO_494520

Histidine triad domain-containing protein (PsHint1)
Silencing: inhibited cyst germination and hyphal extension.

Zhang et al. [44]

PHYCI_327508
PHYCI_253325
PHYCI_253304

P. parasitica (PPMUCL1)
PPTG_17796

Mucin-like proteins. Larousse et al. [45]

PHYCI_93258
PHYCI_93260
PHYCI_93259
PHYCI_92597
PHYCI_323321
PHYCI_85664
PHYCI_85660
PHYCI_97296

P. cactorum (Scr96)
ALC04448

Small cysteine-rich (SCR) effector proteins.
Silencing: reduced virulence and turned more sensitive to oxidative 

stress.

Chen et al. [54]

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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is up-regulated in sporulating hyphae and early infection in 
P. sojae (PsMPK1) and that gene silencing revealed inhibi-
tion of sporangium formation and also reduced virulence. 
The sporangial cleavage is an important step in the process 
of infection and occurs to create uninucleate zoospores from 
multinucleate sporangia [36]. Hua et al. [37] reported that 
silencing of G-protein-coupled receptor 4 with a C-terminal 
PIP kinase domain in P. infestans (PiGK4), a homologue 
gene in P. cinnamomi, inhibits the sporangial cleavage and, 
consequently, the infection.

The zoospores formed by sporangial cleavage are the key 
to the infection through their active movement due to the 
presence of an anterior flagellum and a posterior flagellum 
[28]. These flagella have the substructure of a eukaryotic 
flagellum (9 + 2 microtubular) and the flagellar proteins are 
encoded for by two genes: dynein light chain 1 (PcDL1) and 
radial spoke protein 6 (PcRSP6) [38, 39]. Narayan et al. [39] 
showed that silencing the homologue PcDLC1 gene in P. 
parasitica resulted in the inhibition of the flagellar assembly, 
therefore avoiding the infection of the potential host.

To achieve a successful host infection, P. cinnamomi 
zoospores move towards the elongation zone of plant roots 
and form a cluster on the plant root surface. Once there, the 
encysting zoospores secrete adhesins to attach to the root 
surface and also secrete three glycoproteins to form a muci-
lage-like biofilm that covers the cyst surface [33, 40]. The 
next step in the host infection process is cyst germination, 
after the zoospore encystment, and penetration and colo-
nization of the plant host. The initial penetration possibly 
depends on the action of degradative enzymes responsible 
for degrading the components of the plant cell wall. The Cell 
Wall-Degrading Enzymes (CWDEs) families are known to 
be present in the genomes of Phytophthora spp [16, 41]. 
After penetration of the plant root surface, the hyphae of P. 
cinnamomi grow and followed by the invasion of the root 
cortex and blockage of xylem, resulting in water stress. P. 
cinnamomi may continue in a biotrophic phase and, conse-
quently, the absence of disease symptoms, or it may turn to 
the necrotrophic phase; this transition is mainly influenced 
by the plant species and environmental conditions [42, 43].

In a study of the protein function in homologue genes, 
Zhang et al. [44] reported that the silencing of the PsHint1 
gene from P. sojae, which encodes the histidine triad 
domain-containing protein, results in inhibition of cyst ger-
mination and hyphal extension. Larousse et al. [45] showed 
that the PPMUCL1 gene from P. parasitica encodes for 
mucin-like proteins, this gene is a homologue in the P. cin-
namomi genome and these proteins are high-molecular-
weight glycoproteins found in biofilms from cysts, and 
probably protect the germinated cyst against desiccation. 
Using techniques of gene silencing for the three genes 
found in P. cinnamomi genome may reduce its virulence 
and pathogenicity.

Effectors and elicitors for P. cinnamomi interaction 
with the host

Despite the importance of all the molecular factors men-
tioned above, the Phytophthora genus has in its genome 
three distinct biomolecules that are highlighted due to their 
mechanism of action and importance for host infection. 
Here we emphasize the CWDEs families, and the molecules 
involved in plant-pathogen interactions: effectors and elici-
tors. The colonization of the plant host by P. cinnamomi 
depends on the action of CWDEs for initial penetration. 
These enzymes are responsible for the degradation of com-
ponents of the plant cell wall, such as cellulose, hemicellu-
lose, and pectin [16]. Within the CWDEs, some multigene 
families contain one or more carbohydrate-active enzyme 
(CAZyme) modules, and these modules are divided in gly-
coside hydrolase (GH) module, auxiliary activity (AA) 
module, carbohydrate esterase (CE) module, polysaccharide 
lyase (PL) model and non-catalytic carbohydrate-binding 
module (CBM) [16, 41, 46–48].

An effector molecule facilitates the establishment of the 
infection and, consequently, the establishment of the disease. 
An elicitor molecule, or avirulence factor, is an effector rec-
ognized by the plant and elicits a defence response from the 
host. Effectors are mainly proteins, such as CWDEs, how-
ever, elicitors exist in a great diversity of molecules, such 
as proteins, lipids, carbohydrates, and may be a molecule 
resulting from the digestion of the host cell wall, referred 
to as pathogen-associated molecular patterns (PAMPs) 
or microbe-associated molecular patterns (MAMPs) [16, 
49–52].

Phytophthora cinnamomi effectors are classified as either 
attack strategies or defence strategies. Among the main iden-
tified effector proteins for attack strategies in the genome of 
P. cinnamomi are elicitins, a family of low molecular weight 
proteins that trigger the defence mechanisms of some plant 
hosts [16]. Although their biological role in the infectious 
process remains not fully clarified, it is known that they act 
as carriers of sterols. Cinnamomins are the most studied 
elicitin from P. cinnamomi, and the silencing of both the 
α- and β-cinnamomin gene reduces the pathogen’s ability to 
penetrate and colonize the roots of C. sativa [16, 53].

Small cysteine-rich (SCR) effector proteins are also pro-
duced by P. cinnamomi, although their function has not been 
elucidated, although the silencing of the encoding SCR 
gene (Scr96) in P. cactorum reduced pathogen virulence 
and made it more sensitive to oxidative stress [54]. GP42 
transglutaminase is present in the P. cinnamomi genome and 
was identified by Martins et al. [55], its main function is to 
catalyze the acyl transfer reaction that increases the peptide 
bonds resistance against proteolytic degradation.

The group of effectors named CRN crinklers is present 
in most of the identified species of the Phytophthora genus. 



9184	 Molecular Biology Reports (2020) 47:9179–9188

1 3

They are responsible for crinkling the leaves and result in 
host cells becoming necrotic and suppresses the plant’s 
defence [56, 57], but more studies are needed to clarify the 
functions of CRN proteins, because they may be the key to 
understanding the ability of P. cinnamomi to infect a wide 
range of host plant species [16]. Another group of effectors 
that may be involved in plant cell necrosis, is the Nep1-like 
proteins (NLPs), which may contribute to pathogen viru-
lence by inducing a plant defence response and/or by acting 
as toxins [58, 59].

The best-studied and clarified effectors proteins within 
the Phytophthora genus is the RxLR effector family. These 
molecules are characterized by a signal peptide followed by 
an N-terminal conserved Arginine – any amino-acid residue 
– Leucine – Arginine (RxLR) motif [60]. The most common 
mechanism of action of RxLR effectors is the modulation of 
host defense by suppression of host immunity through dis-
tinct ways [61]. One example of RxLR effector is Avr3a of P. 
infestans, that confers avirulence to strains of this pathogen, 
once this protein binds and stabilizes the CMPG1 (E3 ubiq-
uitin ligase protein CMG1) to suppress BAK1/SERK3-reg-
ulated immunity during the biotrophic phase of P. infestans 
infection [62, 63]. Recently, the effector Avr3a gene was 
identified and characterized in silico in genomic sequences 
of P. cinnamomi deposited at NCBI by Branco and Choupina 
[64]. Similarly, Dai et al. identified an RxLR effector, avir-
ulence homolog protein 87 (Avh87), in the genome of P. 
cinnamomi using bioinformatics tools. In this study, they 
also characterized the suppressing activity of pro-apoptotic 
protein BAX and elicitin protein INF1-mediated cell death 
using Nicotiana benthamiana as a model [65].

The main effectors involved in pathogen defence strate-
gies are molecules that present a diversity of mechanisms, 
such as suppression, deactivation, and tolerance related to 
the plant defence. One of the pathogen defences is protec-
tion against reactive oxygen species (ROS) that may occur 
as part of the plant defence response. In line with this, the 
P. cinnamomi genome contains three superoxide dismutases 
(SODs) and three catalase genes, and also contains genes for 
the signal transduction pathways [34, 66–68].

Another important effector for defence against pathogens 
are inhibitors of plant endoglucanases (GIPs), which are 
enzymes released by the plant that degrade β-1,3-glucans, 
key components of Phytophthora spp cell wall [1]. A cru-
cial P. cinnamomi defence is protease inhibitors since plant 
proteases are important in plant immunity because they 
are involved in pathogen detection, activation of defence 
responses, and degradation of pathogen proteins. P. cin-
namomi, like other species of the Phytophthora genus, pro-
duces three families of proteases inhibitor: glucanase inhibi-
tor proteins (GIPs), Kazal-like protease inhibitors (EPI1-4), 
and cystatin-like protease inhibitors (EPIC1-4) [1, 69, 70]. 
For a better understanding of the effectors addressed in 

this review, we recommend the reading of Hardham and 
Blackman.

How biotechnology can be useful 
to understand P. cinnamomi and find 
a solution to environmental problems

The technological advances of the last years promoted the 
use of new molecular biology and biotechnology tech-
niques to elucidate the molecular factors involved in the 
pathogenicity of P. cinnamomi. Meyer et al. used the dual 
RNA-sequencing, a technique that allows the simultaneous 
detection of pathogen and host transcripts during infection, 
to better understand the interaction between P. cinnamomi 
and Eucalyptus nitens factors in the infectious process. The 
main results revealed that the E. nitens PR-9 gene may be a 
common target for the CRN effector of the pathogen since 
a high expression of crinkler effector of P. cinnamomi and 
a down-regulation of a PR-9 gene in E. nitens were found 
[71]. In another study, the contribution of the β-cinnamomin 
in the P. cinnamomi virulence was established by using 
immunodepletion tests with Lupinus angustifolius. Moreo-
ver, the same study revealed that β-cinnamomin is secreted 
at different life stages of P. cinnamomi, through the use of a 
β-cinnamomin immune-labeling [72]. Furthermore, recent 
studies using bioinformatics approaches, heterologous pro-
tein expression system and molecular biology techniques 
have characterized necrosis-inducing Phytophthora protein 
1 (NPP1) elicitin and an endo-1,3-β-d-glucosidase of P. cin-
namomi [73, 74].

Identification and diagnostic

P. cinnamomi is a soil-borne pathogen that can produce 
oospores in host roots and soil, which makes this oomy-
cete a persistent and difficult pathogen to manage [28]. The 
current control measures are soil sanitation and crop rota-
tion, however, P. cinnamomi also is resistant to the most 
used fungicides and oomyceticides [28, 42]. In line with 
this, early detection is the most important step in the man-
agement of P. cinnamomi diseases, and approaches that 
use DNA identification are the most reliable [16]. Several 
variations of polymerase chain reaction (PCR) are available 
for P. cinnamomi identification, the most recent proposed 
is a loop-mediated isothermal amplification (LAMP) of 
DNA using specific primers designed for a new target gene 
(Pcinn100006) developed by Dai et al. [75]. The novel assay 
presented higher accuracy and a shorter period, which can 
be considered a promising diagnostic tool when compared 
to the conventional PCR-based and culture-dependent assay.
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Biological control

The utilization of techniques in biological-control has grown 
in recent years in numerous biotechnology applications. The 
use of other organisms to control the presence and the infec-
tion by P. cinnamomi has been tested and the results are 
promising, although more studies are needed. Bosso et al. 
showed that Byssochlamys nivea and Scopulariopsis brump-
tii in laboratory studies were able to inhibit the growth of 
P. cinnamomi and P. cambivora and reduce the mortality 
of chestnut plants [76]. Supporting the use of biological-
control for P. cinnamomi, Méndez-Bravo et al. reported that 
two rhizobacteria, closely related to Bacillus acidiceler, 
were able to inhibit P. cinnamomi growth in vitro by 76%, 
suggesting that these bacteria could be used for biological 
control of oomycetes [77]. Lastly, Trzewik et al. reported a 
practical possibility of biological protection against P. cin-
namomi or Piriformospora indica, an endomycorrhizal-like 
fungus, in two cultivars of rhododendron plants (‘Nova Zem-
bla’ and ‘Alfred’) [78].

Resistant plants

It is known that a wide range of plants have resistance to 
P. cinnamomi infection, among them are Castanea crenata 
and Castanea dentata (see Appendix 1 [79]). In Portugal, a 
chestnut breeding program was initiated in 2006 to introduce 
the resistant genes from C. crenata into C. sativa through 
crossing both species [80]. However, the identification of 
the genes involved in the resistance of C. crenata are still 
not fully clarified. Regardless, studies have reported that 
C. crenata and C. sativa have the same gene expression of 
eight genes studied, but C. sativa has a lower and delayed 
expression of these genes when infected by P. cinnamomi 
when compared to C. crenata, which may be related to the 
sensitivity of this species to this pathogen [81]. In this con-
text, the findings reported could be useful for the develop-
ment of new strategies to control the diseases caused by P. 
cinnamomi, as an early selection of resistant genotypes, or 
even engineering C. sativa to obtain better gene promoters.

Gene silencing

Ultimately, the use of molecular biology techniques of gene 
silencing could be a useful tool to reduce the virulence 
of P. cinnamomi and thus decrease the effects of the dis-
ease. One of the most promising tools for gene silencing 
is RNA-mediated gene silencing through RNA interference 
(RNAi). In RNAi, the gene silencing occurs by the inhibi-
tion of RNAm translate [82]. Chahed proposed gene silenc-
ing using RNAi of a glucanase inhibitor protein (gip gene) 
from P. cinnamomi, which probably made the pathogen 
more susceptible to the plant host defence. The results were 

promising since the chestnuts infected by the transformed P. 
cinnamomi had a smaller percentage of wilting leaves and 
root necrosis [83]. Pereira also proposed a transformed P. 
cinnamomi to decrease the virulence and pathogenicity of 
the oomycete. In this study, the genetic construction for gene 
silencing using RNAi was developed for the Avr3a effector 
from P. cinnamomi [84].

Conclusions

Further research of P. cinnamomi will necessitate the uti-
lization of the new techniques of molecular biology, bio-
informatics, and biotechnology. The identification of key 
genes related to the pathogenicity, the action of the proteins 
encoded by these genes, and the complete mechanism of 
infection by P. cinnamomi is necessary for further advances. 
The development of techniques for regarding genome 
sequencing, exome sequencing, and gene silencing are 
essential tools to understand P. cinnamomi and also to under-
stand the mechanisms of resistance of the resistant plants.
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