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Abstract
Osteoarthritis (OA) involves gradual destruction of articular cartilagemanifested by pain, stiffness of joints, and impaired 
movement especially in knees and hips. Non-vascularity of this tissue hinders its self-regenerative capacity and thus, the 
application of reparative or restorative modalities becomes imperative in OA treatment. In recent years, stem cell-based 
therapies have been explored as potential modalities for addressing OA complications. While mesenchymal stem cells (MSCs) 
hold immense promise, the recapitulation of native articular cartilage usingMSCs remains elusive. In this review, we have 
highlighted the chondrogenic potential of MSCs, factors guiding in vitro chondrogenic differentiation, biomaterials available 
for cartilage repair, their current market status, and the outcomes of major clinical trials. Our search on ClinicalTrials.gov 
using terms “stem cell” and “osteoarthritis” yielded 83 results. An analysis of the 29 trials that have been completed revealed 
differences in source of MSCs (bone marrow, adipose tissue, umbilical cord etc.), cell type (autologous or allogenic), and 
dose administered. Moreover, only 02 out of 29 studies have reported the use of matrix for cartilage repair. From future 
perspective, aconsensus on choice of cells, differentiation inducers, biomaterials, and clinical settings might pave a way for 
concocting robust strategies to improve the clinical applicability of biomimetic neocartilage constructs.
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Introduction

Osteoarthritis is a chronic, musculoskeletal degenerative 
disease which is mainly characterized by progressive degen-
eration of articular cartilage, bone sclerosis, formation of 

osteophyte and synoviopathy [1]. OA mainly affects elder 
people and it is the main cause of their physical disability. 
According to WHO, in population above 60 years of age, its 
prevalence is found to be higher in women (18%) than men 
(9.6%). The factors such as socioeconomic status, meno-
pause, greater BMI, sedentary lifestyle, use of oral contra-
ceptives and postmenopausal hormone-replacement therapy 
are positively associated with this [2]. Further, increase in 
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average life span along with obesity has been associated with 
increasing cases of OA. According to the United Nations 
estimates, by 2050 world’s 20% population will be consti-
tuted by people above 60 years of age. This means through-
out the world 130 million people will be affected by OA, by 
2050 and out of these 40 million will be severely disabled 
by the disease [3]. Furthermore, in India, 15 million adults 
annually get affected by OA with a prevalence of 22–39% [4, 
5]. Approximately 45% women with age of 65 years or more 
have been reported to show symptoms of OA which include 
pain, swelling, stiffness of joints, and impaired movement [4, 
6]. Moreover, it has been found that approximately 80% of 
patients suffering from knee pain are affected with OA, out 
of which nearly 20% patients showed incapability in daily 
activities and around 11% need special care. Also, in 1990, 
it was estimated to be the 10th leading cause of nonfatal 
burden affecting socioeconomic health of the country [7].

Articular cartilage is a viscoelastic connective tissue 
which covers the ends of bone in the synovial joints and pro-
vides shock absorption and lubrication for easy movement. It 
is 2–4 mm thick and made up of 10% chondrocytes, 10–25% 
extracellular matrix (ECM) and 65–80% water. Chondro-
cytes are very important as they secrete and maintain the 
ECM of cartilage. This ECM is made up of mainly collagen 
type II, proteoglycans and glycosaminoglycans (GAGs) [8]. 
These chondrocytes are sparsely arranged in the tissue, have 
very limited regenerative potential and their degeneration is 
hallmark of OA [9]. Further, its avascular nature, absence of 
nerve supply and lymphatic system leads to extreme slow or 
no healing at all, predisposing us to progressive degeneration 
of articular cartilage [10–12]. The etiological factors which 
affect gradual loss of articular cartilage include normal wear 
and tear, aging, obesity, gender, genetic predisposition, bone 
density, muscle weakness, poor diet, joint laxity, and trau-
matic injury [2]. Besides this, other factorsthat contribute to 
pathology of OA include increase in level of accumulation of 
advanced glycation end products (AGEs), senescence related 
secretory phenotype and oxidative stress [13]. The pathology 
of disease affects all the components of joints including syn-
ovial membrane, subchondral bone and synovium membrane 
covering the joints. One of the main mechanisms in patho-
physiology of OA is activation of chondrocytes by spreading 
of inflammation [14]. In such conditions, chondrocytes are 
not able to maintain a balance between their catabolic and 
anabolic activities which leads to degeneration of cartilage. 
The mechanism of cartilage degeneration iscompletely not 
knownbut it is postulatedthat increase in load on articular 
cartilage may initiate remodeling process which inhibits the 
restoration of normal cartilage. The cytokines that stimu-
late chondrocytes to degrade their matrix and aid apoptosis 
are mainly interleukin-1 (IL-1), interleukin-6 (IL-6), tumor 
necrosis factor-α (TNF-α), prostaglandins, reactive oxygen 
species (ROS) and nitric oxide (NO) [8].

OA can affect almost all joints, but its major targets are 
weight bearing knee and hip joints. These cartilage defects 
lead to pain and swelling in the area, which is accompa-
nied by restriction in movement of joints. Besides physical 
health, it also affects mental health which altogether affects 
the quality of life. Further, OA has been reported to be a risk 
factor for development of heart diseases including myocar-
dial infarction and coronary artery disease (CAD) [15].

At present no drugs are available to treat OA. Conven-
tional treatments which are available focusesmainly on pain 
management and cannot treat or reverse OA. These include 
physiotherapy, exercise, and use of analgesics. Along with 
painkillers, intra-articular injections of corticosteroids and 
hyaluronic acid (HA) are also given, which can alleviate pain 
andhelp in restoring normal lubrication of the joints, respec-
tively. However, none of these methods can lead to structural 
improvement of the damaged tissue. For structural improve-
ment of the damaged tissue surgical techniquesincluding pal-
liative, reparative and restorative are used depending on the 
severity of lesion. These surgical interventions differ on the 
basis of their capacities in healing the extent of defect [16].

Palliative techniques such as debridement and lavage are 
used for the treatment of smaller lesions manifested with 
minimal symptoms whereas reparative techniques for bone 
marrow stimulation like microfracture, subchondral drill-
ing, and abrasion arthroplasty are used for the healing of 
full thickness defects. However, the efficiency of reparative 
procedures is very short termed and found to be effective in 
younger patients ranging 13–45 years in age only [17–20]. 
Besides, the restorative strategies such as osteochondral 
allograft or autograft transplantation (mosaicplasty), autol-
ogous chondrocyte implantation (ACI) and matrix-assisted 
autologous chondrocyte implantation (MACI) are the most 
advanced treatment modalities for long-term reestablishment 
of native articular surface. ACI involves isolation, expan-
sion and transplantation of autologous chondrocytes surgi-
cally [19, 21, 22] whereas MACI involves use of a matrix 
for controlled and uniform delivery of chondrocytes [23]. 
However, the shortcomings of current therapies including 
donor-site morbidity, risk of disease transmission by allo-
genic grafts, high cost, complications related to harvesting of 
chondrocytes and their tendency to de-differentiate in vitro, 
compelled to search for alternative treatment options [24]. 
In last few decades, regenerative medicine has emerged as 
promising therapy which holds potential to heal or replace 
tissues or organs to restore their normal functioning. This 
field utilizes the application of tissue engineering, de novo 
generated cells and various other combinations for treatment 
of various degenerative diseases including cartilage defects. 
A better cognizance of various materials, cells and other fac-
tors involved in cartilage differentiation and remodeling may 
lead to the development of robust strategies to circumvent 
the challenges involved in recapitulating the native cartilage. 
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In same line, this review focuses on potential of stem cell 
and matrix-based strategies in repairing of the defective 
cartilage, along with their outcomes in animal models and 
clinical settings, and further the underlying challenges in 
current therapies.

Stem cells in chondrogenic repair and restoration

Stem cell-based therapies have emerged as a promising tool 
in the field of regenerative medicines owing to their excel-
lent regenerative potential. The three main categories of 
stem cells explored for developing cell-based therapies are 
MSCs, embryonic stem cells (ESCs), and induced-pluripo-
tent stem cells (iPSCs). ESCs and iPSCs are pluripotent in 
nature and can differentiate into all types of cells. Whereas, 
MSCs are multipotent cells and can differentiate only into 
the cells of mesengenic lineage. Stem cells have been exten-
sively explored in the regeneration of articular cartilage as 
the tissue possesses limited intrinsic healing capacity. Chon-
drogenesis from ESCs has been studied for approximately 
two decades. However, ethical concerns, risk of teratoma 
formation and allogenic transplant rejection makes them 
less suitable for clinical applications. Another stem cell type 
which has become popular in last few years is iPSCs. iPSCs 
possess similar properties that of ESCs and are generated by 
cellular reprogramming of somatic cells. It holds enormous 
potential for personalized cell-based repair strategies to treat 
musculoskeletal disorders [25], but the preparation of autol-
ogous iPSCs from each patient is an expensive & time-con-
suming process, and further possesses low reprogramming 
efficiency [26]. Moreover, iPSCs too, possess tumorigenic 
tendency probably due to accumulation of culture-induced 
genomic and epigenomic variations [27]. Contrarily, MSCs 
offer several advantages over other stem cells types for clini-
cal use due to their ease of isolation, propagation, immu-
notolerance, non-tumorigenicity and less ethical concerns. 
Further, high yield of cells and immunomodulatory proper-
ties make them suitable for allogenic transplant.

MSCs have been reported to promote tissue repair by 
replacing the damaged tissue and recruiting endogenous 
cells to the injury site. Further, differentiated MSCs secrete 
collagen II, TIMPs (Tissue Inhibitors of Metalloprotein-
ases) and GAGs which are important part of ECM of car-
tilage. However, paracrine factors released by MSCs have 
been documented to play major role in regeneration, immu-
nomodulation and decreasing inflammation [28]. They 
decrease oxidative stress by regulating expression of vascu-
lar endothelial growth factor (VEGF), transforming growth 
factor-β (TGF-β) and matrix metalloproteinases (MMPs) 
[29]. Moreover, they regulate immune response by secre-
tion of various molecules like interleukins, prostaglandin 
E2, Interferon γ [30].

Since their discovery by Friedenstein et al. in the early 
1970s, MSCs have emerged as one of the key players in 
cell-based therapy [31]. MSCs offer several advantages over 
ex-vivo expanded ACs which are susceptible to removal 
from their natural microenvironment and de-differentiation 
to fibroblast-like phenotype [32]. MSCs also facilitate bet-
ter remodeling and integration with the host surface zone 
[33]. These are fibroblast-like, spindle-shaped and multi-
potent cells. According to the International Society for Cel-
lular Therapy (ISCT), MSCs must possess plastic-adherence 
and tri-lineage differentiation potential. Further, these must 
exhibit the presence of specific cell surface markers namely 
CD105, CD73, CD90 and the absence of hematopoietic 
markers namely CD45, CD34, CD14 or CD11b, CD79α or 
CD19, HLA-DR [34]. Additionally, several other markers 
have also been found on MSCs, which includes CD271, 
SCA-1, and STRO-1 [35–37].

Bone Marrow (BM) is the oldest source of MSCsand 
BMSCs have been found to possess good in vitro chon-
drogenic differentiation potential [31, 38]. MSCs derived 
from other sourcesinclude adipose tissue (ADSCs), syn-
ovium (SMSCs), articular cartilage, skin, muscle, endome-
trium, infrapatellar fat pad (IMSCs), dental pulp (DPSCs), 
subchondralcortico-spongious bone, amniotic fluid, pla-
centa, umbilical cord (UCMSCs) and umbilical cord blood 
(UCBMSCs) [39]. After bone marrow, adipose tissue is the 
next widely used source for MSC isolation. ADSCs possess 
comparable chondrogenic potential to BMSCs [40] and have 
high proliferation potential. Further, as compared to bone 
marrow, isolation procedure of adipose tissue is less invasive 
and large amount of tissue can be collected easily. Initially, 
ADSCs were isolated using enzymatic method as per proto-
col devised by Rodbell et al. [41]. However, in recent years 
ADSCs have been easily isolated using explant method as 
well. This method is cost effective as well as minimizes the 
risk of contamination coming due to use of enzymes [42].

Another source of MSC used for cartilage repair is syno-
vial fluid. Synovium MSCs are isolated from synovium of 
knee and hip region. Enzymatic method is used for isolation 
of MSCs from synovium tissue [39, 43]. A small synovial 
tissue biopsy can give good yield of autologous cells and 
these cells possess higher chondrogenic potential than MSCs 
from other sources. However, at present they have been used 
in pre-clinical settings only [28].

As MSCs from different sources are available, it is impor-
tant to consider source-dependent heterogeneity of MSCs in 
terms of growth characteristics, marker profiling and chon-
drogenic differentiation potential before choosing the right 
candidate. For instance, BMSCs have been reported to show 
better chondrogenic potential than MSCs from other sources 
[44]. Similarly, Koga et al. [45] reported that SMSCs and 
BMSCs have better chondrogenic potential than ADSCs and 
muscle derived MSCs. Further, in a donor matched study, 
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ADSCs were reported to have weaker chondrogenic potential 
than MSCs derived from infrapatellar fat [45]. Depending 
upon the source of MSCs used, the therapy is categorized 
as autologous and allogenic. Most of the autologous settings 
use only BMSCs. However, in every case use of autologous 
MSCs may not be possible because of old age of most OA 
patients, their disease condition and low yield of cells [46]. 
In this light, allogenic MSCs have come up as novel strategy 
conforming to low immunogenicity and its immunomodula-
tory properties. Additionally, allogenic source of MSCs can 
provide large number of homogenous populations which can 
be expanded, characterized and cryopreserved in advance to 
meet the growing need of MSCs in future.

Guiding factors for recapitulating articular 
cartilage

Accumulating evidences suggest that in vitro chondrogen-
esis of MSCs is susceptible to hypertrophic differentiation 
which may result in generation of neocartilage with fibro-
cartilage like properties rather than hyaline cartilage. This 
has emerged as a pressing concern as the regeneration of 
clinically effective engineered cartilage tissue is hindered. 
For instance, implantation of TGF-β3 induced MSC pellet, 
at ectopic sites in SCID mice orchestrated events that led 
to endochondral ossification rather than formation of stable 
cartilage phenotype indicating the premature induction of 
hypertrophic genes during in vitro chondrogenesis [32]. It 
has thus become incumbent to devise strategies to stringently 
mimic the endogenous biochemical, mechanical and physi-
ological milieu for recapitulating the properties of native 
articular cartilage. In this regard, various approaches mim-
icking the biochemical, mechanical, and cellular regulatory 
factors during cartilage development have been extensively 
investigated. Growth factors, hypoxia, mechanical stimula-
tion, 3D environments generated by micromass culture or 
scaffolds and co-culturing have shown to play important 
roles in promoting chondrogenic differentiation (Fig. 1).

Growth factors promoting chondrogenic 
differentiation of MSCs

MSCs are induced to undergo in vitro chondrogenic differ-
entiation by culturing them in presence of growth factors 
that are added to the basal media. It mainly comprises of 
high-glucose DMEM supplemented with sodium pyruvate, 
l-proline, l-ascorbate-2-phosphate, ITS (Insulin, Transfer-
rin, and Selenium) premix and Dexamethasone. Various cul-
ture conditions used in protocols for in vitro chondrogenic 
differentiation have been summarized in Table 1. Apart 
from defined growth factors and conventional differentia-
tion medium, platelet rich plasma (PRP; 10%) and platelet 

lysate (PL; 5%) have also been used for in vitro chondro-
genesis [47, 48].

Other than these, viral-mediated gene transfer has also 
been investigated to differentiate cells into chondrogenic lin-
eage. In 1998, Mason et al. [63] demonstrated the feasibility 
of delivery of human BMP-7 via retroviral vector in rabbit 
periosteal cells for cartilage regeneration both in vitro and 
in vivo. Similarly, adenoviral vectors have also been used for 
mediating sustained delivery of growth factors, like TGF-β1, 
bone morphogenetic protein-2 (BMP-2), BMP-4 and insulin 
like growth factor-1 (IGF-1) in MSCs for elucidating their 
effects on cartilage repair [64–67].

Low oxygen tension or hypoxia

Hypoxia plays a pivotal role in chondrogenic differentia-
tion of MSCs by inducing the expression of target genes of 
hypoxia inducible factor (HIF) including VEGFA, EGLN, 
and PGK1 via HIF complex. Accumulating evidence suggest 
that maintenance of hypoxic condition (2–5% O2) stimulates 
early chondrogenic commitment and promotes stabilization 
of HIF resulting in regeneration of better quality neocarti-
lage by exerting inhibitory effect on hypertrophic differentia-
tion of chondrocytes [68–70].

3D culture (pellet culture and scaffolds)

In chondrogenic differentiation studies, micromass or pel-
let culture or 3D pellet culture system or aggregate culture 
system [58] is very crucial and widely used as the packing 
of high cell density of MSCs. It is believed to mimic mes-
enchymal condensation during developmental chondrogen-
esis. However, these cannot be directly used in most clinical 
therapies because of the limitations in their mass sizes [71].

Fig. 1   Representation of factors guiding the differentiation of Stem 
cells into articular cartilage like structure
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Most recent cartilage engineering approaches have 
focused on the use of combination of cells, scaffolds and 
bioactive factors to regenerate functional cartilage tissue. 
The use of tissue specific ECM composition has been shown 
to direct the differentiation of stem cells down the same line-
age [72]. Many scaffolds made up of synthetic polymers or 
natural biomaterials have been extensively developed and 
used in tissue engineering as cell carriers both in vitro and 
in vivo.

Mechanical factors

The exposure of native articular cartilage to a myriad of 
mechanical stimuli such as dynamic compression, fluid 
shear, and hydrostatic pressure is essential for the mainte-
nance of structural integrity of the tissue. Considering the 
mechanical function of articular cartilage, proper mechani-
cal stimulation during (dynamic compression, fluid shear, 

and hydrostatic pressure) in vitro culture can also play a key 
role in regulating the chondrogenic differentiation of MSCs.

In an exemplary study, Schätti et al. [73] showed that a 
combination of shear and compression forces led to cumu-
lative enhancement of chondrogenesis rather than either 
stimulus alone. For this analysis, they mixed hBMSCs with 
fibrin hydrogel and seeded it on a porous polyurethane (PU) 
scaffold. This scaffold and scaffold/cell construct were sub-
jected to mechanical conditioning and histological analysis 
was done to check their impact on chondrogenesis. Similarly, 
reports have been published using MSCs embedded on dif-
ferent matrix like porous PU matrix [74] and collagen [75].

Co‑culture of MSCs and articular chondrocytes (ACs)

Another strategy that has been explored to rebuild hyaline-
like cartilage involves co-culturing ACs and MSCs. ACs are 
capable of producing stable and non-mineralized cartilage 
tissue, however, they tend to undergo de-differentiation into 

Table 1   Summary of protocols used for in vitro chondrogenic differentiation of MSCs

S. No. Chondrogenic inducers & 
concentrations used

MSCs source No. of cells used for 
induction

Monolayer or 
pellet culture

Duration of induction References

1. TGF-β3 (10 ng/mL) and 
BMP-6 (10 ng/mL)

Adipose tissue 4–5 × 105 Pellet 6 weeks [49]

2. TGF-β3 (10 ng/mL), 
BMP-7 (500 ng/mL) 
and MgCl2 (0.8 or 
5 mM)

Synovium 3 × 105 Pellet 3 weeks [50]

3. TGF-β2 (10 ng/mL) Bone marrow 2 × 105 Pellet 4 weeks [51]
4. IGF-1 (50 ng/ mL), TGF-

β3 (5 ng/mL)
Adipose tissue 9.6 × 104 cells/cm2 Monolayer 3 weeks [52]

5. TGF-β1 (10-ng/mL), and 
doxycycline (1 or 2 mg/
mL)

Bone marrow 2.5 × 105 Pellet 3 weeks [53]

6. TGF-β1 (10 ng/mL), 
GDF-5 (100 ng/mL), 
BMP-2A (100 ng/mL)

Bone marrow 7.5 × 104 Pellet 1 week [54]

7. TGF-β3 (10 ng/mL) Bone marrow 2.5 × 105,
4–5 × 105

Pellet 9 days, 3 weeks & 
6 weeks days

[49, 55]

8. TGF-β3 (10 ng/mL) and 
BMP-6 (500 ng/mL)

Synovium and bone 
marrow

5 × 105 Pellet 3 weeks [56]

9. TGF-β1 (10 ng/mL), 
IGF-1 (50 ng/mL), 
and Ginsenoside-Rg1 
(10–100 µg/mL)

Breast adipose 1 × 105 cells/cm2 monolayer 2 weeks [57]

10.. Platelet rich plasma 
(10%)

Adipose tissue 2.5 × 105 Pellet 2 weeks [47]

11. Platelet lysate (5%) Umbilical cord 1 × 106 Pellet 3 weeks [48]
12. TGF-β1 (10 ng/mL) Bone marrow 1.25 × 105–2.5 × 105 Pellet 3 weeks, 4 weeks [58–60]
13. TGF-β3 (10 ng/mL), 

FGF-18 (100 ng/mL)
Adipose tissue 5 × 105 Pellet 5 weeks [61]

14. StemPro® Chondrogenic 
Differentiation kit

Synovium, Wharton’s 
jelly

5 × 103 cells/well in 12 
well plate, 2 × 104cells/
well in 24-well plate

monolayer 3 weeks [62]
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fibroblast-like cells during in vitro proliferation [76]. It is 
believed that co-culturing of ACs and MSCs can provide 
physiological cues and create suitable milieu for regulated 
differentiation. ACs can suppress the undesired hypertrophy, 
promote chondrogenesis and help in suppression of inflam-
matory activity upon co-culturing with MSCs [47, 77, 78]. 
The soluble factors secreted by MSCs mediate cartilage 
regeneration by exerting paracrine effects on ACs, which 
can be characterized by changes in their cellular morphol-
ogy, proliferation, gene expression and ECM production. 
According to a study, indirect co-culture of human umbili-
cal cord blood MSCs (hUC-BMSCs) and hAC at low den-
sity (0.6 × 104 cells) exhibited the potential to induce hUC-
BMSCs differentiation into hyaline chondrocytes [79]. In 
another study, increased expression of cartilage-specific 
genes by hUC-MSCs when co-cultured indirectly with OA 
patients derived ACs, revealed that ACs promoted chondro-
genic differentiation. Further, suppression of expression of 
COX2, collagen X, MMP13 in ACs suggested that hUC-
MSC inhibited inflammatory activity in OA chondrocytes. 
This study thus illustrates that the co-culture of hUC-MSCs 
and OA chondrocytes may provide a therapeutic potential 
in OA treatment [78].

Biomaterials in cartilage repair

Biomaterials play a very important role in cartilage tissue 
engineering. They help in cell proliferation, adhesion and 
act as carrier for delivery of stem cells at the defect site 
preventing their loss. Moreover, it also helps in guiding the 
growth of newly formed tissue. To fulfill its role, an ideal 
3D-scaffold for cartilage tissue engineering should be bio-
compatible, biodegradable, non-antigenic, highly porous, 
osteoconductive, possess good mechanical strength and 
capable of maintaining the cells in differentiated and func-
tional state [80]. In addition, the scaffold material should 
exhibit mechanical properties in terms of compressive 
strength and Young’s modulus like the native tissue. Various 
scaffolds made up of natural as well as synthetic matrix have 
been used alone or along with cells for repair of cartilage 
lesions. Natural, biodegradable matrices are mainly made up 
of silk, collagen, chitosan, agarose, gelatin, alginate and HA 
[81]. Natural polymers like collagen and fibrin are highly 
biocompatible, promote cell adhesion and do not elicit 
immune response. But they have weak mechanical strength 
and their rate of degradation cannot be controlled. Whereas, 
synthetic materials used for cartilage repair have advantage 
over natural ones as their rate of degradation and mechanical 
strength can be controlled by making different combinations 
and using different methods for synthesis and cross-linking 
[82]. These are mainly made up of PLGA, PLA, PEG, PCL 
and PEG [83]. However, natural polymers are preferred over 

synthetic polymers because later are expensive, can elicit 
immune response and their byproducts may lead to inflam-
matory reaction in the host. Therefore, it is necessary to find 
out the right combinations of matrix and their methods of 
synthesis so that their shortcomings can be avoided, and an 
ideal scaffold can be prepared. Many in vitro studies have 
been conducted emphasizing benefits of these scaffolds for 
cartilage repair. In same line, few important in vitro studies 
using various scaffolds and their combinations have been 
summarized in Table 2.

Status of marketed scaffolds

Based on positive outcomes of using combination of cells 
& matrix for cartilage repair in in vitro and in vivo model, 
several scaffolds have been introduced with clinical advan-
tages. At present, various products have been marketed inter-
nationally for treatment of cartilage related injuries. These 
products are mostly made up of collagen, HA, or synthetic 
polymers seeded with autologous chondrocytes (Supplemen-
tary Table 1). Most of other polymers used in animal studies 
have yet not been opted for clinical use because of chances 
of immune reaction and disease transmission. These matri-
ces are used either alone or in combination with cells (autol-
ogous chondrocytes). Most common matrix used in these 
products is collagen [100–102] which is the main component 
of ECM of chondrocytes [103]. Collagen matrix seeded with 
autologous chondrocytes has shown better results than scaf-
fold alone and is available in market in name of CaRes in 
Australia, NeoCart and Novocart in USA [104–106]. Apart 
from collagen matrix, hyaline matrix-based product seeded 
with autologous chondrocytes was marketed in name of 
Hyalograft. However, it has been withdrawn in 2013 [107]. 
Other than these natural polymers, allograft collagen matrix 
harboring autologous chondrocytes have been used [108]. 
Among synthetic polymers, only poly (ethylene oxide-tere-
phthalate)/poly (butylene terephthalate) (PEOT/PBT) bio-
degradable scaffold seeded with autologous chondrocytes 
is available in name of INSTRUCT, Netherland, which is 
CE certified [109].

Considering their advantages, some of these products are 
available for treatment since long but many are still available 
only in restricted areas for clinical trials only. Additionally, 
their high cost is the major limiting factor for its utiliza-
tion for lower middle-income economies. In USA, the cost 
of autologous chondrocyte transplant for cartilage repair is 
around $40,000 [110]. Similarly, in National Health Service 
(NHS), UK, transplant of scaffold with autologous chondro-
cytes cost approximately £12,000, which includes £2,500 for 
harvesting and regrowing the cells [111]. Therefore, even at 
present the approach using biomaterials for cartilage repair 
has not yet become available for patients either because of 
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high cost, associated rejection risks or problems in approval 
for human use.

Pre‑clinical studies

Promising therapeutic candidate for cartilage repair can be 
evaluated through pre-clinical trials in appropriate animal 
models that mimic the histopathology and symptoms of OA. 
These animal models are mostly created surgically [112]. 
The most used surgical method of inducing OA is anterior 
cruciate ligament transection (ACLT), meniscectomy and 
ovariectomy. The other method of OA induction in animals 
is by injecting chemicals directly in the joints of animals. 
The most commonly used chemicals for this purpose include 
papain, collagenase and mono-iodoacetate (MIA) [113]. 
These animal models are transplanted withundifferentiated 
stem cells, pre-differentiated stem cells with or without 
matrix. Further, the efficiency of therapeutic candidate in 
recapitulating the damaged tissue can be evaluated by fol-
lowing grading systems such as ICRS (International Car-
tilage Research Society) and OAS (Oswestry Arthroscopy 
Score) [114].

These studies have been performed in small as well as 
large animals including murine, porcine, canine and equine 
models. Studies on small animals are comparatively easy 
as these animals can be housed easily, and experiments are 
cost effective. However, these animals possess intrinsic car-
tilage healing and bear weight on all the limbs, limiting the 
full extrapolation of outcomes of these studies to repair of 
human cartilage defect. But at the same time, the results give 
us proof of concept, to design studies at larger scale and in 
large animals, thus saving the time and cost. All major pre-
clinical studies in this regard using small animals namely 
mice, rat, rabbit and large animal such as Brazilian pigs have 
been summarized in Supplementary Table 2. The promising 
outcomes of such studies have given us lead for taking these 
options from bench to bedside.

These studies have used primed as well as undifferenti-
ated cells from different sources to elucidate their role in 
cartilage repair. Mostly studies have been carried out using 
BMSCs and ADSCs. However, in last few years SMSCs 
have emerged as potential alternative candidate for cartilage 
repair because of their ease of isolation, better in vivo immu-
nosuppression, better chondro-differentiation, and secretion 
of large amount of ECM [115–117]. Recently, DPSCs have 
also been used for cartilage repair and tested in Brazilian 
pigs; a large animal model for cartilage repair for the first 
time [118]. These MSCs from various sources have been 
transplanted with or without scaffold to test their efficacies. 
In most of the studies, it has been reported that cells trans-
planted on scaffolds give better results in cartilage repair 
than cells or scaffolds alone [119]. Further, type of cell being Ta
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used for transplantation is a big concern. Previous studies 
have employed use of only undifferentiated cells for trans-
plantation. Moreover, a recent study has also reported same 
outcome where they have transplanted autologous SMSCs 
derived from synovial cavity of rabbits at the site of cartilage 
defect and observed that differentiated cells lead to fibrous 
tissue formation whereas hyaline tissue like structure was 
found in animals transplanted with undifferentiated MSCs. 
It is believed that pre-differentiation leads to weakening of 
stemness of MSCs and alters their paracrine effect. There-
fore, they focus on using undifferentiated cells [34–36, 120, 
121] considering the release of paracrine factors by MSCs 
which help in faster cartilage healing. But in recent years, 
use of differentiated cells has shown better outcomes and 
healing than undifferentiated cells. Scaffolds loaded with 
cells and TGF-β1 has been reported to have better carti-
lage regeneration than one without TGF-β1 [33]. Similarly, 
other factors like BMP2, BMP4, IGF-1 have been used for 
chondro-differentiation which helps in synthesizing hyaline 
cartilage like structure with reduced hypertrophy shown by 
use undifferentiated cell population.In another study led by 
Prasadam et al. [122], mixed cultures of BMSCs and ACs 
have been transplanted and shown to exhibit better chondro 
protection and regeneration than their monocultures. How-
ever, in clinical settings it may not be possible to isolate 
both ACs and MSCs in autologous therapy. Therefore, there 
is a pressing need to devise strategies which will minimize 
the drawbacks of these cell types and help us utilize them 
efficiently for repair of articular cartilage.

Clinical studies

Stem cells from various sources have been used in vitro 
by harnessing their chondrogenic differentiation potential. 
Various growth factors have been used in these protocols to 
enhance the mineralization and inhibit rapid cell death after 
long in vitro protocols. Based on promising results shown by 
stem cells in in vitro models and pre-clinical settings, several 
clinical trials have been done in case of OA, to evaluate its 
safety, feasibility, efficacy and stability. Information regard-
ing clinical trials was searched using terms “stem cell” & 
“osteoarthritis” on ClinicalTrials.gov. As per the database, 
till date, 83 clinical trials have been registered using stem 
cells. Out of these, 29 trials have been completed where 16 
trials used BMSCs and 07 trials used ADSCs, 03 trials used 
UCMSCs, UCBMSCs and WJ-MSCs and the remaining 03 
studies did not reveal the source of MSCs. Also, most of the 
studies have reported use of autologous stem cells to avoid 
immune rejection, with only 06 trials completed using allo-
genic stem cells. The outcomes of MSCs administration are 
measured based on safety assessment, serological measure-
ment of immune cells, MRI, KooS score, HooS score and 

WOMAC score. Majority of the studies using autologous 
cells have shown follow up of 12 months except for two 
studies which have follow up of 48 months and 36 months, 
respectively, showing the safety and long-term efficacy of 
MSCs. Whereas, only 01 trial administering allogenic MSCs 
has reported follow up of 24 months, supporting its safety 
and efficacy. At present, more trials using allogenic MSCs 
with their long term follow up are warranted to validate and 
strengthen the outcomes. Further, none of the study has 
used primed or differentiated cells which might increase 
the efficiency of regeneration and may reduce the chances 
of fibrocartilage formation. Moreover, out of 29, only 02 
studies have used matrix along with cells which have shown 
successful results (Supplementary Table 3 and 4). This com-
binatorial approach has proven very beneficial as per avail-
able pre-clinical studies data also. However, this needs to be 
explored in depth in clinical settings to reach some conclu-
sion and take it to therapeutics.

Future prospects

Today, regenerative therapy using cells and growth factors 
along with use of biomaterials is becoming widely available 
option for the repair of joint surface lesions and OA. A lot of 
in vitro & in vivo studies have been done in past, which have 
shown promising results. Undifferentiated as well as differ-
entiated cells in combination with biomaterials have been 
used in these studies. Some of their results have been trans-
lated to clinical studies as wellwhich haveshown variegated 
results. The use of MSCs has proven to be safe in long term 
follow ups and it also increases the quality of life of patients. 
But, none of these studies has reported restoration of origi-
nal hyaline cartilage in long term follow ups.The important 
reasons for this unclear picture are mainly selection of stem 
cell type, matrix as well as design of clinical study.

First issue to be addressed remains with standardiza-
tion of protocols for efficient homogenous MSCs isola-
tion, their characterization and efficient cartilage differ-
entiation. MSCs from aged donor have found to undergo 
senescence earlier [123], and they exhibit lower expression 
of surface markers along with reduced regeneration abil-
ity. Similarly, MSCs of later passages have reported to 
show poor differentiation ability as compared to cells of 
early passages. Therefore, definingage of donor, passage 
of cells, growth conditions and factors required for in vitro 
differentiation becomes critical in order to move to clini-
cal settings. Despite lack of standardization of isolation 
protocols, because of their established safety and regen-
erative potential, MSCs have been extensively used in 
clinical settings and around 83 clinical trials using MSCs 
for cartilage repair are registered on ClinicalTrials.gov. 
These trials have shown safety of MSCs in long term, but 
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it is difficult to conclude their efficacy in regeneration 
because of various reasons. Key reasons for these lacunae 
include non-uniformity of number of patients included in 
the study, degree of injury, follow up criteria, type of cell 
administered, adjuvant therapy, selection of control etc.

Further, in past few years, implantation of biomaterials 
in cartilage defect models has shown promising results. 
Results of pre-clinical studies have demonstrated that bio-
materials in combination with stem cells can enhance their 
regeneration potential and result in better cartilage repair 
as compared to stem cells alone.

Despite these studies, none of the combination of stem 
cell and biomaterial has achieved success in mimicking 
features identical to native cartilage. Till date only one 
such study has been done in patients where stem cells 
along with collagen scaffold have been transplanted in OA 
patients, but it has not posted results on ClinicaltTrials.gov 
showing unknown status. However, the approach taken by 
this study has opened the gateway for undertaking similar 
studies using combination of stem cells and scaffold for 
cartilage repair. 3D bioprinting has emerged as promis-
ing method of designing scaffolds with proper and defined 
arrangement of cells and matrix in layer by layer manner. 
This arrangement may provide constructs having proper 
zonal distribution ofcells, matrix and growth factors in 3D 
which may mimic native cartilage more closely and may 
prove to have better regeneration than scaffolds designed 
by conventional methods [124].

Other potent candidates which have emerged recently 
for cartilage repair include use of exosomes and gene 
therapy. Exosomes are nano scale extracellular vesicles 
secreted by almost all cells including MSCs. These have 
been successfully used for treatment of many diseases 
including OA in animal models [125]. It is postulated that 
these exosomes may protect cartilage by increasing expres-
sion of chondrocyte marker and decreasing expression of 
catabolic and inflammatory markers [126]. These may also 
participate in migration and proliferation of chondrocytes 
[127]. These exosomes when transplanted with hydrogel in 
rabbit cartilage defect model were found to regenerate car-
tilage after 12 weeks [128]. These exosomes may provide 
“cell free therapeutic paradigm” with low immunogenic-
ity and no risk of tumor formation. Gene therapy has also 
come up as promising option for various degenerative dis-
eases including OA. This approach focuses on synthesiz-
ing the proteins in mammalian cell lines, which can help 
restoring the balance of anabolic and catabolicmechanism 
which is lost in OA. In this line, Kolon Tissue GeneInc., 
USA, in November 2018, treated first OA patient using 
their product Invossa™(TG-C). Invossa™ involves a sin-
gle intra-articular injection of allogenic primary chondro-
cytes and irradiated GP2-293 cells transduced with viral 

vector over expressing TGF-β1 which possibly promotes 
regeneration of the tissue [129].

Conclusion

In last few years, OA has emerged as a major socioeconomic 
burden and its prevalence is continuously increasing due 
toaging of population and emergence of sedentary lifestyle. 
Considering non-availability of satisfactory treatment, 
regenerative medicine using stem cells, scaffolds and growth 
factors has been worked upon extensively both in vitro and 
in vivo and shown promising outputs. Despite, there exists a 
lot of missing links and lacunae in this approach which war-
rants a lot of effort at both basic and clinical research level. 
Based on previous studies, the choice of right matrix for the 
support and differentiation of cells, choice of cells, induc-
ers and antioxidants in the media remain key areas to be 
ventured. Further, in clinical studies dose and type of cells 
to be administered, inclusion of right controls and long term 
follow up, adjuvant therapy remain few of the key issues 
which needs to be addressed, before this approach becomes 
clinically available for patient care. However, the extensive 
research and their positive results using stem cells and scaf-
folds validate that in future this combination may come up 
as “off the shelf” therapy for cartilage repair in OA patients.
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