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Abstract
Pyrogallol, a polyphenolic component of Acacia nilotica has previously been reported to induce apoptosis of diverse cell 
types. Pyrogallol is in part effective by influencing gene expression and by interference with mitochondrial function. Despite 
lack of nuclei and mitochondria, erythrocytes may undergo eryptosis, a suicidal death apparent from phosphatidylserine 
translocation to the erythrocyte surface and cell shrinkage. Eryptosis is triggered by glucose depletion, by oxidation, by 
hyperosmotic cell shrinkage and by excessive  Ca2+ entry. As enhanced eryptosis is a common cause of anemia, uncovering 
inhibitors and stimulators of eryptosis may, both, be of clinical interest. Here we tested, whether eryptosis of human eryth-
rocytes is modified by pyrogallol. Utilizing flow cytometry, phosphatidylserine abundance at the cell surface was estimated 
from annexin-V-binding and cell volume from forward scatter. Prior to determinations erythrocytes were incubated with 
or without glucose, without or with added oxidant tert-butyl-hydroperoxide (t-BOOH, 0.5 mM), without or with added 
hyperosmotic sucrose (550 mM) or without or with added  Ca2+ ionophore ionomycin (1 µM). Treatment of erythrocytes 
with pyrogallol (2–8 µM) was without significant effect on annexin-V-binding and forward scatter. Glucose deprivation, 
t-BOOH, sucrose and ionomycin, each, triggered annexin-V-binding and decreased forward scatter. Pyrogallol significantly 
blunted the effects on annexin-V-binding but not on forward scatter. Pyrogallol thus blunts phosphatidylserine translocation 
in erythrocytes exposed to glucose depletion, oxidative stress, hyperosmotic shock and excessive  Ca2+ entry.
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Introduction

Pyrogallol, a polyphenolic component of Acacia nilotica 
[1, 2] has been reported to stimulate apoptosis of cancer 
cells [3–5], fibroblasts [6, 7], endothelial cells [8–10], 

juxtaglomerular cells [11–13], U937 cells [14], HEK293 
cells [15], K562 cells [15] and blood platelets [2]. Pyro-
gallol-induced apoptosis involves modification of gene 
expression [16], nuclear DNA fragmentation [1], mitochon-
dria [1], oxidative stress [2, 3, 7–13], inhibition of Bcl-2 
proteins [17] and caspase activation [2].

Mature, circulating erythrocytes are lacking nuclei and 
mitochondria but harbor caspases [18, 19] and may enter 
eryptosis, a suicidal cell death apparent from phosphati-
dylserine translocation to the outer cell membrane surface 
[19–22]. Eryptosis is further typically paralleled by cell 
shrinkage [23]. Eryptosis may be stimulated by storage [24], 
energy depletion [19, 25], oxidative stress [19], hyperos-
motic shock [19], and excessive  Ca2+ entry [19]. Excessive 
eryptosis may result in anemia, because phosphatidylserine 
exposing erythrocytes are bound to endothelial cells and 
removed from circulating blood [26, 27]. Eryptosis and sub-
sequent removal of Plasmodium-infected erythrocytes may, 
on the other hand, reduce parasitemia and thus be beneficial 
in malaria [28]. Accordingly, small molecules stimulating 
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[29–34] and small molecules inhibiting [25, 29, 30, 35] 
eryptosis may be of clinical interest.

The aim of the present analysis was to disclose a poten-
tial stimulating or inhibiting effect of pyrogallol on erypto-
sis. Human erythrocytes isolated from healthy volunteers 
were incubated in normal Ringer or in absence of glucose 
(energy depletion), in presence of tert-butyl-hydroperoxide 
(t-BOOH, oxidative stress), in hyperosmotic Ringer (sucrose 
added) or in presence of  Ca2+ ionophore ionomycin, each 
without or with addition of pyrogallol. After treatment, flow 
cytometry was employed to determine abundance of phos-
phatidylserine at the erythrocyte surface and erythrocyte 
volume.

Materials and methods

Fresh Li-Heparin-anticoagulated blood drawn from healthy 
volunteers was kindly provided by the blood bank of the 
University of Tübingen. The study is approved by the eth-
ics committee of the University of Tübingen (184/2003V). 
The blood was centrifuged at 120 g for 20 min at 21 °C 
and the platelets and leukocytes-containing supernatant was 
disposed. Erythrocytes were incubated in vitro at a hema-
tocrit of 0.4% in Ringer solution containing (in mM) 125 
NaCl, 5 KCl, 1  MgSO4, 5 glucose, 1  CaCl2, 32 N-2-hydrox-
yethylpiperazine-N-2-ethanesulfonic acids (HEPES; pH 
7.4) at 37 °C for 48 h. Where indicated, erythrocytes were 
exposed for 48 h to glucose containing or glucose depleted 
Ringer solution, for 30 min to the oxidant t-BOOH (0.5 mM, 
Sigma Aldrich, Hamburg, Germany), for 6 h to hypertonic 
Ringer (addition of 550 mM sucrose, Sigma Aldrich, Ham-
burg, Germany) or for 60 min to  Ca2+ ionophore ionomycin 
(1 µM, Merck Millipore, Darmstadt, Germany), each in the 
absence and presence of pyrogallol (2–8 µM, Sigma Aldrich, 
Hamburg, Germany). Exposure time to glucose depletion as 
well as concentrations of and exposure times to t-BOOH, 
sucrose and ionomycin have been chosen according to previ-
ous experiences [36], concentrations of pyrogallol according 
to studies on the effect of this substance in other cell types 
[1–15]

After incubation under the respective experimental con-
dition, a 150 Annexin-V-FITC cell suspension was washed 
in Ringer solution containing 5 mM  CaCl2 and then stained 
with Annexin-V-FITC (1:200 dilution; ImmunoTools, 
Friesoythe, Germany) in this solution at 37 °C for 20 min 
under protection from light. The annexin-V-abundance at the 
erythrocyte surface was subsequently determined on a FACS 
Calibur (BD, Heidelberg, Germany). Annexin-V-binding was 
measured with an excitation wavelength of 488 nm and an 
emission wavelength of 530 nm. A marker (M1) was placed 
to set an arbitrary threshold between annexin-V-binding cells 

and control cells. The same threshold was used for untreated 
and pyrogallol treated erythrocytes [36].

For each parameter, 50,000 events were counted. The 
analysis of FACS data was performed using FlowJo soft-
ware v10.0.7 (FlowJo, Ashland, USA). Data are expressed as 
arithmetic means ± SEM. As indicated in the figure legends, 
statistical analysis was made using ANOVA with Tukey’s 
test as post-test or t test as appropriate. n denotes the number 
of different erythrocyte specimens studied. Since different 
erythrocyte specimens used in distinct experiments are dif-
ferently susceptible to triggers of eryptosis, the same eryth-
rocyte specimens have been used for control and experimen-
tal conditions [36].

Results

Following incubation for 48 h in standard Ringer solu-
tion, the percentage of annexin-V-binding erythrocytes 
was similarly low without (1.06 ± 0.07%, n = 13) and with 
(1.19 ± 0.10%, n = 13) presence of pyrogallol (8 µM). The 
forward scatter was again similar following a 48 h exposure 
to standard Ringer solution without (480.96 ± 4.73, n = 13) 
or with (476.86 ± 4.28%, n = 13) pyrogallol (8 µM). Thus, 
in standard Ringer solution, pyrogallol did not significantly 
alter phosphatidylserine abundance at the erythrocyte sur-
face or erythrocyte volume.

Energy depletion by a 48 h exposure to Ringer with-
out glucose was followed by a significant increase of the 
percentage of annexin-V-binding erythrocytes (Fig. 1a). 
Addition of pyrogallol (2–8 µM) to glucose-free Ringer 
significantly blunted, but did not abrogate the increase of 
the percentage of annexin-V-binding erythrocytes (Fig. 1b). 
Thus, pyrogallol blunted, but did not prevent phosphatidyl-
serine translocation following energy depletion.

Energy depletion by a 48 h exposure to Ringer without 
glucose was further followed by a significant decrease of 
forward scatter, which was virtually identical in the absence 
and presence of pyrogallol (2–8 µM) (Fig. 1c). Thus, pyro-
gallol did not appreciably alter the shrinking effect of energy 
depletion (Fig. 1d).

Oxidative stress was induced by treatment with t-BOOH. 
Within 30 min 0.5 mM t-BOOH triggered a sharp significant 
increase of the percentage of annexin-V-binding erythrocytes 
(Fig. 2a). The effect was slightly, but significantly, blunted 
in the presence of pyrogallol (2–8 µM). However, in the 
presence of pyrogallol, t-BOOH still significantly increased 
the percentage of phosphatidylserine exposing erythrocytes 
(Fig. 2b). Thus, pyrogallol blunted, but did not prevent phos-
phatidylserine translocation following oxidative stress.

Within 30 min, 0.5 mM t-BOOH caused a slight, but sig-
nificant, decrease of forward scatter (Fig. 2c). The presence 
of pyrogallol did not significantly modify the decrease of 
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forward scatter following t-BOOH treatment and in the pres-
ence of pyrogallol, t-BOOH still significantly decreased the 
forward scatter of erythrocytes (Fig. 2d). Thus, pyrogallol 
did not significantly modify the shrinking effect of oxida-
tive stress.

For induction of hyperosmotic shock, Ringer was made 
hypertonic by the addition of 550 mM sucrose. A 6 h treat-
ment with hypertonic Ringer solution was followed by a 
significant increase of the percentage of annexin-V-binding 

erythrocytes (Fig. 3a). The effect was blunted, but not abro-
gated, in the presence of pyrogallol (2–8 µM) (Fig. 3b). 
Thus, pyrogallol blunted, but did not prevent phosphatidyl-
serine translocation following hyperosmotic shock.

A 6  h treatment with hypertonic Ringer induced a 
sharp significant decrease of forward scatter (Fig. 3c). 
The presence of pyrogallol did not significantly modify 
the decrease of forward scatter following treatment with 
hypertonic Ringer and in the presence of 8 µM pyrogallol, 

Fig. 1  Pyrogallol sensitivity of phosphatidylserine exposure and 
cell volume following energy depletion. a Original histograms of 
annexin-V-binding of erythrocytes following exposure for 48 h to glu-
cose containing Ringer solution (red line), Ringer solution without 
glucose (blue line) and Ringer solution without glucose in the pres-
ence of pyrogallol (8 µM) (purple line); b Arithmetic means ± SEM 
(n = 13) of the percentage annexin-V-binding erythrocytes after a 
48 h treatment with Ringer solution with (left bar, Control) or with-
out (right bars) glucose in the absence (blue bar) and presence (pur-
ple bars) of pyrogallol (2–8 µM). DMSO (black bar) indicates effect 
of solvent; c Original histograms of erythrocyte forward scatter fol-

lowing exposure for 48 h to glucose containing Ringer solution (red 
line), Ringer solution without glucose (blue line) and Ringer solution 
without glucose in the presence of pyrogallol (8 µM) (purple line); d 
Arithmetic means ± SEM (n = 13) of the erythrocyte forward scatter 
after a 48 h treatment with Ringer solution with (left bar, Control) or 
without (right bars) glucose in the absence (blue bar) and presence 
(purple bars) of pyrogallol (2–8 µM). DMSO (black bar) indicates the 
effect of solvent ***(p < 0.001) indicates significant difference from 
the presence of glucose, ###(p < 0.001) indicates significant difference 
from the absence of pyrogallol (ANOVA). (Color figure online)
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hypertonic Ringer still significantly decreased the forward 
scatter of the erythrocytes (Fig. 3d). Thus, pyrogallol did 
not significantly modify the shrinking effect of hyperos-
motic shock.

Ca2+ overload was accomplished by treatment with  Ca2+ 
ionophore ionomycin. Within 60  min 1  µM ionomycin 
triggered a sharp significant increase of the percentage of 
annexin-V-binding erythrocytes (Fig. 4a). The effect was 
significantly blunted, but not abolished in the presence of 
pyrogallol (2–8 µM) (Fig. 4-B). Thus, pyrogallol blunted, 

but did not prevent phosphatidylserine translocation follow-
ing  Ca2+ overload.

Within 60 min 1 µM ionomycin induced a sharp, sig-
nificant decrease of forward scatter (Fig. 4c). The presence 
of pyrogallol did not significantly modify the decrease of 
forward scatter following ionomycin treatment and in the 
presence of 8 µM pyrogallol, ionomycin still significantly 
enhanced the percentage of phosphatidylserine exposing 
erythrocytes (Fig. 4d). Thus, pyrogallol did not significantly 
modify the shrinking effect of  Ca2+ overload.

Fig. 2  Pyrogallol sensitivity of phosphatidylserine exposure and cell 
volume following oxidative stress. a Original histograms of annexin-
V-binding of erythrocytes following exposure for 30  min to Ringer 
solution without (red line) or with 0.5  mM t-BOOH without (blue 
line) and with purple line) presence of pyrogallol (8  µM); b Arith-
metic means ± SEM (n = 8) of the percentage annexin-V-binding 
erythrocytes after a 30  min treatment with Ringer solution without 
(left bar, Control) or with 0.5 mM t-BOOH (right bars) in the absence 
(blue bar) and presence (purple bars) of pyrogallol (2–8 µM). DMSO 
(black bar) indicates effect of solvent. c Original histograms of eryth-
rocyte forward scatter following exposure for 30 min to Ringer solu-

tion without (red line) or with 0.5 mM t-BOOH without (blue line) 
and with purple line) presence of pyrogallol (8  µM); d Arithmetic 
means ± SEM (n = 8) of the erythrocyte forward scatter after a 48 h 
treatment with Ringer solution without 0.5  mM t-BOOH (left bar, 
Control) or with 0.5  mM t-BOOH (right bars) in the absence (blue 
bar) and presence (purple bars) of pyrogallol (2–8  µM). DMSO 
(black bar) indicates effect of solvent. ***(p < 0.001) indicates signif-
icant difference from the absence of t-BOOH, #(p < 0.05), ##(p < 0.01) 
indicates significant difference from the absence of pyrogallol 
(ANOVA). (Color figure online)
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Discussion

The present observations reveal that pyrogallol could 
inhibit phosphatidylserine translocation to the erythrocyte 
surface, a hallmark of eryptosis [19]. Without maneuvers 
stimulating eryptosis pyrogallol did not affect phosphati-
dylserine translocation. The substance blunted, however, 
significantly the phosphatidylserine translocation follow-
ing glucose deprivation, oxidation, hyperosmotic shock, 

and  Ca2+ loading. Those maneuvers have been shown in a 
variety of previous studies to trigger eryptosis [19].

Accelerated eryptosis causes removal of circulating eryth-
rocytes and anemia in diverse clinical conditions including 
chronic kidney disease [37], HUS (hemolytic uremic syn-
drome) [38], Autoimmune Haemolytic Anaemia [39], iron 
deficiency [19], hyperphosphatemia [40], vitamin D excess 
[41], dehydration [42], diabetes [43], hepatic failure [44], 
malignancy [45], sepsis [46], sickle cell anemia [19], beta-
thalassemia [19], Hb-C and G6PD-deficiency [19], as well as 

Fig. 3  Pyrogallol sensitivity of phosphatidylserine exposure and 
cell volume following hyperosmotic shock. a Original histograms 
of annexin-V-binding of erythrocytes following exposure for 6  h to 
Ringer solution without (red line) or with added 550  mM sucrose 
without (blue line) and with purple line) presence of pyrogallol 
(8 µM); b Arithmetic means ± SEM (n = 8) of the percentage annexin-
V-binding erythrocytes for 6 h treatment with Ringer solution without 
(left bar, Control) or with added 550 mM sucrose (right bars) in the 
absence (blue bar) and presence (purple bars) of pyrogallol (2–8 µM). 
DMSO (black bar) indicates effect of solvent; c Original histograms 
of erythrocyte forward scatter following exposure for 6  h to Ringer 

solution without (red line) or with added 550  mM sucrose without 
(blue line) and with purple line) presence of pyrogallol (8  µM); d 
Arithmetic means ± SEM (n = 8) of the erythrocyte forward scatter 
after a for 6 h treatment with Ringer solution without added 550 mM 
sucrose (left bar, Control) or with 550 mM sucrose (right bars) in the 
absence (blue bar) and presence (purple bars) of pyrogallol (2–8 µM). 
DMSO (black bar) indicates the effect of solvent. ***(p < 0.001) 
indicates significant difference from isotonic Ringer, #(p < 0.05), 
##(p < 0.01), ###(p < 0.001) indicates significant difference from the 
absence of pyrogallol (ANOVA). (Color figure online)



5030 Molecular Biology Reports (2020) 47:5025–5032

1 3

Wilson´s disease [46]. The clearance of eryptotic erythrocytes 
[19] results in anemia as soon as it surpasses the rate of eryth-
ropoiesis [19]. Excessive eryptosis is further expected to com-
promise microcirculation [47], because eryptotic erythrocytes 
adhere to endothelial cells [48], and favour development of 
thrombosis [49]. Inhibitors of eryptosis are expected to reverse 
anemia and improve microcirculation in disorders with accel-
erated eryptosis. On the other hand, interference with eryptosis 
may delay removal of defective circulating erythrocytes which 
may instead enter hemolysis [19]. Hemoglobin thus released 

may undergo glomerular filtration with subsequent tubular 
hemoglobin precipitation, nephron occlusion, and thus dam-
age of the kidneys [50].

Fig. 4  Pyrogallol sensitivity of phosphatidylserine exposure and cell 
volume following  Ca2+ overload. a Original histograms of annexin-
V-binding of erythrocytes following exposure for 60  min to Ringer 
solution without (red line) or with 1  µM ionomycin without (blue 
line) and with purple line) presence of pyrogallol (8  µM); b Arith-
metic means ± SEM (n = 7) of the percentage annexin-V-binding 
erythrocytes after a 48  h treatment with Ringer solution without 
(left bar, control) or with 1 µM ionomycin (right bars) in the absence 
(blue bar) and presence (purple bars) of pyrogallol (2–8 µM). DMSO 
(black bar) indicates effect of solvent; c Original histograms of eryth-

rocyte forward scatter following exposure for 60 min to Ringer solu-
tion without (red line) or with 1  µM ionomycin without (blue line) 
and with purple line) presence of pyrogallol (8  µM); d Arithmetic 
means ± SEM (n = 7) of the erythrocyte forward scatter after a 48 h 
treatment with Ringer solution without (left bar, Control) or with 
1 µM ionomycin (right bars) in the absence (blue bar) and presence 
(purple bars) of pyrogallol (2–8  µM). DMSO (black bar) indicates 
effect of solvent. ***(p < 0.001) indicates significant difference from 
the absence of ionomycin, ###(p < 0.001) indicates significant differ-
ence from the absence of pyrogallol (ANOVA). (Color figure online)
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Conclusions

Pyrogallol blunts the stimulation of eryptotic phosphati-
dylserine translocation to the erythrocyte surface follow-
ing energy depletion, oxidative stress, hyperosmotic cell 
shrinkage, and  Ca2+ overload.
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