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Abstract
Murine bone marrow-derived macrophages (M0) and M1- and M2-polarized macrophages are being widely used as a labora-
tory model for polarized macrophages related molecular mechanism analysis. Gene expression analysis based on reference 
gene normalization using RT-qPCR was a powerful way to explore the molecular mechanism. But little is known about 
reference genes in these cell models. So, the goal of this study was to identify reference genes in these types of macrophages. 
Candidate reference genes in murine bone marrow-derived and polarized macrophages were selected from microarray data 
using Limma linear model method and evaluated by determining the stability value using five algorithms: BestKeeper, Nor-
mFinder, GeNorm, Delta CT method, and RefFinder. Finally, the selected stable reference genes were validated by testing 
three important immune and inflammatory genes (NLRP1, IL-1β, and TNF-α) in the cell lines. Our study has clearly shown 
that Ubc followed by Eef1a1 and B2m respectively were recognized as the three ideal reference genes for gene expression 
analysis in murine bone marrow-derived and polarized macrophages. When three reference genes with strong different 
stability were used for validation, a large variation of a gene expression level of IL-1β, TNF-α and NLRP1 were obtained 
which provides clear evidence of the need for careful selection of reference genes for RT-qPCR analysis. Normalization of 
mRNA expression level with Ubc rather than Actb or Gusb by qPCR in macrophages and polarized macrophages is required 
to ensure the accuracy of the qPCR analysis.
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Abbreviations
BMDM or M0	� Bone marrow-derived macrophage
RT-qPCR	� Real-time quantitative PCR
M1	� Classically activated macrophages
M2	� Alternatively activated macrophages

RG	� Reference gene
STDEV	� Standard deviation

Introduction

Macrophages derived from the hematopoietic system are found 
in all tissues of our body, these large phagocytes exhibit high 
plasticity and great functional diversity depending on differ-
ent microenvironment [1, 2]. Not only do macrophages play 
pivotal roles in innate and adaptive immune responses [3], but 
they also have crucial roles in organ development, tissue repair 
and homeostasis, cancer progression and therapy [4–7]. Based 
on specifically microenvironmental stimuli, macrophages can 
be induced into two different phenotypic and functional cell 
types, classically activated macrophages (M1) and alterna-
tively activated macrophages (M2) [8]. It is well acknowl-
edged that macrophages exhibit phenotypic plasticity in vitro. 
IFN-γ or LPS induces M1 macrophages associated with a 
pro-inflammatory phenotype while IL-4 or IL-13 induces an 
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alternative activation program in M2 macrophages associated 
with an anti-inflammatory and tissue remodelling phenotype 
[7, 9]. A large number of reports have generally indicated that 
macrophage M1/M2 polarization is a key determinant of mul-
tiple disease development and regression such as cancer, aller-
gic and chronic inflammation, infection, metabolic diseases, 
atherosclerosis which might be served as novel diagnostic and 
therapeutic strategies [7, 10]. Most importantly, after different 
forms of macrophage polarization and activation, studies in the 
fields of different molecular changes of cytokines, chemokines 
and signalling molecules using gene expression analysis to 
understand the M1/M2 macrophage targeting molecular regu-
lation mechanisms of diseases play a key role in macrophage 
biology and their behaviour [11].

RT-qPCR is one of the most widely used tools to detect 
and quantify mRNA levels because of its high sensitivity and 
accuracy with the potential for high throughput, which allows 
quantification of low mRNA concentrations [12]. RT-qPCR 
includes RNA extraction from samples, reverse transcription 
to prepare cDNA using purified RNA as template and quan-
titative PCR (qPCR, quantitatively measure the amplification 
of cDNA using fluorescent dyes). At present, there are a lot of 
superior quality kits for RNA extraction, cDNA preparation, 
and qPCR. Indeed, the three determinants (RNA and cDNA 
quantity, and qPCR efficiency) need to be normalized. How-
ever, these are not enough to compare RT-qPCR data directly. 
Normalization of RT-qPCR data and target gene expression 
level with suitable endogenous reference genes (RGs) is 
required because the selection of ideal RGs has an important 
impact on the experimental outcomes [13–15]. The suitable 
RGs should be stable in cells and tissues or under different 
experimental conditions. But increasing evidence has shown 
that RGs expression levels often vary under different experi-
mental settings [14–19]. Thus, it is necessary to meticulously 
evaluate and validate the RGs expression for each experimen-
tal situation [20].

To date, there are many studies have reported on the selec-
tion of suitable RGs in different macrophage cell types [14, 15, 
17–19]. However, no optimal RGs have been identified and 
validated for the mRNA level normalization between polarized 
macrophages. In view of the roles of polarized macrophages in 
physiology and pathology as well as the importance of study-
ing their precise molecular regulatory mechanisms, our aim is 
to identify the most stable RGs in polarized macrophages from 
C57BL/6 mice using NormFinder [21], GeNorm [22], Best-
Keeper software [23], delta CT method [24] and RefFinder 
methods [25, 26].

Methods

Murine bone marrow‑derived macrophage isolation

The murine bone marrow-derived macrophages were iso-
lated by a previously reported method with slight modifi-
cation [27]. Briefly, bone marrow was flushed from fresh 
femurs and tibiae of 8–10-week-old healthy wild type 
C57BL/6 mice obtained from Nanjing medical university 
(Nanjing, China) after CO2 euthanasia. The single-cell 
suspended BM cells were cultured in RPMI-1640 medium 
(Invitrogen) containing 10% fetal bovine serum, 50 nM 
β-mercaptoethanol, and 50 ng/mL M-CSF (Peprotech) at 
the concentration of 2 × 106 cells/mL at 37 °C under 5% 
CO2. Bone marrow macrophage medium was refreshed on 
day 3 and mature M0-macrophages were generated on day 7.

All animal care and procedures were per the ethical 
standards approved by Jiangsu Society for Animal Wel-
fare, China (Acceptance number: XZMC20130226) and 
Science and Technology Department of Jiangsu Province, 
China (Acceptance number: SYXK(SU)-2015-0030 and 
SCXK(SU)-2015-0009).

Polarization of murine macrophages

M1-polarization was induced by 100 ng/mL LPS (Sigma) 
and 20  ng/mL recombinant murine IFNγ (Peprotech), 
whereas M2-polarization by 20 ng/mL IL-4 (Peprotech) 
overnight as previously described [28]. There were eight 
repeats for each cell type including M0 macrophage.

Characterization of murine bone marrow‑derived 
macrophage and polarization

It was reported in a previous study that macrophage markers 
were CD11b and F4/80 [29]. M1 macrophage markers were 
CD80 and CD86, and M2 macrophage markers were CD206 
and CD163 [30]. In our study, macrophages were stained 
with CD11b-FITC, F4/80-APC, CD80-PE or CD206-FITC. 
Using flow cytometry, M0, M1-Mφ, and M2-Mφ cells were 
stained with CD11b+ F4/80+, F4/80+ CD80+CD206low, and 
F4/80+CD80low CD206+ respectively [31, 32].

RT‑qPCR

RNA was isolated from M0, M1 and M2-polarized mac-
rophages using the TRIZOL-chloroform extraction method 
[20]. Genomic DNA was removed using RNase-free DNase 
I (Beyotime). The extracted RNA concentration and purity 
were calculated by NanoDrop 2000 spectrophotometer 
(Thermo USA). The integrity was also evaluated using 1% 
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Agarose gel electrophoresis. All cDNA samples were syn-
thesized from 500 ng isolated RNA samples using Prime-
Script RT Reagent Kit (Perfect Real Time) from Takara and 
kept at − 20 °C until ready for use. Melting temperatures 
of all genes were designed at 60 °C. Primers of reference 
genes and target genes were selected in consideration of 
different intracellular biological functions, purchased from 
Thermo scientific and the detail information was listed in 
Table 1. The specificity and efficiency of all reference gene 
primers were checked [20]. RT-qPCR was done using light 
cycler®480 and SYBR Green master mix. 10 μL of 2 × 
supermix SYBR Green 1 Master, 1 μL forward and reverse 
primers (10 nM), 8 μL of distilled water and 1 μL of cDNA 
were all included in the PCR reaction tube. The RT-qPCR 
runs were comprised of 1 min- predenaturation at 95 °C, 
followed by 40 cycles of three-step PCR including dena-
turing phase (95 °C for 20 s), annealing phase (60 °C for 
15 s) and extension phase (72 °C for 15 s). After PCR, the 
melting curve and the CT values were obtained from the 

Light Cycler software. Samples were measured in technical 
duplicates.

Selection of candidate reference genes 
from microarray data

The microarray data having been deposited into the NCBI 
Gene Expression Omnibus database (GEO ID: GSE69607) 
was discussed in our study [33]. In this database, the same 
M0, M1, and M2 from C57BL/6J mice were used for micro-
array analysis. The data were normalized with the RMA 
algorithm using GenePattern software. The differential 
expression analysis in this microarray experiment was pro-
vided by a freely available bioinformatics tool Limma linear 
model method [34]. The expression levels of 14 commonly 
used reference genes were compared and the cut-off criteria 
to identify the differentially expressed candidate reference 
genes in M0, M1 and M2 were set to P-value < 0.05 imple-
mented in Limma and log2|Fold change| ≥ 0.585 [35]. On 

Table 1   Summary of 12 housekeeping genes and target genes evaluated in this study

Official full name, accession numbers, official full name, primer sequences and product sizes are shown

Symbol Official full name Accession numbers Primer sequence (forward/reverse) Products 
size (bp)

Actb Beta-actin NM_007393 F:atgtggatcagcaagcagga
R:aagggtgtaaaacgcagctca

99

Gapdh Glyceraldehyde-3-phosphate dehydrogenase NM_001001303 F:catggccttccgtgttccta
R:gcggcacgtcagatcca

55

Ubc Ubiquitin C NM_019639.4 F:ccagtgttaccaccaagaag
R:acccaagaacaagcacaagg

94

Eef1a1 Elongation factor 1 alpha 1 eukaryotic translation NM_010106 F:tccgattacgacgatgttga
R:agtcgccttggacgttctt

125

B2m Beta-2 microglobulin NM_009735 F:ttcagtatgttcggcttccc
R:tggtgcttgtctcactgacc

103

Rplp0 60S acidic ribosomal protein P0 NM_007475 F:ccgatctgcagacacacact
R:accctgaagtgctcgacatc

91

Ywhaz tyrosine 3-monooxygenase /tryptophan 
5-monooxygenase activation protein, zeta 
polypeptide

NM_011740 F:ctttctggttgcgaagcatt
R:ttgagcagaagacggaaggt

148

Hmbs hydroxymethylbilane synthase NM_013551 F:cagggtacaaggctttcagc
R:cggagtcatgtccggtaac

149

Gusb β-glucuronidase NM_010368 F:actcctcactgaacatgcga
R:ataagacgcatcagaagccg

96

Ppia Cyclophilin A/Peptidyl prolyl isomerase A NM_008907 F:cagtgctcagagctcgaaagt
R:gtgttcttcgacatcacggc

109

Alas 1 δ-Aminolevulinate synthase NM_020559 F:gtctgtgccatctgggactc
R:ctgtccacatcagctgtcca

119

Hprt 1 Hypoxanthine phosphoribosyltransferase1 NM_013556 F:cataacctggttcatcatcgc
R:tcctcctcagaccgctttt

95

Nlrp1 NLR family pyrin domain containing 1 NM_033004 F:ccactgagctactatgcagtaca
R:acaacatcttcacaccaccatc

202

IL-1β Interleukin 1 beta NM_008361 F:gaaatgccaccttttgacagtg R:tggatgctctcatcaggacag 116
TNF-α Tumor necrosis factor, alpha NM_013693.3 F:gacagtgacctggactgtgg R:gagacagaggcaacctgacc 132
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the contrary, the candidate stable reference gene was identi-
fied as P-value > 0.05 and log2|Fold change| < 0.585.

Statistical analysis of the stability of the reference 
genes

Four software; geNorm [22], NormFinder [21] and best-
keeper [23] together with the comparative delta CT method 
[24] were used to assess the reference genes stability. The 
basic principles of the four software and How the most 
reference genes filtered by the software were described by 
our previous study [20]. RefFinder-comprehensive ranking 
method were used for over ranking the above four methods 
according the introduction of previous research [36, 37]

Validation of reference genes

After reference genes selection, gene expression based on 
the selected most stable reference genes, the least stable 
reference genes, and the most usually used reference genes 
(Actb) were detected to validate the reference genes using 
the 2−ΔΔCt methods.

Results

Characterization of murine bone marrow‑derived 
macrophage phenotype

Macrophage progenitors adhered to the cell dish and could 
not be washed away on day 3. The murine bone marrow-
derived macrophages (M0) were induced using 50 ng/mL 
M-CSF-contained medium for 7 days. During the 7 days 
culture, the mature M0-macrophages were observed as 
adherent flattened cells with larger size (Fig. 1a). M1-Mφ 
were induced with 20 ng/mL LPS and 20 ng/mL IFNγ over-
night. The morphological features were similar to M0–Mφ 
(Fig. 1a). M2–Mφ were induced with 20 ng/mL IL-4 over-
night causing the cells to be rounded and more loosely 
attached (Fig. 1a), which is similar to M2–Mφ.

In our study, flow cytometric analysis was employed to 
identify and quantify bone marrow-derived macrophages 
and their polarized forms using CD11b-FITC, F4/80-APC, 
CD80-PE or CD206-FITC antibodies. The results demon-
strated that M0, M1, and M2 cells respectively amounted to 
99.8%, 99.2% and 92% of the total number of cells stained 
(Fig. 1b). We also compared MFI of CD80-PE and CD206-
FITC in M1 and M2 cells. The results showed that the CD80 
expression level in M1 was higher than in M2 while CD206 
expression level in M2 is higher than in M1 (Fig. 1c) which 
suggested that M1 was CD80 + CD206low and M2 was 
CD80low CD206+,consistent with previous reports [31, 32].

Selection and characteristics of candidate reference 
genes

To identify candidate RGs, we compared the gene expres-
sion levels of 14 commonly used RGs. Genes with low 
expression levels were excluded (as the underline value 
shown in Table 2). After filtration, 12 genes except Tbp 
and Tfrc were selected as the candidate reference genes 
for qPCR. Six genes including Actb, Eef1a1, B2m, Rplp0, 
Hmbs, and Ppia were the most stable RGs based on the 
database of a published microarray data and a Limma 
linear model method, which suggested that the candidate 
stable reference gene should be identified at P-value > 
0.05 and log2|Fold change| < 0.585 [34, 35]. All data was 
shown in Table 2.

Primer expression level and specificity detection

To further screen stable reference genes for qPCR analy-
sis, we designed and synthesized 12 primers with high 
efficiency [20]. Firstly, we detected the expression levels 
and specificity of the 12 RGs using SYBR Green I Master 
[38]. As shown in Fig. 2a, different genes had different CT 
values between 14.2 and 31.9 in different samples. Actb 
had the highest expression level while Hmbs expression 
level was the lowest. The result is similar to the above 
microarray data. The specificity of all the primers was 
high with unique single-peak amplification according to 
the melting curve as shown in (Fig. 2b).

Identification of the most stable RGs

Bestkeeper

In our experiment, the mean Ct values ranged from 15.68 
(Actb) to 29.7 (Hmbs) in all M0, M1 and M2 samples 
(Table 3). STD [±CP], CV% and Pearson coefficient [R] 
are usually used to evaluate gene stability and the STD 
[±CP] is the index of the bestkeeper, most commonly used 
to compare the stability of the selected RGs [23]. Genes 
with the lowest STD [±CP] values have less variation and 
vice versa in gene expression. Our results showed that 
the gene stability was different in M0, M1 and M2 mac-
rophages. In M0, Rplp0, Hprt1 and Ywhaz were ranked 
as the most stable RGs. Gapdh, Hmbs and Eef1a1 were 
stably expressed in M1 while Alsasl, Gapdh, and Eef1a1 
were the most stable in M2. In all the cell types, Rplp0 
with (STD [± CP] = 0.51) and Hprt1with (STD [± CP] 
= 0.55) followed by Ywhaz with (STD [± CP] = 0.59) 
were highly stable, while Gusb with (STD [± CP] = 2.26) 
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having the highest value, indicating it had the lowest sta-
bility (as shown in Table 4).

GeNorm analysis

GeNorm grades the candidate gene stability according to 
the calculated M-value. M-value ≤ 1.5 was considered a 
stable expression of RGs. Genes with the lowest M-value 
were considered as the most stable genes. As seen in 

Fig. 1   Characterization of murine bone marrow-derived macrophage phenotype Morphological and cell surface marker expression (CD11b-
FITC, F4/80-APC, CD80-PE or CD206-FITC.) changes observed by microscopic (a) and flow cytometric analyses (b, c)
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Table 5, most of the genes were stable in M0, M1, and 
M2 except Gusb, which meant that it is not suitable as 
a control gene for qPCR analysis. The results obtained 
from the GeNorm resembled those got from BestKeeper. 
After a combination, the two most stable genes were Ubc 
and B2m. All pairwise variation was shown in Fig. 3b to 
determine the optimal number of the candidate genes. 
According to [22], he recommends a cut-off value of 0.15, 
that genes with a V ≤ 0.15 should be included. Therefore, 
based on the V value, the two most stable RGs (V2/V3) of 
this dataset would be adequate for accurate normalization 
(Tables 6, 7, 8).

NormFinder

The principle of NormFinder ranking stability of RGs is 
based on stability values. Gene with the lowest stability 
value is considered to remain constant, while those with 
the highest stability values are the least stable RGs. After 
NormFinder software analysis, Ubc (Stability value = 
0.076 and 0.504) in M0 and M1 cells, Gapdh (Stability 
value = 0.084) in M2 cells were the most stable genes. 
After the combination of all the data in the three cell lines, 
Eef1a1 (Stability value = 0.422) was considered to be the 
most stably expressed RG (Fig. 4). 

The comparative delta‑Ct method

The delta-Ct method determines the stability of RGs 
according to the average of STDEV within the samples 
[39]. Those with lower STDEV value between samples is 
considered as the most stable RGs. Consistent with Nor-
mFinder analysis, the delta-Ct method also identified the 
Eef1a1 and Ubc as the most stable RGs. Meanwhile, Gusb 
was recognized as the least stable.

The overall ranking of reference gene stability

We co-ranked the four methods and calculated the geometric 
mean using the RefFinder-comprehensive ranking method 
to screen the most stable RGs [14, 26]. The geometric mean 
values were used to rank stable genes. Finally, it ranked Ubc 
and Eef1a1 as the two most stable, and Gusb and Rplp0 
were considered as the least stable RGs in all M0, M1 and 
M2 cells.

Validation of reference genes

To validate the performance of the above selected RGs, we 
determined the gene expression levels of three genes from 
the inflammatory signaling pathways, NLRP1, IL-1β and 
TNF-α using the most and least stable reference and Actb 
according to their stability in M0, M1, and M2 cells. The 
results showed strong variation in fold changes when differ-
ent reference genes were used in M1 and M2 cells, which 
indicated that normalization of RT-qPCR data with an 

Table 2   Identification of M0-M1-M2 specific reference genes from microarray data using Limma linear model method

Low expression levels of genes are labled with underline values

Symbol M0 expression  
(mean ± SD)

M1 expression 
(mean ± SD)

M2 expression  
(mean ± SD)

LogFC 
(M0 VS 
M1)

P-value 
(M0 VS 
M1)

LogFC 
(M0 VS 
M2)

P-value 
(M0 VS 
M2)

logFC 
(M1 VS 
M2)

P-value 
(M2 VS 
M1)

Actb 19,620.21 ± 558.65 18,498.04 ± 875.05 19,944.85 ± 186.94 0.09 0.33800 − 0.02 0.80301 − 0.11 0.35456
Gapdh 12,405.66 ± 365.68 14,273.75 ± 466.23 12,311.11 ± 465.92 − 0.20 0.03503 0.01 0.90923 0.21 0.08577
Ubc 5056.65 ± 545.89 4983.13 ± 769.53 3927.72 ± 222.10 0.03 0.83648 0.36 0.01350 0.33 0.04317
Eef1a1 17,004.44 ± 326.89 16,610.23 ± 700.76 17,601.12 ± 709.11 0.03 0.68857 − 0.05 0.61312 − 0.08 0.47653
B2m 16,742.41 ± 495.82 17,702.04 ± 422.78 15,887.40 ± 384.90 − 0.08 0.35187 0.08 0.44410 0.16 0.18924
Rplp0 11,045.81 ± 393.15 10,326.33 ± 173.77 11,107.88 ± 1033.34 0.10 0.26878 − 0.01 0.95807 − 0.10 0.40005
Ywhaz 1287.79 ± 462.64 1351.10 ± 216.24 2184.22 ± 189.16 − 0.13 0.60115 − 0.83 0.01169 − 0.70 0.00075
Hmbs 451.83 ± 29.16 452.44 ± 36.69 418.49 ± 61.24 0.00 0.99316 0.12 0.35347 0.12 0.39888
Gusb 4670.78 ± 398.07 2773.90 ± 256.60 3730.59 ± 161.90 0.75 0.00002 0.32 0.01586 − 0.43 0.00558
Ppia 13,988.93 ± 414.40 12,541.33 ± 473.74 13,776.74 ± 467.02 0.16 0.08854 0.02 0.82121 − 0.14 0.25488
Tbp 79.29 ± 7.02 89.21 ± 12.47 89.74 ± 1.48 − 0.16 0.20014 − 0.18 0.12521 − 0.02 0.89682
Alas1 854.97 ± 59.00 2342.17 ± 52.18 1674.10 ± 35.20 − 1.46 0.00000 − 0.97 0.00001 0.48 0.00128
Hprt 3276.17 ± 443.13 1672.07 ± 52.04 2205.30 ± 149.98 0.96 0.00000 0.56 0.00193 − 0.40 0.00567
Tfrc 58.01 ± 15.03 60.36 ± 12.44 278.97 ± 6.23 − 0.07 0.71959 − 2.30 0.00000 − 2.23 0.00000
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unstably expressed RG could impact upon the significance 
of gene expression study.

Discussion

RT-qPCR is most usually used to detect gene expression 
levels and predict possible gene functions in different 
experimental conditions. Recently, more and more research-
ers have found out that the traditional RGs such as Actb 
and Gapdh are not always stable in a lot of experimental 

situations making them unsuitable to be used as reference 
genes to normalize RT-qPCR results [20]. Moreover, an 
increasing number of RT-qPCR studies were validated by 
most reference gene selection although there are a great 
number of studies still lacking reliable RGs selection for 
quantitative gene expression analysis. Macrophages with 
polarization plasticity (M0, M1, and M2) belonging to the 
immune system play a key role in many normal physiologi-
cal conditions and disease processes. They largely perform 
their functions through the regulation of encoding cytokines 
or expression of other genes. Some studies have reported on 

Fig. 2   Primer specificity and 
expression level analysis. a 
Ranges of Ct values of the 12 
pre-selected reference genes 
in M0, M1, and M2 Plotted 
as boxes are the ranges of 
Ct values, with the included 
horizontal line identifying the 
mean (n = 8). The blue boxes 
represent M0 and the green 
boxes represent M1, and the 
red boxes represent M2. Bars 
represent the mean ± SD. *p < 
0.05. b The images represent 
the melting curve of the 12 
reference genes amplicons after 
the RT-qPCR reactions from 
one of 8 independent experi-
ments. (Color figure online)
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Table 3   Descriptive statistical analysis of candidates’ RGs by bestkeeper

Group Gene names Geomean Ar Mean Min [CP] Max [CP] STD [± CP] CV % Pearson 
coefficient 
[R]

P-value

M0 (N = 8) Actb 15.68 15.7 14.25 16.36 0.68 4.33 0.965 0.001
Gapdh 18.89 18.91 17.69 19.69 0.6 3.19 0.988 0.001
Eef1a1 25.6 25.61 24.22 26.44 0.68 2.66 0.973 0.001
Rplp0 18.73 18.74 18.06 19.42 0.51 2.73 0.749 0.033
Ppia 18.23 18.24 16.93 18.86 0.62 3.42 0.889 0.003
Hprt1 23.59 23.6 22.43 24.08 0.55 2.34 0.912 0.002
Gusb 21.22 21.23 19.89 21.99 0.64 3.03 0.826 0.012
Ywhaz 20.96 20.97 19.79 21.43 0.59 2.81 0.932 0.001
Ubc 19.44 19.46 17.92 20.42 0.71 3.62 0.988 0.001
B2m 16.14 16.16 14.92 17.54 0.62 3.81 0.983 0.001
Hmbs 27.23 27.26 25.65 30.35 0.84 3.08 0.88 0.004
Alsasl 23.22 23.31 21.42 29.02 1.43 6.12 0.75 0.032

M1 (N = 8) Actb 18.61 18.63 17.58 20.01 0.73 3.9 0.676 0.065
Gapdh 19.62 19.63 18.48 20.5 0.57 2.92 0.532 0.175
Eef1a1 28 28.01 27.27 29.69 0.62 2.22 0.731 0.039
Rplp0 20.2 20.23 19.02 21.67 1.07 5.28 0.001 0.996
Ppia 21.64 21.72 19.55 25.02 1.55 7.15 0.901 0.002
Hprt1 27.08 27.17 25.06 31.32 1.95 7.16 0.834 0.01
Gusb 26.64 26.77 24.15 31.79 2.27 8.46 0.873 0.005
Ywhaz 23.19 23.26 21.61 26.76 1.63 7 0.905 0.002
Ubc 20.35 20.37 19.11 21.98 0.73 3.57 0.896 0.003
B2m 16.69 16.71 16.01 17.98 0.66 3.92 0.834 0.01
Hmbs 29.7 29.71 28.99 31.72 0.61 2.04 0.681 0.063
Alsasl 23.99 24.04 22.99 28.48 1.11 4.62 0.823 0.012

M2 (N = 8) Actb 19.77 19.84 17.64 22.37 1.46 7.36 0.996 0.001
Gapdh 22.18 22.22 20.55 24.45 1.19 5.35 0.993 0.001
Eef1a1 28.08 28.11 26.33 30.11 1.21 4.32 0.994 0.001
Rplp0 23.4 23.47 20.03 25.17 1.59 6.77 0.263 0.528
Ppia 21.29 21.34 19.48 23.82 1.33 6.25 0.992 0.001
Hprt1 26.94 26.98 25.07 29.32 1.34 4.98 0.988 0.001
Gusb 23.95 23.99 21.99 25.75 1.25 5.22 0.984 0.001
Ywhaz 23.23 23.28 21.59 25.84 1.25 5.35 0.984 0.001
Ubc 21.5 21.56 19.75 24.16 1.31 6.09 0.994 0.001
B2m 17.71 17.78 15.93 21.2 1.35 7.59 0.969 0.001
Hmbs 29.29 29.32 27.44 31.94 1.23 4.21 0.966 0.001
Alsasl 25.41 25.43 23.98 26.41 1.05 4.11 0.922 0.001

Combination (N = 24) Actb 17.93 18.06 14.25 22.37 1.71 9.48 0.957 0.001
Gapdh 20.18 20.25 17.69 24.45 1.35 6.64 0.84 0.001
Eef1a1 27.2 27.24 24.22 30.11 1.28 4.68 0.954 0.001
Rplp0 20.69 20.82 18.06 25.17 2.02 9.71 0.644 0.001
Ppia 20.33 20.44 16.93 25.02 1.76 8.63 0.924 0.001
Hprt1 25.82 25.92 22.43 31.32 1.87 7.23 0.898 0.001
Gusb 23.84 24 19.89 31.79 2.26 9.43 0.753 0.001
Ywhaz 22.43 22.5 19.79 26.76 1.47 6.53 0.913 0.001
Ubc 20.41 20.46 17.92 24.16 1.11 5.45 0.933 0.001
B2m 16.83 16.88 14.92 21.2 1.06 6.26 0.863 0.001
Hmbs 28.72 28.76 25.65 31.94 1.41 4.89 0.881 0.001
Alsasl 24.19 24.26 21.42 29.02 1.58 6.53 0.731 0.001
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the selection of suitable RGs for the accurate quantitation 
and normalization in different macrophage cell types such 
as in rat osteoblasts [14], PMA-induced THP-1 macrophages 
[18], J774A1 macrophage cell line [16], LPS-stimulated 
murine macrophages [15], and differentiating osteoblasts, 
osteoclasts and macrophages under different biological 
conditions [17]. To our knowledge, selection and valida-
tion of stable RGs in polarized macrophages have not been 
performed. So, in this study, we aimed to validate reference 
genes in a well-established primary macrophage model, 
BMDMs (M0) and their polarized forms (M1 and M2 cells).

Reference genes refer to the genes whose expression 
level does not change under specific experimental condi-
tions which are selected from housekeeping genes with dif-
ferent functions. The large-scale gene expression data such 

as microarray can be used to identify condition-stable RGs 
[40, 41]. First, we compared 14 reference genes based on 
published microarray data of M0, M1, and M2 cells and 
found out that the expression levels of Tbp and Tfrc were 
too low to be used as suitable RGs in these three cell lines. 
The expression levels of Alas1 and Hprt1 in M0, M1, and 
M2 were different, suggesting that they do not qualify as 
RGs in polarized macrophages. But the stability of these 
two genes needs further RT-qPCR verification to confirm, 
so we designed 12 reference gene primers except Tbp and 
Tfrc to evaluate their gene stability in M0, M1, and M2 cells. 
Gapdh and Actb are the two most widely used reference 
genes [42], but it has been proven that they are not the most 
stable RGs, even under certain experimental conditions they 
appeared to be the most unstable genes [16]. In this study, 

Table 4   Overall rankings of candidate genes in all samples by Bestkeeper

Ranking M0 M1 M2 Combination

Genes std dev [± CP] Genes std dev [± CP] Genes Std Dev [± CP] Genes Std Dev [± CP]

1
211

Rplp0 0.51 Gapdh 0.57 Alsasl 1.05 B2m 1.06

2 Hprt1 0.55 Hmbs 0.61 Gapdh 1.19 Ubc 1.11
3 Ywhaz 0.59 Eef1a1 0.62 Eef1a1 1.21 Eef1a1 1.28
4 Gapdh 0.6 B2m 0.66 Hmbs 1.23 Gapdh 1.35
5 Ppia 0.62 Actb 0.73 Gusb 1.25 Hmbs 1.41
6 B2m 0.62 Ubc 0.73 Ywhaz 1.25 Ywhaz 1.47
7 Gusb 0.64 Rplp0 1.07 Ubc 1.31 Alsasl 1.58
8 Actb 0.68 Alsasl 1.11 Ppia 1.33 Actb 1.71
9 Eef1a1 0.68 Ppia 1.55 Hprt1 1.34 Ppia 1.76
10 Ubc 0.71 Ywhaz 1.63 B2m 1.35 Hprt1 1.87
11 Hmbs 0.84 Hprt1 1.95 Actb 1.46 Rplp0 2.02
12 Alsasl 1.43 Gusb 2.27 Rplp0 1.59 Gusb 2.26

Table 5   Overall ranking of candidate genes in all samples by GeNorm analysis

Ranking M0 M1 M2 Combination

Gene name Stability value Gene name Stability value Gene name Stability value Gene name Stability value

1
211

Hprt1 | Ywhaz 0.091 Ubc | B2m 0.301 Ppia | Ubc 0.13 Ubc | B2m 0.352

1 Ywhaz B2m Ubc B2m
3 Ppia 0.123 Actb 0.331 Ywhaz 0.144 Gapdh 0.647
4 Actb 0.167 Gapdh 0.388 Hprt1 0.156 Eef1a1 0.78
5 Gapdh 0.182 Eef1a1 0.444 Gapdh 0.17 Actb 0.869
6 Eef1a1 0.195 Hmbs 0.58 Eef1a1 0.2 Hmbs 0.944
7 Ubc 0.205 Rplp0 0.765 Gusb 0.231 Ywhaz 1.024
8 Gusb 0.23 Alsasl 0.97 Actb 0.257 Ppia 1.088
9 B2m 0.266 Ywhaz 1.165 Hmbs 0.283 Hprt1 1.147
10 Rplp0 0.335 Ppia 1.268 B2m 0.322 Alsasl 1.241
11 Hmbs 0.46 Hprt1 1.403 Alsasl 0.388 Rplp0 1.401
12 Alsasl 0.714 Gusb 1.529 Rplp0 0.7 Gusb 1.542
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Fig. 3   Graphical presentation of stability value by GeNorm. a Show-
ing the ranking of the12 reference by geNorm software, with the most 
stable toward the right and least toward the left. b Determination of 
the minimal number of reference genes by pairwise variation (Vn/n + 
1). It was shown the determination of the optimal number of house-
keeping genes by pairwise variation. A cut-off value of 0.15 was set. 

The V value defined the pair-wise variation between two sequential 
normalization factors. The two most stably expressed reference genes 
may be accurate for qRT-PCR normalization. More reference genes 
for qRT-PCR normalization will not increase the stability of reference 
genes

Table 6   Overall ranking of candidate genes in all samples by NormFinder analysis

Ranking M0 M1 M2 Combination

Gene name Stability value Gene name Stability value Gene name Stability value Gene name Stability value

1 Ubc 0.076 Ubc 0.504 Gapdh 0.084 Eef1a1 0.422
2 Gapdh 0.076 B2m 0.652 Eef1a1 0.089 Ubc 0.627
3 B2m 0.12 Eef1a1 0.795 Gusb 0.154 Ywhaz 0.653
4 Eef1a1 0.128 Hmbs 0.821 Ubc 0.16 Actb 0.766
5 Actb 0.196 Actb 0.922 Ppia 0.17 Hmbs 0.776
6 Ywhaz 0.322 Gapdh 1.049 Hprt1 0.209 Ppia 0.836
7 Hprt1 0.378 Ppia 1.079 Ywhaz 0.222 B2m 0.896
8 Ppia 0.419 Ywhaz 1.083 Actb 0.313 Gapdh 1.085
9 Gusb 0.545 Alsasl 1.112 Hmbs 0.387 Hprt1 1.113
10 Rplp0 0.594 Hprt1 1.7 B2m 0.561 Alsasl 1.443
11 Hmbs 0.793 Rplp0 1.821 Alsasl 0.577 Rplp0 2.033
12 Alsasl 1.97 Gusb 2.053 Rplp0 2.243 Gusb 2.096
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these two genes were also used and our results revealed that 
the expression stability of Actb in M0, M1 and M2 cells is 
strikingly similar to Gapdh even though they are not the 
most stable ones. We have realized that this result corrobo-
rates another previous study [15]. These findings also sug-
gested the necessity of evaluating reference genes used for 
qPCR evaluation, even if they are traditionally used refer-
ence genes.

To our knowledge, a lot of software such as RefFinder, 
NormqPCR, RefGenes, OLIVER, GeNorm, BestKeeper, and 
NormFinder had been developed for stable reference gene 
selection. The grading of RG stability may vary due to the 
discrepancies of the above methods. There is no one com-
putational program or statistical tool universally accepted 
to analyze gene expressions for specific experiments. A 
lot of studies including our previous study [20], usually 

employ several applets to determine gene expression stabil-
ity. NormFinder [21], GeNorm [22], BestKeeper software 
[23] along with the delta CT [24] and RefFinder method 
[25, 26] are the most commonly used method to rank the 
stability of reference gene expression. These five methods 
were explored in our study to determine the most stable ref-
erence genes in M0, M1 and M2 cells. After over ranking 
of these methods, our results revealed that Ubc followed by 
Eef1a1 and B2m respectively were the three most stable 
RGs. This result is peculiar compared to other studies which 
selected reference genes in a different type of macrophages 
[14–17]. In rat osteoblasts [14], the researcher compared 31 
reference genes in bone marrow osteoblasts, calvarial osteo-
blasts, and UMR-106 osteoblasts evaluated byΔCt method, 
DataAssist™, NormFinder and BestKeeper methods. They 
revealed that Eif2b1was the most stable reference gene, and 

Table 7   The stability expression 
results detected by the 
comparative CT method (∆CT 
method)

Ranking M0 M1 M2 Combination

Genes Average of 
STDEV

Genes Average of 
STDEV

Genes Average of 
STDEV

Genes Average of 
STDEV

1 Gapdh 0.48 Ubc 1.18 Ppia 0.47 Eef1a1 1.22
2 Actb 0.49 B2m 1.18 Gapdh 0.47 Ubc 1.24
3 Ubc 0.5 Actb 1.29 Ubc 0.48 Ywhaz 1.29
4 Eef1a1 0.5 Eef1a1 1.29 Hprt1 0.49 Ppia 1.35
5 Ywhaz 0.51 Gapdh 1.37 Ywhaz 0.49 Hmbs 1.37
6 Hprt1 0.53 Hmbs 1.38 Eef1a1 0.5 B2m 1.37
7 Ppia 0.55 Ywhaz 1.51 Gusb 0.55 Actb 1.37
8 B2m 0.57 Ppia 1.51 Actb 0.58 Gapdh 1.5
9 Gusb 0.64 Alsasl 1.62 Hmbs 0.59 Hprt1 1.51
10 Rplp0 0.79 Hprt1 1.88 B2m 0.71 Alsasl 1.79
11 Hmbs 1.03 Rplp0 1.97 Alsasl 0.81 Rplp0 2.24
12 Alsasl 1.98 Gusb 2.16 Rplp0 2.26 Gusb 2.25

Table 8   Overall ranking of 
candidate genes in all samples 
by RefFinder- comprehensive 
ranking methods

Ranking M0 M1 M2 Combination

Genes Geomean 
of ranking 
values

Genes Geomean 
of ranking 
values

Genes Geomean 
of ranking 
values

Genes Geomean 
of ranking 
values

1 Gapdh 2.51 Ubc 1.57 Gapdh 2.11 Ubc 1.68
2 Hprt1 3.03 B2m 2 Ppia 2.51 Eef1a1 1.86
3 Ywhaz 3.08 Gapdh 3.31 Ubc 3.03 B2m 2.55
4 Ubc 3.81 Eef1a1 3.66 Eef1a1 3.83 Ywhaz 4.41
5 Actb 4.23 Actb 3.87 Ywhaz 4.79 Hmbs 5.23
6 Eef1a1 5.42 Hmbs 4.12 Hprt1 5.42 Gapdh 5.26
7 Rplp0 5.62 Ppia 8.43 Gusb 5.45 Actb 5.79
8 Ppia 5.63 Ywhaz 8.43 Alsasl 6.04 Ppia 6.45
9 B2m 5.73 Alsasl 8.49 Hmbs 7.35 Alsasl 9.15
10 Gusb 8.21 Rplp0 8.77 Actb 8.66 Hprt1 9.24
11 Hmbs 11 Hprt1 10.49 B2m 10 Rplp0 11
12 Alsasl 12 Gusb 12 Rplp0 12 Gusb 12
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Rps17 was the least stable gene. In PMA-induced THP-1 
macrophages [18], using GeNorm, NormFinder and Best-
Keeper, the author found that β-actin and RPL37A were the 
two most stable reference genes But in J774A1 macrophage 
cell line [16] indifferent culture condition, the most stability 
gene was β-actin and B2M. Alexandre S Stephens showed 

that the most stable gene in bone marrow macrophage were 
Hprt1/B2m by GeNorm which is similar to our result [17]. 
In our result we showed that in M0 cells the most stable gene 
was Hprt1/Ywhaz. However in LPS stimulated BMDMs, the 
Hnrnpab and Stx5a were better [15]. In LPS treated RAW 
264.7 cells and peritoneal macrophages [15], the stability of 
reference genes were various due to the software selected, 
the cell type, the candidate reference gene selected and the 
culture conditions. And there was no comparable to our data. 
And all of the results suggested, the most stable RG is dif-
ferent in various macrophage cell types. The reasons were 
including peculiarities of cells, the analytical method, the 
candidate reference gene selected and different treatment 
conditions. These indicate that reference gene selection in 
macrophages of the different experimental conditions is 
necessary with over-ranking methods and enough candidate 
reference gene selected. This requires us to carry out routine 
internal reference gene screening on macrophages in dif-
ferent experimental conditions, to ensure the accuracy and 
reliability of qPCR results.

As far as we know, this is the first attempt to select and 
validate suitable RGs for RT-qPCR analysis in M0, M1 and 
M2 murine macrophages. Since distinct experimental set-
tings in macrophages require individual validation of inter-
nal control genes and more and more methods were used for 
stable genes selection, we believe that another promising 
candidate reference gene stably expressed in macrophage 
and polarized macrophages may exist. Most importantly, 
reference genes selected from a large number of house-
keeping genes by high-throughput technologies was needed 
and this alternative approach can be robust. Several studies 
had already shown that the NCBI GEO database is avail-
able for the discovery of novel reference genes [15, 40, 41] 
and RNA-seq has been more widely used for selecting sta-
ble reference genes from a large number of reference genes 
[43–45]. But reference genes selected by the above high-
throughput technologies in M0, M1 and M2 murine mac-
rophages were still needed to be validated.

Here we performed RT-qPCR using 2−ΔΔCt methods to 
determine mRNA level of three target genes NLRP1, IL-1β 
and TNF-α based on three reference genes with different 
levels of stability. Interestingly, the gene expression levels in 
M1 and M2 were significantly different when RGs with dif-
ferent stability were used, which means that it is really nec-
essary to select and validate suitable RGs before RT-qPCR 
analysis. But unfortunately, only a few researchers provided 
evidence for RG selection. Hence forth, our results will be 
very helpful in guiding investigators to select the appropriate 
RGs to accurately quantify mRNA in studies involving M0, 
M1 and M2 murine macrophages. Lastly, what we want to 
achieve more is to encourage researchers to ascertain RGs 
stability before gene expression analysis for every experi-
mental setting.
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Fig. 4   Relative gene expression levels of IL-1β, TNF-αand NLRP-
1gene using reference genes with different stability based on the 2−

ΔΔCt method. For normalization, the most (Ubc) and least consistently 
expressed reference genes (Gusb) and the traditionally used reference 
gene Actb which ranked in the midway were used for the calculation 
of ΔCt. Bars represent the mean ± SD. *p < 0.05, **p < 0.01, ***p 
< 0.001
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Conclusion

Our study has clearly shown that Ubc followed by Eef1a1 
were recognized as the two ideal RGs for mRNA level 
analysis in M0, M1, and M2 cells. Our results showed 
strong variation in fold changes of NLRP1, IL-1β, and 
TNF-α when reference genes with different stability were 
used in M1 and M2 cells. Our study indicates that it is 
necessary to carefully select RGs for gene expression nor-
malization by RT-qPCR study.
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