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Abstract
Developing gene transfer technologies enables the genetic manipulation of the living organisms more efficiently. The meth-
ods used for gene transfer fall into two main categories; natural and artificial transformation. The natural methods include 
the conjugation, transposition, bacterial transformation as well as phage and retroviral transductions, contain the physical 
methods whereas the artificial methods can physically alter and transfer genes from one to another organisms’ cell using, for 
instance, biolistic transformation, micro- and macroinjection, and protoplast fusion etc. The artificial gene transformation 
can also be conducted through chemical methods which include calcium phosphate-mediated, polyethylene glycol-mediated, 
DEAE-Dextran, and liposome-mediated transfers. Electrical methods are also artificial ways to transfer genes that can be 
done by electroporation and electrofusion. Comparatively, among all the above-mentioned methods, electroporation is being 
widely used owing to its high efficiency and broader applicability. Electroporation is an electrical transformation method by 
which transient electropores are produced in the cell membranes. Based on the applications, process can be either reversible 
where electropores in membrane are resealable and cells preserve the vitality or irreversible where membrane is not able to 
reseal, and cell eventually dies. This problem can be minimized by developing numerical models to iteratively optimize the 
field homogeneity considering the cell size, shape, number, and electrode positions supplemented by real-time measurements. 
In modern biotechnology, numerical methods have been used in electrotransformation, electroporation-based inactivation, 
electroextraction, and electroporative biomass drying. Moreover, current applications of electroporation also point to some 
other uncovered potentials for various exploitations in future.

Keywords  Artificial gene transfer methods · Electrofusion · Electropores · Field strength · Natural gene transfer methods · 
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Introduction to gene transfer methods

Various natural and artificial methods have been employed 
to transfer DNA, RNA, and other desired molecules into the 
cells [1, 2]. Each method possessed its own advantages and 
disadvantages in terms of transfected cell type and trans-
fection efficiencies, thereby choosing the most convenient 
method were of higher importance for successful applica-
tions [3–5]. Mainly, DNA is the mostly studied transferred 
molecule because it carries the hereditary information deter-
mining the fate of cell and subsequently the whole organism. 

To date, great number of successful applications to intro-
duce the exogenous DNA into cells have been achieved and 
allowed to acquire transgenic organisms with stable gene 
expressions [4, 6, 7]. The techniques used for DNA trans-
fer varies depending on type and species of the organism, 
However, all the available used techniques can be catego-
rized under two main methods of DNA transfer, namely; (i) 
natural (ii) artificial methods [1].

Natural methods for DNA transfer

Selecting the most suitable method in DNA transfer is an 
important initial step upon which the success of transfec-
tions depends on. Besides, some other factors to be consid-
ered for successful applications include the target cell type, 
transfection endurance (stable or transient), gene selection 
and isolation, recombinant DNA preparation, identification 
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of transformed cells, and regeneration of transposed organ-
ism [3, 8]. There has been six known methods in natural 
DNA transfer; (i) conjugation [9], (ii) transposition [10], 
(iii) Agrobacterium-mediated transfer [11, 12], (iv) bacterial 
transformation [13], (v) phage transduction [14] and (vi) 
retroviral transduction [15, 16]. Conjugation is a process of 
transferring genetic material from a donor cell to a recipient 
cell using a bridge-like connection or by direct cell-to-cell 
contact [9]. A common way for bacteria to achieve this con-
nection to a recipient cell is by the employment of their pili, 
which are external appendages with similar helical structure 
but in different sizes. Bacterial conjugation provides the hor-
izontal gene transfer [9, 17]. Transposition is the movement 
of transposable elements (TEs). Those elements are basically 
discrete DNA segments with capabilities of moving, copy-
ing, and inserting themselves within genomes [10, 18]. They 
have been shown to play important roles in genome func-
tion and evolution [19]. Agrobacterium-mediated transfer is 
the transfection of desired DNA into the target cells mostly 
using bacteria Agrobacterium tumefaciens and A. rhizogenes 
which are the causal agents of crown gall disease and hairy 
root formation [11, 12, 20]. Agrobacterium DNA transfer 
capability has been extensively used in biotechnological 
studies as a means to insert the foreign genes to the plants 
[12, 21]. Bacterial plasmid T-DNA with inserted desired 
gene transfects the host DNA to transfer the target gene [22]. 
Bacterial genetic material transformation is a natural method 
in which bacteria take up the environmental DNA fragments 
of other microorganism, which have been left dead or lysed 
and incorporate them into their genomes by recombination. 
This process is important for improving the genetic diversity 
as well as providing chromosomal repair in bacterial cells [9, 
13]. Phage transduction involves the DNA transfer from one 
bacterium to another via bacteriophage, which is basically a 
viral infection that causes the transferring of genetic materi-
als into the affected bacterial cells [14]. Bacteriophages pro-
vide the horizontal gene transfer through transduction mech-
anism. Both donor and recipient are needed to be susceptible 
to infection by same phage. Phage is reproduced in donor 
and subjected to the recipient cells at different multitudes of 
infection [14, 23, 24]. However, it includes the transfer of 
DNA by a viral vector retrovirus, which is a single-stranded 
positive-sense RNA virus. Retrovirus is one of the mainstays 
in current gene therapy applications [15, 16, 25].

Artificial methods for DNA transfer

Developing gene transfer technologies have substantially 
paved the way to genetically manipulate the higher organ-
isms. Many artificial methods for DNA transfer have been 
developed. Artificial methods are categorized based on their 
applications. They are physical, chemical, and electrical 

methods [26–28]. Those methods are classical and power-
ful tools commonly used in gene transfer applications with 
their own advantages and disadvantages. The physical meth-
ods include the biolistic transformation [29], macroinjec-
tion [30], microinjection [31, 32], and protoplast fusion [33]. 
Biolistic transformation (or more commonly referred to as 
particle bombardment) employs the accelerated micropro-
jectiles directly to the target DNA or other molecules into the 
cells [26, 29]. The DNA in which needed to be transferred 
is coated on microscopic beads, the beads then attached to a 
plastic bullet and loaded in the gene gun. As the gun is fired, 
the DNA coated beads penetrate into the cytoplasm. The 
DNA then disassociate from the beads and join the genome 
of the transferred cells [26, 34, 35]. Macroinjection is the 
transfer of DNA using needles with greater diameters than 
cell’s. In plants, the technique was reported to be success-
ful in rye (Secale cereale L.) and other economical plants 
[30]. Contrarily, in microinjection, DNA is injected into the 
cells using very fine needles or glass micropipettes with 
0.5–10 μm diameter [31, 32]. Protoplast fusion (or somatic 
fusion) is the fusion of two distinct plant species using elec-
tric shock or chemical treatment to a plant [33].

The chemical methods of genetic transformation include 
the calcium phosphate-mediated transfer [36], polyethylene 
glycol-mediated transfer [27], DEAE-Dextran mediated 
transfer [37], and liposome-mediated transfer [38]. Calcium 
phosphate-mediated transfer involves the mixture of desired 
DNA with calcium chloride and potassium phosphate solu-
tions to form the calcium phosphate precipitate. Then, cells 
incubated with precipitated DNA are taken inside the tis-
sues by endocytosis [36, 39]. Polyethylene glycol (PEG)-
mediated transfer is a method that is particularly used to 
transfer genes into the protoplasts. Initially, the protoplasts 
are soaked in PEG-containing solution that facilitate the 
endocytosis after which DNA uptake occurs [40, 41]. In 
DEAE-Dextran mediated transfer, DEAE-Dextran is applied 
as transfection medium, which is commercially available at 
low cost simple and relevant for transient cells [37]. Lipo-
some-mediated transfer is performed by artificial lipid vesi-
cles known as liposomes that function as delivery agents for 
exogenous materials [38]. Liposomes surround the delivery 
molecule and enable its transfer via fusion with cell mem-
brane. The positively charged cationic lipids can more read-
ily interact with negatively charged cell membranes, result-
ing in fusion and discarding all of its content (e.g., DNA) 
across the plasma membrane [42]. The electrical transforma-
tion methods include the electrofusion and electroporation 
[28]. Electrofusion provides the electric field-induced cell-
to-cell fusion and electroporation allows the electric field-
mediated membrane permeabilization [43]. Both methods 
produce the transient, unstable regions in plasma membranes 
allowing the passage of molecules to be transported [44, 45].
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Currently, target-specific genome editing tech-
niques  (Next generation gene transfer methods) were 
announced as new methods of recombinant DNA tech-
nology. These are site-specific editions applying chimeric 
meganucleases such as zinc-finger nucleases (ZFNs), tran-
scription activator-like effector nucleases (TALENs), and 
clustered regularly interspaced short palindromic repeat 
(CRISPR)/Cas (CRISPR-associated) systems, which are 
based on RNA-guided DNA endonucleases [46].

Target-specific genome editing technologies first produce 
DNA double-strand breaks at target site, which activate plant 
DNA repair mechanism to join the DNA break. The broken 
DNA is joined by either homologous recombination or non-
homologous end joining [47]. The main benefits of these 
methods are that we can produce transgene-free genetically 
modified (GM) plants which, are not disturbed to regulatory 
issues [48, 49].

Electroporation

Electroporation is an electrical transformation method by 
which transient pores are produced in plasma membranes of 
prokaryotic and eukaryotic cells [28, 50, 51]. The applied 
field creates the microscopic pores or electropores in cell 
membrane, which allow the passage of micro- or macro-
molecules in and/or outside cells [52] (Fig. 1). Electrically 
induced formation of aqueous pores in the lipid bilayer, with 
water molecules first penetrating the bilayer and thus form-
ing unstable hydrophobic pores, and with adjacent lipids 
then reorienting with their polar headgroups toward these 
water molecules and thus forming a metastable hydrophilic 
pore [45, 53]. This reorientation occurs because the energy 
needed to form an aqueous pore is reduced as the trans-
membrane voltage is increased and the energy required 
maintaining the circumference of a large hydrophilic pore 
is significantly lower than that required to maintain a large 
hydrophobic pore [51]. 

Under optimized electric pulse, electropores can be 
resealable and cells can be recovered (Fig. 2). However, 
none suitable electric currents (e.g., very high electric field 
strength) cause the cells to dramatically overheat, resulting 
in the cell deaths [54]. Since the electropore formations are 
associated with the amplitude and electric pulse duration 
applied, this heating effect can be minimized by adopting 
relatively high amplitude with a short duration pulse or by 
using two short duration pulses [55]. Thus, depending on 
the intensity of electric field and duration, the process can 
be either reversible where electropores in the membrane are 
resealable and the cells preserve the vitality or irreversible 
where the membrane is not able to reseal and the cell even-
tually dies [56]. Depending on the duration of the pulse, 

resealing is a relatively long process (> 1 s) when compared 
with the pore formation (ms or µs) [52].

This method has found common grounds and increas-
ing applications in biology, medicine, and biotechnology 
because of its advantages such as rapid application, low 
cost, applicability to many cell types, suitability for large 
number of cells, and providing high stable transformation 
percentage [51, 57]. From biotechnological perspective, four 
main application areas have been reported for electropora-
tion [44].

	 I.	 In electrotransformation using reversible electropora-
tion method, desired exogenous DNA can be trans-
fected into the target cells for purposes such as bio-
molecules production [58], adaptation [59], and basic 
research [60]. Moreover, electrotransformation of A. 
tumefaciens eliminates the Escherichia coli transfor-
mation step, thus providing a faster and simpler clon-
ing routine [61].

	 II.	 In electroporation-based inactivation exposing strong 
and long enough electric pulse to microorganisms 
inhibit their cellular activities, which can be exploited 
for wastewater treatment [62, 63], using irreversible 
electroporation as a substitute for chlorination of 
water [64], and non-thermal food pasteurization [65, 
66].

	 III.	 In electroextraction electroporation can be used 
to extract the potential source of biomolecules for 
industry from bacteria [67, 68], microalgae [69–71], 
yeast [72, 73], and multicellular tissues [74, 75].

	 IV.	 Electroporative biomass drying facilitate the water 
release from tissue, thereby, significantly contributing 
to energy savings in drying process [75, 76].

Electroporation process is performed by using an elec-
troporator device, which typically consists of three main 
parts, (i) a pulse power supply, (ii) electroporation cuvettes, 
and (iii) electrodes [77] (Fig. 3). The pulse power supply 
harbors the all control units (e.g., electrical pulse settings). 
Firstly, the target cell suspension is pipetted into the plas-
tic or glass cuvette. Secondly, the adjusted electric pulse 
settings are applied to the cells via electrical conductors, 
electrodes, and this process necessitates a direct contact 
between cell suspension and electrodes [78]. Every cell type 
has a distinctive field strength based on the applied pulse 
parameters (e.g., voltage, resistance and capacitance) and 
an optimal field strength causes the electropermeabiliza-
tion by induction of transmembrane voltage [52]. In elec-
trotransformation of nucleic acids, electroporators are often 
employed with three different electrical wave pulse forms i.e. 
time constant, square wave, and exponential decay [79]. In 
time constant pulse, a constant pulse is applied to the cells 
to be electrotransformed at a certain set of voltage and time 



3198	 Molecular Biology Reports (2020) 47:3195–3210

1 3

[50, 80]. Square wave pulse is characterized by the volt-
age applied, the pulse duration and number, and the inter-
val lengths between pulses [81, 82]. In exponential decay 
pulse, the adjusted voltage released from capacitor rapidly 
and exponentially decays over time [83, 84]. Field strength 
(kV cm−1) and time constant are two important parameters 
that characterize the pulse delivered. These settings thus can 
be adjusted to achieve the ideal transfection efficiencies in 
various cell types [79].

As mentioned above, penetration of water molecules into 
lipid bilayer initiates the electroporation process, by causing 
the reorientation of adjacent lipids toward water molecules 

[45, 85, 86]. The thermodynamics govern the pore forma-
tions thereby it is not only attributable to a certain electric 
threshold [85, 87]. However, electroporation-derived trans-
port is strongly correlated with the electric field-induced 
transmembrane voltage [88, 89]. The four ranges of electric 
field strength are reported each with typical characteriza-
tions [50]. In no detectable scale, electropores are too small 
and short-lived to be quantified for transport. In reversible 
scale, electropores allow a temporary passage for transport 
and then they are resealed and recovered. In non-thermal 
irreversible scale, electropores do not reseal or slowly close, 
causing the cells to break and release their contents but they 

Fig. 1   a Basic structure of plasma membrane, b Arrangement of 
plasma membrane lipids in a hydrophilic pore (1) and hydrophobic 
pore (2) during the pulse and transferring of DNA, RNA, enzyme, 

antibody, and some chemicals (e.g., hormone) into cell (Copyrighted 
illustration from Professor Ozyigit)
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are not thermally damaged. In thermal irreversible scale, 
applied electric current causes the thermal damage e.g., pro-
tein denaturation at > 50 °C and DNA melting at > 70 °C 
[58, 90–92].

In addition, above-defined ranges also partly overlap with 
each other because electroporation is a stochastic process, 
affected by cell type, size, mediated-medium and electri-
cal conductivity, solutes-contained and osmolarity [45, 
53]. Moreover, to obtain an ideal uniform electroporation is 
hard since tissues have various cell types and varying spatial 
organizations due to gap junctions. Thus, despite the homo-
geneous application of external electric field, inside cells 
they are non-homogeneously distributed, leading more elec-
troporation of some cells than others [93–95]. To minimize 
this, numerical models must be developed to iteratively opti-
mize field homogeneity considering the size, shape, number 
of cells, and electrode positions as well as complemented by 
real-time measurements [96–98].

For optimal transformation efficiency, field strengths 
and pulse durations mainly range of 1–20 kV cm−1 and 
1–30 ms respectively but optimal values are empirically 
determined [99]. This efficiency reduces with the thickness 
or layers of membranes covering the recipient DNA [100], 
thereby gram-negative bacteria have the highest efficiency 
with 107–1010 transformants per mg DNA but it is lower 
for gram-positive bacteria and archaea due to their thick 
cell walls (105–107), and even lower (104–107) for yeasts 

Fig. 2   Membrane before electric pulse (a), electropore formations 
under electric pulse (b) and resealing and recovering after the pulse 
(c) (Copyrighted illustration from Professor Ozyigit)

Fig. 3   Gene Pulser Xcell™ 
Electroporation Systems (a) and 
its accessories. Electropora-
tion plate (b), Cuvettes (c) and 
Cuvette chamber (d) (With the 
permission of Bio-Rad Labora-
tories, Inc.)
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and microalgae due to their nuclear membranes [101, 102]. 
The use of electroporation is higher for smaller organ-
isms such as bacteria and archaea with 5–20 kV cm−1, and 
microalgae and yeasts with 1–12 kV cm−1. The supercoiled 
circular dsDNA has the highest transformation efficiency 
but it is lower for circular ssDNA, relaxed circular dsDNA, 
and linear dsDNA with homologous/non-homologous ends 
[103, 104]. The divalent cations such as Mg2+ and Ca2+ 
can be avoided since they interact with DNA [105]. To 
some limited extend, transformation efficiency can be 
increased by hyperosmolarity [106, 107] and chemical 
pretreatments [84, 108]. All these considerations require 
a better and deeper understanding of electroporation and 
its effects on cell membranes or cell walls.

In vascular plant species, different pulses were varied in 
a range of field strengths and pulse durations related to cell 
types (stomata guard cell, anther, microspore, zygote, mature 
and/or immature embryo, mesophyll, nodal meristems) their 
derivates (callus, protoplast) and applied organelle (chlo-
roplast and/or mitocondria). Some applications in selected 
literature are given below.

•	 In Solanum dulcamara L. (Bittersweet nightshade) and 
Prunus avium x pseudocerasus (Colt cherry), the dura-
tion of the pulse decay constant was 10–50 µs by dis-
charging 10–50 nF capacitors at voltages from 250 to 
2000 V cm−1, respectively [109, 110].

•	 In Beta vulgaris L. (Sugar beet) and Nicotiana tabacum 
L. (Tobacco), rectangular pulses were varied in a range of 
field strengths between 70–300 V mm−1 and pulse dura-
tions between 25–1000 µs while exponentially decaying 
pulses were produced using a capacitor of 800 µF and the 
pulse length was 22.4 ms [111].

•	 In Eucalyptus citriodora (Hook.) K.D. Hill & L.A.S. 
Johnson (Lemon-scented eucalyptus), rectangular 
pulses were applied at a range of voltages between 400–
1600 V cm−1 with pulse durations of 100–2000 µs [112].

•	 In interspecific hybrid of Poaceae family member Sac-
charum spp. (Sugarcane) protoplasts, 5–10 ms pulses 
were used at voltages from 385 to 540 V cm−1[113].

•	 In Zea mays L. (Maize), one successive pulse at 
375 V cm−1 from a 900 µF capacitor was applied [114].

•	 In Triticum aestivum cv. Hartog (Wheat), the pulse length 
was 3 ms by discharging 120 µF capacitor at 667 V cm−1 
voltage [115].

•	 In S. officinarum L., the pulses were at a range of voltages 
between 600–850 V cm−1 and capacitances of 440, 660, 
and 880 µF were evaluated [116].

•	 In Hordeum vulgare L. (Barley), the pulses were applied 
at the voltage of 670 V cm−1 by discharge of a 200 µF 
capacitor [117].

•	 In the leaf protoplasts of Vitis sp. (Grapevine), one pulse 
was at 150, 174, and 200 V cm−1  and 150 or 175 µF, and 

in embryogenic protoplasts, one pulse was at 200 V cm−1 
and 100 or 150 µF [118].

•	 In N. tabacum L., the pulses were applied at a voltage of 
900 V cm−1 by discharge of a 21 µF and a pulse time of 
13 ms [119].

•	 In H. vulgare L., the pulses were used at a range of volt-
ages 500, 750, and 1000 V cm−1 with two capacitance 
values of 500 and 960 µF [120].

•	 In H. chilense Roem. x T. turgidum L. Conv. durum 
(Tritordeum), a single electric pulse of field strength at 
550 V cm−1 was discharged from a 960 µF [121].

•	 In Asparagus officinalis L. (Sparrow grass), the pulses 
were applied at a range of voltages 250, 500, 750, 1000, 
1500, or 2000 V cm−1 by discharging of 25, 50, 75, 100, 
or 125 µF capacitors [122].

•	 In Citrus sinensis L. (Sweet orange), a single exponential 
pulse with a 500 V cm−1 field strength and three capaci-
tors (250, 500, and 960 µF) were tested [123].

•	 In Pelargonium × hortorum ‘Panaché Sud’, the pulses 
were tested at a range of voltages between 250–
300 V cm−1 by discharging 10, 33, and 50 µF capacitors 
[124].

•	 In Pinus armandii Franch. (Armand pine), the pulses 
were practiced at the voltage of 375 V cm−1 by discharg-
ing of 900 µF capacitor [125].

•	 In Gentiana kurroo Royle (Himalayan gentian), the dura-
tion of the pulse decay constant was between 20–40 µs 
and 1–5 ms at voltages from 0 to 1.75 kV cm−1, respec-
tively [126].

•	 In Arabidopsis thaliana Heynh., the standard electropora-
tion program was consisting of 375 V cm−1 (150 V set-
ting), 10 ms and 50 ms for poring pulses, and 50 V cm−1 
(20 V setting), and 50 ms for transferring a square wave 
pulse [127].

Although principles of electroporation extend to the sec-
ond half of the twentieth century, its real applications in 
biotechnology and other areas have been recently emerg-
ing. The spontaneous transform of foreign genes in micro-
organisms provided motivation to develop more controlled 
transformation methods [44]. Various physical and chemi-
cal approaches have been proposed but by mid-1980s trans-
formation with electric field or electrotransformation has 
come forward because of its efficiency and applicability 
[99]. Despite some limitations, electrotransformation has 
been effectively used in bacteria; Brevibacterium lacto-
fermentum [128], Corynebacterium glutamicum [129], 
Mycobacterium aurum [130] (Actinobacteria), Bacteroides 
fragilis [131], B. ruminicola and B. uniformis [132], Prevo-
tella ruminicola [133] (Bacteroidetes), Chlamydia psittaci 
[134], C. trachomatis [135] (Chlamydiae), Chlorobium 
vibrioforme [136] (Chlorobi), Spirulina platensis [137], Fre-
myella diplosiphon [138], Synechococcus elongatus [139] 
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(Cyanobacteria), Deinococcus radiodurans [140], Ther-
mus thermophilus [141] (Deinococcus-Thermus), Bacillus 
cereus [142], Clostridium perfringens [143], Enterococcus 
faecalis [144], Lactobacillus acidophilus [145], L. brevis, 
L. bulgaricus, L. casei, L. plantarum [146, 147], Listeria 
monocytogenes [148], Streptococcus pyogenes [149], S. 
thermophilus [150], (Firmicutes), Fusobacterium nucleatum 
[151] (Fusobacteria), Planctomyces limnophilus [152, 153] 
(Planctomycetes), Campylobacter jejuni [154], Escherichia 
coli [155], Klebsiella pneumoniae [101], Pseudomonas 
fluorescens [156], Salmonella typhimurium and S. typhi 
[157], Sinorhizobium meliloti [158], Thiobacillus neapoli-
tanus [159], Yersinia pestis [160] (Proteobacteria), Borrelia 
burgdorferi [161] (Spirochaetes), Mycoplasma pneumoniae 
[162] (Tenericutes), Thermotoga neapolitana [163] (Ther-
motogae), archaea; Metallosphaera sedula [164], Sulfolo-
bus islandicus [165], S. solfataricus [166] (Crenarchaeota), 
Methanococcus voltae [167], (Euryarchaeota), microalgae; 
Ankistrodesmus falcatus [168], Auxenochlorella protothe-
coides [169], Chlamydomonas reinhardtii [170], Chlorella 
ellipsoidea [171], C. vulgaris [172], Dunaliella salina [173], 
Scenedesmus obliquus [174] (Chlorophyta), Nannochlorop-
sis sp.[175], Phaeodactylum tricornutum [176] (Heterokon-
tophyta), Cyanidioschyzon merolae [177] (Rhodophyta), 
and yeasts; Candida albicans [178], C. maltosa [179], 
Hansenula polymorpha [180], Pichia pastoris [181], Sac-
charomyces cerevisiae [182], Schizosaccharomyces pombe 
[183] (Ascomycota), Cryptococcus neoformans [184], 
Pseudozyma antarctica [185], P. flocculosa [186] (Basidi-
omycota) as mostly reported by Kotnik et al. [44] and other 
researchers given above. Known of these limitations was 
mainly derived from species sensitivity for usual electropo-
ration process or its resistance for pore formation [187–189].

In human tissues, electroporation is efficient, feasible, and 
tolerable, and mostly used clinical application is electro-
chemotherapy (ECT). Electrochemotherapy has the capabil-
ity to develop the efficacy of drugs that have impeded trans-
port through the plasma membrane to treat tumors [92, 190]. 
Additionally, reversible electroporation is gaining momen-
tum as an effective technique for gene electrotransfer and 
DNA vaccination [92]. Some drugs tested and found in vitro 
potentiation in combination with electroporation are; actino-
mycin D [191, 192], bleomycin [193], carboplatin [194], cis-
platin [195], cytarabine [196], mitomycin C [197], netropsin 
[196], 2-N-methyl-9-hydroxy-ellipticinium (NMHE) [191], 
oxaliplatin [198], vinblastine [199], and vincristine [200].

In recent years, in  vitro electroporation researches 
focused on calcium electroporation. Dose-dependent reduc-
tion in cell viability was showed for all experienced cell 
lines [201, 202]. Also, electroporation has been used for 
gene editing with CRISPR/Cas technology [203, 204]. After 
additional preclinical developments, electroporation based 
therapy with different types such as reversible/irreversible 

electroporation, calcium electroporation, electrochemo-
therapy, DNA vaccination, combined with CRISPR/Cas9 
was tested in different cancer types such as colorectal [202], 
brain [205], breast [206], liver [207], pancreatic [208], and 
prostate [209] cancers and some promising results have been 
obtained.

Electrotransformation applications in plants

The usage of electric pulse techniques in biology, medi-
cine, biotechnology, and many other biological sciences 
have found huge support because of their efficiency and 
wider applicability. However, optimal electrotransforma-
tion applications have required a number of parameters 
to be considered and numerical models to be constructed 
for efficient applications [96–98]. So, this is an empiri-
cal process, at each application providing a better and 
deeper understanding for further steps. Below has been 
chronologically compiled some successful and promising 
electroporation-mediated applications from plants.

•	 Transgenic rice (Oryza sativa L.) plants regenerated via 
somatic embryogenesis were electroporated with plas-
mid carrying nptII gene and production of kanamycin-
resistant plants demonstrated the usability of protoplast 
in genetic engineering studies [210].

•	 Protoplasts of woody medicinal plant bittersweet night-
shade (Solanum dulcamara L.) were electroporated, 
and protoplast-derived tissues exhibited increased mor-
phogenesis compared to untreated protoplasts. Regen-
erated shoots also rooted more readily and developed 
more prolific root systems than shoots from untreated 
protoplasts [109].

•	 High frequency regeneration and the number of shoots 
per callus were observed in electropulsed colt cherry 
(Prunus avium × pseudocerasus) protoplasts. Also, 
these electropulsed tissues generated more prolific 
root systems when compared to non-electropulsed ones 
[110].

•	 Uptake and expression of cucumber mosaic viral 
(CMV) RNA by tobacco (Nicotiana tabacum L.) pro-
toplasts were examined using both square and exponen-
tial wave electroporation pulses [211].

•	 Transgenic rice (O. sativa L.) plants were electrotrans-
formed with multiple copies of introduced genes in a 
complex manner in plant genome. As a result of the 
research, hpt were detected and expressed in the prog-
eny of transformants [212].

•	 The electroporation efficiency in sugar beet (Beta vul-
garis L.) and tobacco (N. tabacum L.) protoplasts by 
alternating, rectangular and exponentially decaying 
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pulses were studied by assaying transient expression 
of an introduced cat gene activity [111].

•	 Among selectable markers delivering herbicide tol-
erance in maize (Zea mays L.) plant, bar gene from 
Streptomyces hygroscopicus was first obtained as an 
herbicide marker [114].

•	 Stably transformed calli were regenerated under selec-
tion for kanamycin resistance following introduction of 
nptII gene into protoplasts of sugarcane (interspecific 
hybrids of Poaceae family member Saccharum spp.) 
[113].

•	 Protoplasts isolated from cotyledons of lemon eucalyp-
tus (Eucalyptus citriodora (Hook.) K.D. Hill & L.A.S. 
Johnson) were electroporated using a rectangular pulse, 
with plasmid carrying cat gene [112].

•	 Fertile transgenic rice (O. sativa var. IR36) plants were 
obtained by electrotransformation of nptII gene into the 
seed embryo cells [213].

•	 Protoplasts were isolated from embryogenic suspension 
cultures of wheat (Triticum aestivum cv. Hartog) were 
electroporated in the presence of plasmid pEmuGN and/
or pEmuPAT, which contained gus and bar genes respec-
tively, and up to 0.9% of viable protoplasts displayed the 
gus activity two days after electroporation [115].

•	 First successful electrotransformation into protoplasts of 
an important temperate grass species, (Agrostis alba L.) 
was achieved. The nptII gene was used as a selectable 
marker [214].

•	 Commercial sugarcane (S. officinarum L. var. Ja 60–5) 
was electrotransformed with a plasmid conferring gus 
activity into cell clusters from embryogenic calli and it 
was reported to be an effective and reproducible method 
for sugarcane [116].

•	 Barley (Hordeum vulgare L.) protoplasts were trans-
formed with nptII gene by electroporation. Analysis of 
2nd and 3nd generation plants demonstrated the success-
fully integration of transgene by inheriting new trait to 
progenies [117].

•	 Analysis with discriminative molecular markers dem-
onstrated that two artificial gene transfer methods such 
as particle bombardment and intact cell electroporation 
are better in production of transgenic rice (O. sativa L.) 
plants (cv. Lido, Carnaroli and Thaibonnet) with insig-
nificant genomic changes [215].

•	 Somaclonal variation in tcryIA(b) gene transformed sug-
arcane (Saccharum hybrid cv. Ja60-5) clones by intact 
cell electroporation was analyzed with molecular marker 
(RAPD, AFLP, and RAMP) techniques [216].

•	 Optimum conditions were detected for DNA transfer to 
mature embryos of barley (H. vulgare L.) via electropora-
tion [120].

•	 Direct inoculation of grapevine fanleaf virus (GFLV) 
into grapevine (Vitis sp.) protoplast, which were isolated 

from mesophyll cells of in vitro grown plants and from 
embryogenic cell suspensions via electroporation [118].

•	 Transformed gfp constructs demonstrated a transient 
expression in ~ 2.6% of electroporated tobacco (N. taba-
cum L.) zygotes [119].

•	 Fertile transgenic plants were generated from tritordeum 
(H. chilense Roem. × T. turgidum L. Conv. durum) inflo-
rescences using tissue electroporation. The expression 
of both inserted marker genes (uidA and bar) was con-
firmed using standard assays, while transgene integration 
was confirmed using PCR and Southern hybridization 
analyses [121].

•	 Mechanically isolated microspores of three differ-
ent sparrow grass (Asparagus officinalis L.) genotypes 
were submitted to electric fields in order to modulate 
their competence for embryogenesis [122].

•	 Genetic transformation though protoplast electroporation 
was established in a tropical forage legume, stylosanthes 
(Stylosanthes guianensis (Aublet) Sw.) and gus expres-
sion was assayed [217].

•	 Embryogenic protoplasts of sweet orange (Citrus sinen-
sis (L.) Osbeck) were effectively electrotransformed and 
transformed plants were regenerated. The plasmid vector 
pBI221 containing the gus coding sequence under the 
control of the CaMV 35S promoter was used and gus 
activity was measured 24 h after electroporation [123].

•	 Anther culture-derived embryos of wheat (T. aestivum L.) 
were electrotransformed by a plasmid pAM2100 carrying 
bar and gus genes [218].

•	 An exogenous substance, fructan was electrotransformed 
into perennial ryegrass (Lolium perenne L.) protoplasts 
and substance concentrations in protoplasts were reported 
to increase by electroporation [219].

•	 Maize (Z. mays L.) inbred line Pa91 was electrotrans-
formed by a plasmid pGREEN0229 carrying an Arabi-
dopsis trehalose phosphate synthase (AtTPS1) gene and 
a selective gene bar. As a result of the research, success-
fully transformed plants were obtained [220].

•	 Plantain (Musa sp. cv. harton) shoot apices were elec-
trotransformed by a plasmid pCAMBIA 3201 carrying 
a Basta (herbicide) resistant gene. Introduction of bar 
genes into plantain has been successful by electropora-
tion [221].

•	 Nodal buds of cowpea (Vigna unguiculata (L.) Walp.) 
were electrotransformed by a plasmid carrying an insecti-
cidal Cry1Ab and nptII genes. T1-3 plant progenies were 
reported to significantly reduce the larval survival [222].

•	 Mesophyll protoplasts of (Pelargonium × hortorum) 
‘Panaché Sud’ were transformed by electroporation, 
which was reported to be more efficient for protoplast 
survival, membrane permeation and cell division. Cal-
cein and gfp genes were used to set up the process. PCR 



3203Molecular Biology Reports (2020) 47:3195–3210	

1 3

analysis of in vitro micropropagated plants showed that 
18 clones out of 20 contained the nptII gene [124].

•	 Mature embryos of Armand pine (Pinus arman-
dii Franch.) were electrotransformed by a plasmid 
pBSbtCryIII(A) carrying a selectable nptII gene and an 
insecticidal SbtCryIII(A) gene, with a successful genomic 
integration [125].

•	 Isolated cucumber (Cucumis sativus L.) mitochondria 
were successfully transformed by electroporation. Com-
parison of mitochondrial RNA before and after applica-
tions demonstrated no RNA degradation by electropora-
tion [223].

•	 Pollens of common wheat (T. aestivum L.) were trans-
formed by electroporation and transformants demon-
strated stable expression in transgenic progeny [224].

•	 Protoplasts of Himalyan gentian (Gentiana kurroo Royle) 
embryogenic cells were electrotransformed by a plasmid 
carrying nptII and bar genes, and the highest electropora-
tion efficiency in respect to protoplast survival rate was 
evaluated under specific physical conditions [126].

•	 Pre-treatment by irreversible electroporation in Geno-
vese basil (Ocimum basilicum L.) leaves was reported 
to shorten the drying times but quality characteristics of 
dried leaves were lowered [225].

•	 Protein directly delivered into A. thaliana cells in the 
presence of a cell wall with 83% efficiency rate, which 
also proved to be less toxic. This is a step towards 
nucleic-acid free genome engineering in plants [127].

Taken collectively, historical development of electropo-
ration and its present applications point that this method 
also includes some other uncovered potentials for various 
exploitations in future.

Conclusion and future perspective

Various natural and artificial methods have been developed 
to transfer DNA, RNA, and other molecules into the cells, 
each with its own advantages and disadvantages. To select 
the most convenient method is a crucial factor in successful 
transformations. Transformed cell type, transfection endur-
ance (stable or transient), recombinant preparation, regen-
eration, gene selection, and isolation are also some other 
important parameters to be considered. Among gene transfer 
methods, electroporation has found grounds because of its 
both, higher efficiency and broader applicability. It has been 
effectively used in many disciplines such as biology, medi-
cine, and biotechnology. In biotechnology it was employed 
in electrotransformation, electroporation-based inactivation, 
electroextraction, and electroporative biomass drying. In 
electrotransformation studies, uniform electroporation has 

been a challenging issue due to the varying cell types, and 
spatial and temporal organizations of cellular components. 
However, this problem was minimized by developing numer-
ical models considering the all involved parameters. Thus, 
electroporation is an empirical process, at each application 
a better and deeper understanding is acquired for further 
steps. Moreover, current applications of electroporation also 
point to some other uncovered potentials of this method for 
various exploitations.
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