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Abstract
Liver fibrosis affects over 100 million people in the world; it represents a multifactorial, fibro-inflammatory disorder char-
acterized by exacerbated production of extracellular matrix with consequent aberration of hepatic tissue. The aetiology of 
this disease is very complex and seems to involve a broad spectrum of factors including the lifestyle, environment factors, 
genes and epigenetic changes. More evidences indicate that angiogenesis, a process consisting in the formation of new blood 
vessels from pre-existing vessels, plays a crucial role in the progression of liver fibrosis. Central to the pathogenesis of liver 
fibrosis is the hepatic stellate cells (HSCs) which represent a crossroad among inflammation, fibrosis and angiogenesis. 
Quiescent HSCs can be stimulated by a host of growth factors, pro-inflammatory mediators produced by damaged resident 
liver cell types, as well as by hypoxia, contributing to neoangiogenesis, which in turn can be a bridge between acute and 
chronic inflammation. As matter of fact, studies demonstrated that neutralization of vascular endothelial growth factor as 
well as other proangiogenic agents can attenuate the progression of liver fibrosis. With this review, our intent is to discuss the 
cause and the role of angiogenesis in liver fibrosis focusing on the current knowledge about the impact of anti-angiogenetic 
therapies in this pathology.
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Introduction

Genetic, environmental and lifestyle factors (e.g. alcohol 
abuse), mechanotransduction signal pathway and viral infec-
tions can contribute in onset and progression of liver fibrosis 
(LF) [1–6]. Histologically, this disorder can be classified as 
a chronic fibro-inflammatory condition characterized by an 
excessive deposition of extracellular matrix (ECM) proteins 

including collagen fibers (I, III, and IV) [7–9]. Clinically, 
portal hypertension can be a key feature in patients suffering 
from severe form of LF [10, 11]. Evidence from a number of 
studies demonstrates that angiogenesis, the formation of new 
blood vessels from pre-existing vasculature, plays a crucial 
role in the progression of this complex disease [12–15]. It 
is well known that inflammation and hypoxia are two ele-
ments that strongly promote neovascularization [16–18]. 
Interestingly, both phenomena can be considered as markers 
of LF [19, 20]; thus, it is reasonable that angiogenesis takes 
place during hepatic fibrogenesis [12, 13]. Consequently, 
it is conceivable that anti-angiogenic approaches could 
represent a useful tool in the treatment of LF. The present 
review will describe the general aspects of the pathogenesis 
of LF, focusing on the link between hepatic fibrogenesis 
and angiogenesis. Meanwhile, selective strategies targeting 
angiogenesis for the preservation of the hepatic tissue will 
be introduced.
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The pathogenesis of liver fibrosis

As aforementioned, histologically, fibrotic hepatic paren-
chyma is characterised by chronic inflammation and 
exacerbated production of ECM molecules with conse-
quent abnormality in the liver tissue [7, 8]. The inflam-
matory foci are comprised of lymphocytes, plasma cells, 
monocytes/macrophages  (LY6Chi phenotype) as well as 
granulocytes [21, 22]. All these inflammatory components 
indirectly participate in the process of fibrogenesis by 
producing soluble/paracrine signals including cytokines, 
chemotactic molecules, fibrogenic agents [23, 24]. Also, in 

the chronic hepatic injuries, cholangiocytes, hepatocytes, 
liver sinusoidal endothelial cells (LSECs) and non-sinusoi-
dal endothelial cells (ECs), together with resident Kupffer 
cells secrete various sclerotic stimuli such as transforming 
growth factor- β (TGF-β, the “master mediator” of many 
fibrotic disorders), platelet-derived growth factor (PDGF), 
and epidermal growth factor (EGF) [25]. Figure 1 depicts 
the many cell types and molecular effectors involved in LF, 
leading to the activation of HSCs. Generally, the primary 
effectors of fibrogenesis are resident fibroblasts, myofi-
broblasts [26, 27], and their bone marrow-derived circu-
lating precursors namely fibrocytes [28, 29]. In damaged 
liver, activated hepatic stellate cells (HSCs) are mainly 

Fig. 1  During liver injury, quiescent HSCs or other precursors (e.g. 
bone marrow-derived fibrocytes, portal fibroblasts, hepatocytes in the 
epithelial-mesenchymal transition) are activated by various cell types 
resident in the liver, including hepatocytes, cholangiocytes, sinusoidal 
and non-sinusoidal endothelial cells, pericytes, macrophages  LY6Chi, 
Kupffer cells, as well as Th17 T cells and other lymphoid cells. All 
these cell types secrete pro-fibrogenic mediators that ultimately acti-

vate HSCs or other precursors that eventually transform into myofi-
broblasts and operate to deposit ECM. CCL CC chemokine ligands, 
DAMP danger associated molecular pattern, IL interleukin, NO nitric 
oxide, PDGF platelet-derived growth factor, ROS reactive oxygen 
species, TGF-β transforming growth factor-β, TNF-α tumor necrosis 
factor-α
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responsible of fibrogenesis in at least 2 ways: on one hand 
they produce ECM, on the other hand impede ECM deg-
radation by secreting proteases inhibitors including endog-
enous tissue inhibitors of metalloproteinases (TIMPs) [30, 
31]. There is a lot of evidence showing that epithelial-mes-
enchymal-transition (EMT) has also a great importance in 
fibrotic lesions. Accordingly, hepatocytes as well as ECs/
LSECs can undergo a process of epithelial-(endothelial)-
mesenchymal transition (EMT) through autocrine/par-
acrine signals mediated, in part, by TGF-β [32]. Addi-
tionally, recent work discovered that pericytes, are also 
involved in the process of fibrogenesis [33–35]. In fact, 
these mural cells seem to have the capability to detach 
from basement membrane surrounding hepatic capillary to 
accumulate within the injured hepatic tissues, where they 
undergo phenotypic transformation into ECM-producing 
myofibroblasts [33–35]. As a consequence, a wide range 
of cells, growth factors and other stimuli are engaged in 
the liver fibrogenesis [33–35].

The link between angiogenesis and liver 
fibrosis

Angiogenesis is a growth factor-dependent phenomenon 
taking place during all stage of the human development; 
during adult life, at least in healthy conditions, it happens 
only in certain circumstances, for example during pregnancy 
and menstrual cycle [36, 37]. By contrast, experimental and 
clinical evidences indicate that angiogenesis accelerates the 
progression of many disorders such as cancer growth and 
metastasis, rheumatoid arthritis, diabetic retinopathy and 
other complex diseases including LF [12, 38–42]. It is well 
known that inflammation and hypoxia are crucial elements 

in induction of neovascularization. As previously speci-
fied, hepatic tissue affected by fibrosis, shows permanent 
inflammation and low oxygen level, offering a prototypical 
microenvironment for neovascularization [43, 44]. In detail, 
accumulation of ECM in liver parenchyma is a main cause of 
hypoxia, which in turn, stabilizes the dimeric transcription 
factor “hypoxia-inducible factor” (HIF) [45]. HIF regulates 
the transcription of an array of genes including those con-
trolling angiogenesis such VEGF, PDGF-B, matrix metal-
loproteinases (MMPs) as well as TIMPs [46–49]. As matter 
of fact, hypoxic areas co-localize with those of an increased 
microvessel density (MVD), fibrous septa and inflamma-
tory foci [48, 50, 51]. In addition, hypoxia further stimulates 
the infiltration of inflammatory cells [52], which, in turn, 
contribute to angiogenesis and fibrotic phenomena [53]. In 
conclusion, in injured liver, hypoxia, angiogenesis, chronic 
inflammation and fibrosis drive each other following an acti-
vated loop, and synergistically exacerbate the severity of the 
LF (Fig. 2) [15, 16, 54]. 

To incite neoangiogenesis, VEGF binds to its recep-
tors VEGFRs stimulating the formation of new functional 
vessels (Fig. 3). By the signals generated by bound VEG-
FRs, VEGF is the leading regulator of ECs/LSECs activ-
ity during all steps of angiogenesis [55]. In LF, VEGF is, 
in part, produced by ECs/LSECs themselves suggesting 
an autocrine action of this signal pathway; but damaged 
hepatocytes and activated HSCs seem to be the principal 
sources of this relevant growth factor [56]. The latter evi-
dence highlights the crucial role of HSCs in LF because 
they constitute a crossroad among inflammation, fibrosis 
and angiogenesis (Fig. 4) [12, 16, 57, 58]. PDGF-B, prin-
cipally produced by ECs/LSECs, acts during vessel stabili-
zation, orchestrating the formation/maturation of vascular 
tube and its coverage through the recruitment of PDGFRs 

Fig. 2  Link among hypoxia, 
angiogenesis, inflammation 
and liver fibrosis. Hypoxia, 
angiogenesis, inflammation and 
fibrosis drive each other activat-
ing a pathological loop in liver
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positive pericytes/HSCs [57]. FGF, through an autocrine 
loop, is involved in LF angiogenesis not only inducing the 
activation of ECs/LSECs, but also, increasing HSC pro-
liferation and recruitment [12]. Ang-2 is acutely released 
from activated ECs/LSECs, upon stimulation with inflam-
matory cytokines, proangiogenic factors, and hypoxia and 
competitively inhibits the binding of Ang-1 to Tie-2 [59] 
that, instead, serves to maintain survival and quiescence 
of endothelium [60]. Inflammatory cells also secrete a 
plethora of angiogenic factors (VEGF, PIGF, PDGF, 
FGF, Angiopoietins, TGF-β, etc.) [12, 61–67]. For exam-
ple, both infiltrating macrophages and resident Kupffer 
cells, once activated, contribute to angiogenesis releasing 
reactive oxygen species (ROS), nitric oxide (NO), tumor 
necrosis factor- α (TNF-α) and other angiocrine molecules 
[12]. As above cited, in drastic circumstances, LF is com-
plicated by portal hypertension (PHT) accompanied by 
severe hepatic structural disorder correlated to diffuse 
fibrosis [68]. Angiogenesis also participates in the patho-
genesis of PHT, in part modulating HSCs activation and, 
on the other hand, provoking the formation of portal-veins 
collaterals [69]. Cellular molecules involved in promoting 
angiogenesis and their roles in LF are listed in Table 1 
[57, 70–75].

Anti‑angiogenesis approaches slow down LF

Considering the indisputable importance of neovasculariza-
tion in LF progression, it is plausible that blocking angio-
genesis may offer a method to attenuate the aberration of 
hepatic tissue or prevent more serious damage including 
cirrhosis [14, 76]. For this reason, some anti-angiogenic 
strategies including natural compounds are currently under 
investigation [77]. Since VEGF is the most efficient pro-
angiogenic factor, generally most anti-angiogenic therapies 
have been focused on blocking the VEGF signal pathway 
[76, 78] (Fig. 3). Bevacizumab, a humanized monoclonal 
antibody neutralizing VEGF-A [72, 79, 80], in combina-
tion to other drugs, is currently used to treat different kinds 
of tumors [74, 81, 82]. It also shows a strong anti-fibrotic 
effect in human Tenon’s fibrosis [83]. High VEGF-A lev-
els in the aqueous humor of patients with nonneovascular 
glaucoma have been reported [84], and this increase may 
contribute to post-operative inflammation and fibrosis. Since 
Tenon’s fibroblasts have been shown to express VEGF-A 
receptors [84], these findings highlight once more the inti-
mate relationship between angiogenesis and fibrosis, as it 
occurs in LF. An interesting study conducted by Huang 
et al. [85], showed that bevacizumab alleviates LF in vivo by 

Fig. 3  The VEGF/VEGFR signalling axis, its contribution to angio-
genesis and treatment modalities interfering with its activity. Bind-
ing of VEGF ligands to their cognate receptors (VEGFRs) leads to 
receptor dimerization and autophosphorylation triggering a down-
stream intracellular phosphorylation cascade. Monoclonal antibodies 

target VEGFs, preventing its binding to VEGFRs, while monoclonal 
antibodies targeting VEGFRs prevent the binding of VEGFs, result-
ing in the inhibition of VEGFR signalling. The treatment of receptor 
tyrosine kinase inhibitors (RTK-Is) inhibits the activation of VEGF/
VEGFR signalling
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neutralizing VEGF produced by hepatocytes and by block-
ing HSCs activation. The effects of VEGFRs neutralizing 
antibodies such as anti-VEGFR1 and anti-VEGFR2 have 
also been explored [86, 87] (Fig. 3). Results show that the 
use of anti-VEGFR-2 antibody results more effective than 
the anti-VEGFR-1 antibody when used alone [87], although 
combined treatment with both antibodies gave some tissue 
improvement in LF [87]. Additionally, the use of the mul-
tiple receptor tyrosine kinase inhibitors such as sorafenib 
and sunitinib blocking PDGFR-β and VEGFRs signaling 
pathways is under investigation [88] (Fig. 3). Sorafenib 
attenuates LF by reducing HSCs proliferation/activation 
and inducing their apoptosis both in vitro and in vivo [88, 
89]. Sunitinib also decreases LF, switching off inflammation, 
HSCs activation and angiogenesis [90, 91]. PDGF-B and its 
signaling pathway and cyclooxygenase-2 are also involved 
in HSCs activation [92, 93]. Gao at al demonstrated that 
the use of celecoxib (a cyclooxygenase-2 inhibitor) shows 
similar effect in vivo as those obtained with sorafenib [94]. 
It is implicit that enhancing the expression and the activation 
of the ECM proteases can also contribute to the resolution of 

fibrosis [95, 96]. In line with this idea, it has been shown that 
the decrease of LF is associated with increased expression 
of MMPs (MMP-2 and -14) as well as decreased expression 
of TIMP-1 and -2 in hepatic tissue [30, 97].

Along with the use of immunotarget therapy above listed, 
recently, the regenerative potential of stem cells is being 
exploited in fibrotic diseases. Accordingly, the injection of 
bone marrow-derived mesenchymal stem cells (BMSCs) 
including endothelial progenitor’s cells (EPCs) seems to 
reduce the severity of LF by increasing the degradation of 
ECM by means of proteases/MMPs [98, 99]. In fact, exper-
imental evidences showed that EPCs transplantation was 
shown to effectively promote the remodelling of damaged 
liver tissues in a dimethylnitrosamine (DMN) rat liver fibro-
sis model [100, 101].

Other approaches to slow down LF

Additionally, studies have demonstrated that LF may be 
prevented or reversed by bioactive food components and 
natural products, including fumagillin analogue (TNP-470), 

Fig. 4  Schematic model of HSCs activation. Quiescent HSCs are 
activated, during lung injury, by a host of factors, including hypoxia, 
inflammatory stimuli and growth factors produced by liver cells, such 
as hepatocytes and endothelial cells. HSCs transform into myofi-
broblasts and contribute to angiogenesis, fibrosis and inflammation. 
Once activated, HSCs act as proangiogenic cells and may respond to 
stimuli such as hypoxia through the increase of VEGF, Ang-1, and 
their related receptors VEGFR-2 and Tie-2. Activated HSCs are the 

prime downstream effectors of excess ECM deposition and they also 
produce the fibrogenic cytokine TGF-β. Moreover, fibrolysis is com-
promised, e.g. by an increased synthesis of TIMPs and a decreased 
production of fibrolytic MMPs. Finally, activated HSCs contribute to 
inflammation in liver fibrosis by producing chemokines, including CC 
chemokines ligands (CCL2, CCL3, CCL5) and the CXC chemokines 
ligands (CXCL8, CXCl9, CXCL10, CXCL12). MCP-1 monocyte 
chemoattractant protein-1



2284 Molecular Biology Reports (2020) 47:2279–2288

1 3

astaxanthin, curcumin, blueberry, silymarin, vitamins (C, 
D, E), resveratrol, quercetin, coffee and green tea extracts 
[102–104]. Generally, the anti-fibrotic effect of all these 
natural compounds seems to be mainly attributed not only 
to their antioxidant and anti-inflammatory features but also 
to their ability to revert the activated forms of HSCs in a 
more quiescent phenotype [102].

Current challenges and future directions

Inflammation, fibrosis and angiogenesis are strictly inter-
twined during the progression of chronic liver diseases 
(CLDs), including chronic viral hepatitis, PTH, non-
alcoholic and alcoholic liver diseases. This brings to the 
notion that a wealth of cellular and molecular mecha-
nisms are implicated in liver fibrosis and angiogenesis. 
Interactions among hepatocytes, HSCs, Kupffer cells, and 
endothelial cells have been described, with HSCs repre-
senting a crossroad at the interaction between inflam-
mation, angiogenesis, and fibrosis. Angiogenic factors, 
including VEGF, PDGF, FGF, Ang-2, EGF, and vari-
ous cytokines, are important mediators of angiogenesis 
in fibrosis associated with CLDs. Besides these factors, 
metabolic abnormalities, including adipokines, may dys-
regulate angiogenesis, and hence influence inflamma-
tion and fibrosis. Moreover, it has also been shown that 
endoplasmic reticulum stress and related unfolded protein 

response, and neuropilins are involved in liver angiogen-
esis and fibrosis [12]. Given the plethora of cellular and 
molecular mechanisms, a better appraisal of this complex-
ity may be caught by three-dimensional (3D) models that 
can recapitulate liver architecture and interactions among 
different cell types [105, 106]. Indeed, one obstacle in the 
development of efficient therapies is the lack of robust 
and representative in vitro models of human liver fibrosis 
through which novel drugs can be tested. Currently used 
animal models are not useful for dissecting the relative 
role of each component since the predictive value for 
human physiologic responses in terms of pharmacokinet-
ics and pharmacodynamics is sometimes poor. Moreover, 
they are not suitable for large scale screening of antifi-
brotic compounds. The main 3D models that are being 
used and implemented include cocultures of hepatocytes 
and HSCs, achieved by insert cultures, spheroids (pre-
senting many cell types), or liver tissue cultures. More 
advanced techniques are bioprinting and microfabricated 
microfluidic devices to provide a constant flow of oxy-
gen and fresh nutrients and remove the metabolic waste 
generated (as replacement of bile canaliculi). Finally, 
organotypic models, such as precision cut liver slices and 
decellularised 3D scaffolds, will offer more opportunities 
to test novel drugs in a context maintaining the intact 
hepatic architecture and cellular heterogeneity. Thus far, 
the main focus of the field has been on the maintenance 
of functional hepatocytes for prolonged culture periods; 

Table 1  Molecules involved in angiogenesis and their role in LF cited in this review

Angiogenic factor Actions during angiogenesis Role in angiogenesis in LF References

VEGF • Promotes endothelial cell survival and homeostasis
• Promotes endothelial cell detachment from the base-

ment membrane
• VEGF and Notch co-operate in an integrated 

intercellular feedback that functions as a ‘‘branching 
pattern generator’’

Produced by damaged hepatocytes and activated HSC 
→ capillarization of sinusoids

[70]

PDGF-B Recruitment of pericytes Produced by ECs/LSECs this factor stimulates HSC 
proliferation, differentiation, and migration, as well 
as transforms HSC into myofibroblasts

[57]

TGF-β Stimulates mural cell induction, differentiation, prolif-
eration, and migration and promotes production of 
extracellular matrix

Release of TGF-β by necrotic hepatocytes during 
liver damage is one of the first signals to activate 
adjacent quiescent HSC → trans-differentiation into 
myofibroblasts

[71]

FGF This factor is mitogenic for endothelial cells and 
increases the expression of VEGF

Induces the activation of ECs/LSECs, and increases 
HSC proliferation and recruitment

[72, 73]

ANG1 and Tie-2 ANG1, produced by mural cells, activates its endothe-
lial receptor Tie-2

ANG1 stabilizes vessels, promotes pericyte adhesion, 
and makes them leak resistant by tightening endothe-
lial junctions

Autocrine ANG1 promotes HSC/myofibroblast migra-
tion

[70]

EGF and TGF-α They are mitogenic for endothelial cells and increase 
angiogenesis in in vivo model

Hepatocyte-derived EGF induces HSC migration
Autocrine TGF-α is involved in transformation into 

myofibroblasts

[74, 75]
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incorporation of non-parenchymal cells (such as endothe-
lial cells, Kupffer cells, and HSCs) will allow the use of 
these culture systems for in vitro fibrosis studies [105]. 
In order to gain higher number of cells and make sus-
tainable these models, stem cells are a suitable source of 
different cell types. Many stem cell types, including liver 
progenitor/stem cells, extra-hepatic biliary tree stem cells, 
embryonic stem cells as well as induced pluripotent stem 
cells (iPSCs) have been reported to generate hepatocyte-
like cells [107] and cholangiocytes [108, 109], and more 
recently LSECs and HSCs [110]. Further studies should 
determine whether these cell types are fully functional 
and can reconstitute organotypic models. Another essen-
tial feature of these models will be the inclusion of stiffer 
materials mimicking the deposition of collagen that is a 
feature of liver fibrosis. Depending on the hardness of 
the substrates used, i.e. soft versus stiff, the quiescent 
phenotype of HSCs will be maintained, or they will trans-
form into activated myofibroblasts [5, 106]. Recently, a 
novel 3D organotypic liver models comprised of hepat-
ocytes, LSECs, HSCs, Kupffer cells, and the Space of 
Disse mimic demonstrated how a mechanical gradient 
resulted in transitioning phenotypes in hepatic cells and 
cause varying profiles of fibrotic markers [111]. Thus, 
mechanotransduction and biomechanics are parameters 
that should be envisioned as essential in constructing 
these models. These advanced in vitro models have been 
used for testing drug induced liver injury, determined by 
alcohol or medications, in the developmental phase of 
pharmaceuticals [105, 112] or in the evaluation of drugs 
already in clinical trials [113]. In addition to inhibitors 
of angiogenesis, that could result in unspecific effects, 
genetic tools may target profibrotic and proangiogenetic 
genes with an unprecedented precision. Small interfering 
RNAs and antisense oligonucleotides have been vehicled 
by nanocarriers (lipoplexes and nanoparticles) that are 
preferentially engulfed by nonparenchymal cells, promi-
nently HSCs and myofibroblasts. The target genes to be 
downregulated include TGFβ-1, TGFβ receptors, osteo-
pontin, integrins, and chemokine receptors [58]. Complex 
3D and organotypic models are also essential in finding 
novel noninvasive markers of angiogenesis in liver fibro-
sis. Histological follow-up does not have the power to 
reliably detect antifibrotic drug effects in the short term. 
Validated serum markers would measure the activity of 
angiogenesis and fibrogenesis and therefore enable the 
selection of patients likely to respond to antiangiogenic 
and antifibrotic therapies, and to detect responders to 
these therapies. Finally, these models could capture the 
inter-individual genetic and environmental variations, 
increasing the pace towards the personalised medicine 
approach [58], and will be paramount to design more pre-
cise and real-to-life clinical trials.

Relevant conclusion

Anti-angiogenic therapy for hepatic fibrosis resolution has 
received increasing attention in recent years. However, it is 
not possible to overlook the fact that the LF is a multifacto-
rial disorder, and angiogenesis in only one of the phenom-
ena that favours its genesis and progression. Moreover, the 
limited preclinical/clinical studies impede to know in detail 
any counterproductive effects of antiangiogenic therapies 
in this aberrant circumstance. Consequently, further large 
randomized studies need to be conducted before deducing 
that anti-angiogenic approaches can be used in the treatment 
of liver fibrosis.
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