
Vol.:(0123456789)1 3

Molecular Biology Reports (2020) 47:2301–2313 
https://doi.org/10.1007/s11033-020-05254-4

REVIEW

Probiotic mediated NF‑κB regulation for prospective management 
of type 2 diabetes

Rabia Bhardwaj1 · Brij Pal Singh1 · Nitika Sandhu2 · Niharika Singh1 · Ravinder Kaur1 · Namita Rokana1 · 
Kumar Siddharth Singh3 · Vishu Chaudhary2 · Harsh Panwar1

Received: 25 March 2019 / Accepted: 7 January 2020 / Published online: 9 January 2020 
© Springer Nature B.V. 2020

Abstract
Diabetes and other lifestyle disorders have been recognized as the leading cause of morbidity and mortality globally. Nuclear 
factor kappa B (NF-κB) is a major factor involved in the early pathobiology of diabetes and studies reveal that hyperglyce-
mic conditions in body leads to NF-κB mediated activation of several cytokines, chemokines and inflammatory molecules. 
NF-κB family comprises of certain DNA-binding protein factors that elicit the transcription of pro-inflammatory molecules. 
Various studies have identified NF-κB as a promising target for diabetic management. Probiotics have been proposed as 
bio-therapeutic agents for treatment of inflammatory disorders and many other chronic clinical stages. The precise mecha-
nisms by which probiotics acts is yet to be fully understood, however research findings have indicated their role in NF-κB 
modulation. The current review highlights NF-κB as a bio-therapeutic target for probable management of type 2 diabetes 
through probiotic intervention.
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Introduction

Diabetes mellitus is one of the leading global health emer-
gencies, affecting all major sectors of the society, creating 
huge burden on global health and economy [1, 2]. As per 
International Diabetes Federation (IDF) Diabetes Atlas lat-
est update, 425 million people are suffering from diabetes 
globally, and if the trends continue un-checked, the figure 
is expected to cross 629 million mark by 2045 [1]. Type 1 

diabetes is characterized by autoimmune mediated destruc-
tion of pancreatic beta cells; while type 2 diabetes, the more 
prevalent form is defined by progressive loss of beta cells, 
disturbed insulin secretion and resistance to insulin [3, 4]. 
It is a complex metabolic disorder known to be mediated by 
oxidative stress led hyperglycemia [5]. Several other risk 
factors such as, sedentary lifestyle, genetic pre-disposition, 
epigenetic changes, and altered gut microbiota are associated 
with diabetes [2, 6]. However, pancreatic β cells dysfunc-
tion or death leading to hampered insulin secretion remains 
the most prominent factor for development of both type 1 
and type 2 diabetes [7]. Healthy β-cells synthesize, store 
and secrete insulin in response to glucose, nutrients, hor-
mones and nervous stimuli [8]. Proper functioning of β cells 
is vital for regulation of glucose levels and management of 
metabolic energy. There are multiple events responsible for 
apoptosis of β cells in both types of diabetes [9–11].

Apart from β cell apoptosis, other factors leading to death 
of β cells involves nuclear factor kappa B (NF-κB) mediated 
cytokine induced cell death. NF-κB levels are frequently 
observed to be elevated in diabetic patients. A recent study 
indicated involvement of common gene variants of NF-κB 
in diabetes and renal function impairment, thereby show-
ing the association of NF-κB 1 variants in type 2 diabetic 
patients [12]. In another recent study it was observed that β 
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cell de-differentiation and impaired insulin secretion which 
eventually leads to β cell death were promoted by NF-κB 
signalling pathway. Thus, modulating NF-κB signalling 
pathway can efficiently prevent the β cell death and pro-
vide regulated therapeutic agents for management of type 2 
diabetes [13]. The transcription factor NF-κB poses major 
threat to health and activity of β cells and could be a poten-
tial therapeutic target for management of diabetes. Specific 
roles of NF-κB in type 2 diabetes and role of commensal 
gut microbiota and probiotics in its management has been 
reviewed in successive sections.

Evidently the human gut harbours a complex community 
of over 100 trillion bacterial cells belonging to over 1000 
bacterial species [14]. Several studies have shown an associ-
ation of these gut microorganisms with conditions like aller-
gies, intestinal inflammatory diseases, cancer, diabetes, car-
diovascular diseases, non-alcoholic fatty liver disease, and 
dyslipidaemia [2, 15–18]. Similarly, several researchers have 
observed that modulation of intestinal microbiota by benefi-
cial microbes (probiotics) may facilitate the management of 
a number of clinical conditions [15, 19, 20]. Probiotics as 
defined by FAO/WHO are "live microorganisms which when 
administered in adequate amounts confer a health benefit 
on the host" [21]. Probiotics benefit the host by maintain-
ing a healthier gut microbiota, immunomodulation and other 
mechanisms, and are frequently involved in host-microbe 
cross-talk. This cross-talk is by various secreted and non-
secreted bacterial factors and cell signalling is an essential 
part of this interaction. Role of different cell signalling path-
way in type 2 diabetes is now well established and probiotics 
are known to influence a vast array of host cell signalling 
events [22]. Given the general beneficial effect of probiotics 
on host health, it could prove useful in prophylactic and/or 
therapeutic strategies against diabetes. Hence, this review 
appraises modulation of NF-κB as possible intervention for 
management of diabetes through probiotic intervention. Our 
aim is to bring together the current status and possible role 
of probiotics in the prevention and management of diabetes 
through intercession of NF-κB signalling pathway.

Nuclear factor kappa B

For better understanding of the topic, it is imperative to 
have basic knowledge of function and regulation of NF-κB, 
a nuclear transcription factor found in almost all cell types 
[23] (Fig. 1). NF-κB performs an essential role in myriad 
aspects of human health including the development of both 
innate as well as adaptive immunity, through control over 
as much as 150 genes involved in a variety of cellular pro-
cesses [24–26]. Five members of the NF-κB family includ-
ing p50, p52, p65 (RelA), c-Rel, and RelB form different 
combinations of homo- and heterodimers with different 
DNA binding specificities and transactivation potential [27, 

28]. Heterodimer, p50/ RelA or p52 is the commonly found 
active form of NF-κB. Each member of the NF-κB family 
has a conserved N-terminal region called the Rel-homology 
domain, which contains the dimerization, nuclear localiza-
tion, and DNA binding domains [27, 29]. Under healthy 
state, inactive forms of NF-κB complexes are sequestered 
in the cytoplasm via non-covalent interaction with inhibi-
tory protein, IκBα.

In response to multiple triggering factors, including 
cytokines, viral and bacterial pathogens, inflammation and 
stress-inducing agents, the inactive cytoplasmic NF-κB/
IκBα complex gets phosphorylated on conserved serine resi-
dues in the N-terminal portion of IκBα, followed by ubiquit-
inylation and proteosomal degradation resulting in breakage 
of non-covalent interactions and activation of NF-κB. This 
phosphorylation process is mediated by a multimeric IκB 
kinase (IKK) complex [30]. Active NF-κB translocates to 
the nucleus, where it binds to its DNA binding site in the 
promoter or enhancer regions of specific genes. Level of 
transcription of individual genes and the amount of tran-
scribed product is regulated by several factors including the 
composition of NF-κB dimers, nature of activating stimulus 
and the number of consensus sites in the target genes [31, 
32]. Although NF-κB is responsible for mediating immune 
response and homeostasis, it is better known for its pro-
inflammatory potential and serves as potential target dur-
ing drug therapy against infections. Excessive activation of 
NF-κB leads to the over-production of pro-inflammatory 
cytokines and chemokines resulting in chronic inflamma-
tion. NF-κB dysregulation has been widely associated with 
many clinical conditions, including diabetes [33].

Role of NF‑κB in diabetes

NF-κB plays a mediator in development of diabetes and 
related complications. Activation of NF-κB is capable of 
triggering either pro-inflammatory or anti-inflammatory cas-
cade [12, 34, 35]; however, in terms of β cells, the activity 
is reported to be predominantly pro-apoptotic [36]. NF-κB 
activity is suppressed in healthy β cells, however, upon oxi-
dative stress and inflammation, NF-κB gets activated and 
translocate to the nucleus. Production of reactive oxygen 
species (ROS) intermediates play a critical role in signalling 
of autoimmune/inflammatory response, mediated through 
NF-κB. NF-κB regulates the expression of several genes 
involved in dysfunction and death of β cells [37]. One such 
study that involved the identification of novel diabetes candi-
date genes, gave direct evidence of role of IKK/NF-κB acti-
vation in triggering β cell death in type 1 diabetes. Recently, 
exhaustive bioinformatics analyses were carried out to iden-
tify core genes and pathways involved in development of 
type 2 diabetes [38, 39]. Role of genes viz. major histocom-
patibility complex class I/II and signalling pathways viz. 
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tumor necrosis factor, cyclic adenosine monophosphate, 
and peroxisome proliferators-activated receptor signalling 
pathway in β cells death were also identified [39]. Simi-
larly, Luo and co-workers identified the role of NF-κB and 
NLRP3 inflammasome activation in the development of dia-
betes and diabetic cardiomyopathy in a rat model. The study 
also revealed that activation of NLRP3 inflammasome was 
through NF-κB mediated pathway in high glucose treated 
H9c2 cells [40].

Inhibition of NF-κB has been shown to improve insulin 
sensitivity [41] and prevent apoptosis in both human islets 
[42] and in alloxan induced diabetic mice models [43]. 
NF-κBp50 subunit knockout conferred resistance towards 
streptozotocin induced diabetes in mice models [44]. Role 
of c-Rel and p50/p105 sub unit has also been suggested in 
streptozotocin induced diabetes [45, 46]. Many in vitro and 
in vivo studies have shown that the inhibition of NF-κB 
pathway provides protection against cytokine induced apop-
tosis of pancreatic β cells [47–49].

The role of NF-κB and its associated target genes is very 
well documented in the pathogenesis of insulin resistance 
and type 2 diabetes. Two independent studies, one using the 
selective transgenic expression and the other using IKKβ 
knockout in the liver [50, 51] offered adequate evidence 
to support the key role of NF-κB in development of insu-
lin resistance. Over expression of IKKβ led to the activa-
tion of NF-κB, which mimics the effects of high fat diet 
or obesity induced insulin resistance in experimental mice 
model. Tumor necrosis factor α (TNF α), a pro-inflammatory 
cytokine, one of the best characterized inducer of NF-κB 
is also known to induce insulin resistance through serine 
phosphorylation of insulin receptor substrate 1 (IRS1). 
Members of TNF family induce rapid transcription of 
genes involved in cell survival, inflammation, proliferation 
and differentiation, mediated through activation of NF-κB 
[52]. Furthermore, there are various evidences that TNF 
α is highly induced in the adipose tissues of obese human 
and animal subjects, while the neutralization of TNF α can 

Fig. 1   Regulatory circuit of NF-κB: In response to multiple triggering factors IKK phosphorylates IkBα, which is subsequently ubiquitinated 
and degraded by proteasome. The free NF-κB hetero-dimer translocates to the nucleus and binds to its DNA binding site
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reverse insulin resistance, indicating towards involvement 
of NF-κB activation in insulin resistance [53]. The type and 
level of polymorphism in NF-κB gene determines the level 
of complications. For instance, a study conducted to inves-
tigate the correlation between NF-κB gene polymorphism 
and their susceptibility to diabetic nephropathy revealed that 
a NF-κB1 gene, -94 ATG insertion/deletion polymorphism 
in Asian Indian subjects with previous history of diabe-
tes mellitus might be associated with an increased risk of 
nephropathy development [54]. Romzova and co-workers 
reported increase in homozygous AA genotype of IκBα (NF-
κB inhibitor) gene in human subjects with type 2 diabetes 
suggesting role of NF-κB polymorphism in pathogenesis of 
type 2 diabetes [55]. Variation in the NF-κB1 was indepen-
dently responsible as a risk factor for the development of 
type 2 diabetes in elderly Caucasian subjects [12]. Chronic 
exposure to glucose and free fatty acids also induces β cell 
apoptosis. Although high glucose does not induce NF-κB, 
indicating that the glucose induced β cell apoptosis is pri-
marily independent of NF-κB. However, few studies linked 
higher glucose concentration to aggravated NF-κB expres-
sion in pancreatic cells [56].

Although, majority of studies have demonstrated apop-
totic effect of NF-κB in pancreatic β cells, it has been ear-
lier reported that NF-κB has both protective and destructive 
effects which depends on pathophysiology and on the tissue. 
Blockage or knockout of NF-κB gene resulted in reduced 
expression of insulin secretion pathway genes and marginal 
decrease in the count of endocrine cells in adult pancreas 
[57]. In another such study, A20 was identified as an NF-kB 
dependent antiapoptotic gene in β cells that protected β cells 
from TNF induced apoptosis [58].

NF-κB is involved in the expression of GLUT2 (Glucose 
transporter 2), which contributes to insulin secretion by β 
cells [59]. Reports generated from various cell and animal 
studies suggest that an inhibition of GLUT2 transcription 
factor might have certain deleterious effects, ultimately lead-
ing to the development of insulin resistance and type 2 dia-
betes [34]. The appropriate control and regulation of NF-κB 
activity, by means of gene modification as well as pharma-
cological strategies would provide a potential approach for 
the management of NF-κB related human diseases includ-
ing diabetes. Keeping this in mind, several research groups 
have explored different compounds for modulating NF-κB 
signalling in different clinical conditions including diabetes. 
Free phenolic extracts from cereal grains, and plumbagin, 
a vitamin K3 analogue inhibited Lipopolysaccharide (LPS) 
induced NF-κB under in vitro cell line conditions [60, 61]. 
Lycopene inhibited promoter binding activity of NF-κB 
and intracellular ROS production in human hepatoma Hep 
1 cells [62]. Pyrrolidine dithiocarbamate, an anti-oxidant 
is known to inhibit DNA binding and nuclear translocation 
of NF-κB in neurons. However, DDTC, another NF-κB 

inhibiting thiocarbamate has been shown to have negative 
health effects [63]. NF-κB modulation by probiotic strains 
can be a safe, dietary intervention for possible management 
of diabetes.

Management of NF‑κB by probiotics

Substantial evidence proves that certain probiotic strains 
can modulate immune response exerting metabolic changes 
in the host [59]. Potential sites where probiotics and their 
metabolites can influence NF-κB are depicted in Fig. 2. In 
particular, the NF-kB signalling can be modulated by probi-
otics and their active biological molecules at different sites 
with probiotic induced effects reported on inhibition of dif-
ferent processes viz. induction through TLRs, transcriptional 
activation, phosphorylation, ubiquitination and proteasomal 
degradation of IkBα, nuclear translocation, and DNA bind-
ing of the p50/p65 isoforms (Table 1).

Various pathogens interact with different toll like recep-
tors (TLRs) to activate NF-κB leading to inflammation. 
Probiotic bacteria such as L. casei suppresses the Shigella 
flexneri induced transcription of inflammatory cytokines, 
adhesion molecules and chemokines in intestinal epithe-
lial cells by inhibiting NF-κB activation [64]. Several other 
studies supported NF-κB down-regulating potential of L. 
reuteri, L. rhamnosus GG (LGG), B. infantis and L. sali-
varius expressed through suppressed TNF α or Salmonella 
Typhimurium induced IL 8 gene expression and secretion by 
intestinal epithelial cells [65–67]. Inhibition of pathogen rec-
ognition associated TLRs is one of the mechanism identified 
for inhibiting NF-κB [68, 69]. Among other, down regulation 
of the transcriptional activity of NF-κB via targeting NF-κB 
signalling pathway is the most reported mechanism. Differ-
ent steps in NF-κB signalling pathway can act as potential 
targets for anti-inflammatory probiotics and several other 
commensals to weaken its transcription. In this line, Kaci 
et al. (2011) documented the NF-κB suppressing activity of 
commensal Streptococcus salivarius K12 in human intesti-
nal epithelial cells. Cell free supernatants (< 3 kDa fraction) 
of S. salivarius and S. vestibularis strains markedly inhibited 
TNF α induced NF-κB activation in different in vitro models 
viz. THP-1 reporter cells, Caco-2/kB-seap-7 cells suggesting 
role of an active microbial metabolite modulating the inflam-
matory response [70]. In another similar study, S. salivarius 
K12 was reported to attenuate NF-κB activation, suggesting 
preventive role of this bacterium in inflammation [71]. Bifi-
dobacterium lactis was observed to suppress NF-κB activa-
tion in TNF α, IL 1β and LPS induced HT-29 cells [72]. 
In contrast, conditioned media from bifidobacteria were 
reported to stimulate NF-κB in HT-29 cells, while inhibiting 
the same in Caco-2 cells co-cultured with pro-inflammatory 
cytokines and bifidobacteria conditioned media. However, 
under similar conditions TNF α induced NF-κB activation 
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was restrained in the two cell lines only by Colinsella aero-
fasciens [73]. In another study, LGG pre-feeding prevented 
TNF α induced intestinal activation of NF-κB [74]. A study 
carried out by Johnson-Henry et al. (2005) demonstrated 
probiotics induced downregulation of pro-inflammatory Th1 
response with a simultaneous shift towards an improved Th2 
response in mice infected with Citrobacter rodentium [75]. 
This response was attributed to downregulation of NF-κB 
mediated pathways by probiotic L. helveticus R0052 and 
L. rhamnosus R0011. Recently, peptides belonging to 
microbial anti-inflammatory molecule (MEM) secreted by 
Faecalibacterium prausnitzii were shown to inhibit NF-κB 
under in vitro epithelial cell culture model and displayed 
anti-inflammatory properties in colitis model. In transgenic 
mice models, MEM administration inhibited Th1, Th2 and 
Th17 immune response through mechanism affecting NF-κB 
activation [76]. Pre-incubation with yeasts induced NF-κB 
mediated downregulation in expression of pro-inflammatory 
chemokines [77]. Another study which evaluated the sup-
pression of Salmonella enteric infection in mice, showed 
an association of probiotic bacteria with reduced mRNA 
expression of a group of genes (RelB, Myd88, IKKα, Jun, 

Irak2) regulated through NF-κB signal transduction pathway 
as a part of cytokine response [78].

Effects of probiotics on NF-κB transcriptional activity in 
the nucleus is modulated through PPAR gamma dependent 
pathway in a strain and dose dependent manner [59]. PPAR 
gamma forms complex with nuclear RelA and enhances its 
nuclear export, thereby diminishing NF-κB transcription 
[79]. B. thetaiotaomicron induced nuclear export of the RelA 
subunit of NF-κB associated with PPAR. In another study, 
L. crispatus M247 was able to produce hydrogen peroxide 
which acts as a signal transducing molecule thereby helping 
in the activation of PPAR gamma leading to suppression 
in NF-κB activity. Other non-hydrogen peroxide produc-
ing Lactobacillus strains were unable to activate the PPAR 
gamma mechanism [80].

Presence of reactive oxygen species was also observed 
to suppress degradation of IκBα [81]. Role of probiotics in 
modulating inflammatory responses by inducing local gen-
eration of ROS has been reported [82]. ROS can oxidize and 
inactivate key regulatory enzymes. In one such study, LGG 
induced ROS exhibited increased oxidation of the Ubc12 
enzyme in intestinal epithelia. Ubc12 is responsible for the 

Fig. 2   Schematic illustration of signalling pathways involved in acti-
vation of NF-κB and their probable regulation by probiotics: Probi-
otic mediated regulation of NF-κB can take place at several steps viz. 
inactivation of IKK, inhibition of IkBα phosphorylation and ubiqui-

tination, inhibition of IkBα degrading proteasomes, suppression of 
translocation of NF-κB dimer to the nucleus and transcription inhibi-
tion
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ubiquitination of the inhibitory molecule IκBα, therefore 
IκBα is not targeted for proteasomal degradation keeping 
NF-κB inactive in the cytosol. Pre-treatment of Caco-2 cells 
with LGG inhibited nuclear translocation of the NF-κB p65 
resulting in decreased production of TNF α [83]. L. reuteri 
was shown to inhibit IκB phosphorylation in the intestine 
during LPS exposure which in turn inhibited the transloca-
tion of free NF-κB to the nucleus, thereby inhibiting the 
later anti-inflammatory response [84]. L. paracasei attenu-
ated the LPS induced secretion of TNF α and IL 1β, con-
currently with or before LPS challenge and the effect was 
due to decrease in IκB phosphorylation and NF-κB nuclear 
translocation [69]. Further investigators proposed the role 
of various probiotics which acts after the subsequent NF-κB 
translocation into the nucleus and is preceded by proteolytic 
degradation of IκBα. To elucidate whether probiotics could 
suppress NF-κB activation, inhibition of IκBα degradation 
was tested in human myeloid leukemia‐derived cells and 
results indicated that the probiotic could suppresses TNF 
induced IκBα degradation [85].

Activation of cytosolic NF-κB is followed by its translo-
cation inside the nucleus. Blockage or inhibition of NF-κB 
nuclear translocation is another intervention point where 
probiotics can act. In order to study the effect of microbial 
metabolites on nuclear translocation of active NF-κB, THP-1 
cells were stimulated with LPS in presence or absence of 
Streptococcus thermophilus and B. breve conditioned 
medium filtrate fractions (< 3 kDa), which significantly 
inhibited nuclear translocation of active NF-κB subunits 
[86]. Lactococcus lactis subsp. cremoris strains also inhib-
ited NF-κB nuclear translocation in RAW264.7 cells along 
with notable suppression in expression of TNF-α, IFN-γ, 
IL-6, iNOS, and MIP-2 [87]. In another study, pre-treatment 
of HT-29 cells with LGG attenuated LPS induced NF-κB 
nuclear translocation along with blockage of LPS induced 
IκBα degradation [77]. LGG reduced the nuclear translo-
cation of NF-κB by reducing the p65 subunit, necessary 
for the nuclear translocation [88]. L. reuteri was found to 
block nuclear translocation of RelA by preventing IκBα 
degradation in response to TNF stimulation [89]. Another 
study showed that L. casei suppresses S. flexneri induced 
transcription of inflammatory chemokines, cytokines and 
various adhesion molecules by manipulating the ubiquitin 
pathway to stabilise IκBα and thereby inhibit NF-κB nuclear 
translocation [23]. The activation of NF-κB was inhibited, 
thereby inhibiting p65 nuclear translocation and reversal 
of IκBα degradation when the Raw264.7 cells were treated 
with L. casei 3260 [90].

In another study binding of p50/p65 isoforms of NF-κB 
in presence of pro-inflammatory stimulus and bacterial 
conditioned media was studied. Pre-treatment of intesti-
nal epithelial cells and macrophages (RAW 264.7) with 
conditioned media from several different Gram positive Ta
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and Gram negative commensal bacteria, followed by 
pro-inflammatory stimulation with TNF α inhibited the 
binding of the p50/p65 subunits. The study depicted that 
pre-treatment with conditioned medium inhibits the chy-
motrypsin like activity of the proteasome responsible for 
release and activation of p50/p65 subunit of NF-κB, thus 
inhibiting its DNA binding activity [91]. Probiotic treat-
ment was also shown to reduce NF-kB binding activity 
in high fat diet fed mice [92]. Many studies revealed that 
the binding activity of NF-κB was limited due to block-
ing of degradation of IκBα subunit which is a key step in 
the activation of NF-κB [91]. L. reuteri secretes various 
factors promoting Bcl-2 and Bcl-xL (anti-apoptotic pro-
tein) production in human myeloid leukemia derived cells 
by inhibiting NF-κB activation. These secreted proteins 
inhibit NF-κB activation through inhibition of IκB Ubiq-
uitination [85].

Probiotics Lactobacillus strains are known to prevent 
damage from inflammatory response during autoimmune 
diseases as well as bacterial infections. In one such study, 
L. brevis G-101 was shown to inhibit phosphorylation of 
both Akt (alpha serine/threonine protein kinase) and IRAK1 
(Interleukin-1 receptor-associated kinase-1) via the tradi-
tional MyD88 pathway, preventing the activation of NF-κB 
[93]. Investigators studied the role of intracellular events of 
anti-proliferative activity of L. plantarum JSA22 through the 
signalling cascade involving an overall decrease in NF-κB 
activation in colon fibroblast cells when stimulated with S. 
Typhimurium. The study indicated that L. plantarum JSA22 
promotes intestinal epithelial cells survival through inhibi-
tion of Akt factor, which is pro-apoptotic in nature, through 
the inactivation of p38. The phosphorylation levels of Akt 
and p38 were estimated with or without probiotics. A signifi-
cant decrease was observed in both the proteins under study 
when the host cells were infected with L. plantarum JSA22 
or even L. rhamnosus GG [94]. In contrast, LGG and their 
soluble factors (p75 and p40) were reported to prevent epi-
thelial cell apoptosis through activating anti-apoptotic Akt 
and inhibiting pro-apoptotic p38/MAPK [59].

The effect of eukaryotic probiotic Saccharomyces boular-
dii on NF-κB DNA binding was studied and mechanism of 
IκBα degradation was observed. The expression of NF-κB 
regulated gene was evaluated by transient transfection of 
THP-1 cells with a NF-κB responsive luciferase reporter 
gene. S. boulardii inhibited IκBα degradation and reduced 
both NF-κB DNA binding and NF-κB reporter gene up-regu-
lation in LPS stimulated THP-1 cells. S. boulardii also exerts 
an anti-inflammatory effect that blocks NF-κB activation 
in intestinal epithelial cells and monocytes [95]. β-glucan 
from Saccharomyces cerevisiae was reported to induce 
sheep β-defensin 1 expression in ovine ruminal epithelial 
cells mediated through activation of NF-κB. β-defensins play 
a key role in innate and adaptive immunity [96].

The efficacy of probiotics against diabetes has also been 
proven in experimental in vivo models. For instance, Bifido-
bacterium spp. reduced blood glucose levels and increased 
the expressions of insulin receptor β, insulin receptor sub-
strate 1, protein kinase B (Akt/PKB). Increased Akt sup-
press IκBα degradation in adipose tissue of diabetic mice 
[97]. Authors also reported that feeding of probiotic induced 
the adiponectin expression and decreased both macrophage 
chemoattractant protein-1 (MCP-1) and interleukin 6 (IL 6) 
expression in the test organism. An in vivo study showed 
that B. infantis was responsible for the generation and func-
tion of Treg to suppress LPS induced NF-κB activation [98]. 
Furthermore, the implication of probiotic action has also 
been reported through production of short chain fatty acids 
(SCFA) in large intestine. SCFA are established as histone 
deacetylase inhibitors and affects the expression of various 
genes, which are directly and indirectly involved in glucose 
metabolism and pathogenesis of diabetes [99]. For example, 
probiotic generated SCFA, such as butyrate is reported to 
downregulate NF-κB activation through blocking cullin-1 
neddylation, a critical step in the ubiquitination system 
which leads to NF-κB suppression [100]. Orally adminis-
tered probiotic cocktail consisting of L. acidophilus, L. plan-
tarum, B. lactis and B. breve reduced colonic expression of 
NF-κB, TLR-4 and iNOS in dextran sulfate sodium (DSS) 
induced acute colitis mice model [101].

Probiotics also have potential to enhance the immuno-
competence to prevent spontaneous autoimmune response 
in diabetic subjects. Probiotic containing kefir improved 
the phagocytic capacity of peritoneal macrophages and 
increased concentration of IL 10, TNF α, IL 17 and IL 1β in 
diabetic mice challenged with LPS [102]. Likewise, Bernini 
et al. [103] studied the effects of B. lactis HN019 on inflam-
matory state and nitro-oxidative stress in patients with and 
without the metabolic syndrome. The study revealed that 
probiotic intervention decreased homocysteine, hydroperox-
ides, IL 6 levels and increased adiponectin and nitric oxide 
metabolites in metabolic syndrome group. The mechanism 
behind could involve the attenuation of pro-inflammatory 
Th1 and Th17 cytokines and generation of regulatory T cells 
that produce IL 10 like cytokines in the process of immune 
tolerance [104, 105]. Intestinal gut microbiota is known to 
regulate Th17 cell homeostasis and govern the outcome of 
metabolic disorders [106]. Moreover, changes in the level 
of NF-κB expression by T lymphocyte cells have a direct 
impact on the differentiation and activation of T helper and T 
regulatory lymphocytes. The application of probiotics could 
change the expression of NF-κB in immunopositive cells 
leading to impact on physiological disease outcomes [107].

Another key mechanism involves modulation of gut 
microbiota to improve insulin sensitivity in diabetic condi-
tion. The composition of gut microflora has direct impact on 
energy metabolism, immunity, inflammation and metabolic 
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dysfunction. Altered microbial population enhance gut per-
meability and activates LPS induced downstream signalling 
of MAPK, JNK and P38 molecules which eventually acti-
vates NF-κB in epithelial cells, immune cells and metaboli-
cally active tissues [97]. Probiotics have proven efficacy in 
the treatment of dysbiosis and its complications. The trans-
plantation of butyrate producing probiotic Faecalibacte-
rium prausnitzii has been proposed to improve symptoms 
of metabolic syndrome like obesity and diabetes using such 
mechanism [108]. Besides, other probiotic species such as, 
L. rhamnosus, L. acidophilus and B. bifidum have also been 
reported to influence gut microbiota, intestinal permeabil-
ity and insulin sensitivity in mice subjected to high fat diet 
[109].

In contrast to the available reports supporting the NF-κB 
inhibitory potential of probiotic strains, few reports docu-
mented NF-κB induction by probiotics. The ability of L. 
plantarum JSA22 to activate the innate response via the 
NF-κB dependent manner was evaluated based on the assess-
ment of NF-κB nuclear translocation. The results indicated 
that co-infection of cells with L. plantarum JSA22 and S. 
Typhimurium, significantly induced NF-κB dependent gene 
activation in intestinal epithelial cells [94]. In a co-culture 
model (intestinal epithelial cells and macrophages) of the 
undeveloped small intestine, members of Lactobacillus spp. 
influenced NF-kB p65 nuclear translocation in both intesti-
nal epithelial cells and underlying macrophages in a strain 
dependent manner. LGG and PCS 20 strains significantly 
increased NF-kB p65 translocation; however no significant 
induction was reported with PCS 26. This nuclear translo-
cation was linked to the ability of commensal microbiome 
to train the early immune system against pathogens [110].

Apart from their role in prevention of diabetes, probi-
otics also play a major role in improvement of metabolic 
diseases including alcoholic fatty liver disease (AFLD) 
and non-alcoholic fatty liver disease (NAFLD). Hepatic fat 
accumulation is associated with hepatic insulin resistance in 
obesity and type 2 diabetes. Increasing evidence suggest that 
intervention of probiotics could reduce the risk of metabolic 
syndrome associated NAFLD. One such study conducted 
by Li et al. documented VSL#3 mediated inhibition of TNF 
α, thereby leading to an improvement in NAFLD in ob/ob 
mice models. The results were also consistent with patients 
of nonalcoholic steatohepatitis (NASH), where enhanced β 
oxidation of fatty acids was reported in hepatic cells. It was 
proposed earlier that VSL#3 might tend to normalize the 
abnormalities in fatty acid β oxidation in ob/ob mice, which 
may further improve NASH in this mice model. On evalua-
tion of the effects of probiotic VSL#3 therapy on peroxiso-
mal and mitochondrial fatty acid oxidation, results showed 
that VSL#3 and/or anti TNF antibodies restored the hepatic 
fatty acid β-oxidation levels towards normal [111]. Fur-
thermore, probiotic B. adolescentis had protective effect on 

high-fat diet induced NAFLD mice model through reduction 
of expression of MyD88 mRNA and activation of nuclear 
factor NF-κB [112].

Prospects/conclusion

Growing burden of diabetes and sub-optimal performance 
of available treatment strategies highlights the requirement 
for novel therapeutic strategies. Pancreatic beta cells play a 
central role in diabetes pathogenesis. Preserving beta cells 
via management of NF-κB can be a promising strategy for 
the management of diabetes. The correlation established 
between gut microbiota and NF-kB supports that the pro-
biotic mediated NF-kB targeted therapy can be explored for 
possible management of diabetes and other related meta-
bolic and inflammation driven disorders. Many Lactobacil-
lus strains have been shown to regulate NF-κB expression 
under in vitro and in vivo conditions. Emerging leads from 
available data reflects NF-κB as a promising biotherapeutic 
target against diabetes, which can be modulated with dietary 
intervention involving probiotics. Selective probiotics strains 
may possibly be harnessed to regulate NF-κB for maintain-
ing health and protecting against diabetes.
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