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Abstract
Genetic diversity is crucial for successful adaptation and sustained improvement in crops. India is bestowed with diverse 
agro-climatic conditions which makes it rich in wheat germplasm adapted to various niches. Germplasm repository consists 
of local landraces, trait specific genetic stocks including introgressions from wild relatives, exotic collections, released varie-
ties, and improved germplasm. Characterization of genetic diversity is done using morpho-physiological characters as well 
as by analyzing variations at DNA level. However, there are not many reports on array based high throughput SNP markers 
having characteristics of genome wide coverage employed in Indian spring wheat germplasm. Amongst wheat SNP arrays, 
35K Axiom Wheat Breeder’s Array has the highest SNP polymorphism efficiency suitable for genetic mapping and genetic 
diversity characterization. Therefore, genotyping was done using 35K in 483 wheat genotypes resulting in 14,650 quality 
filtered SNPs, that were distributed across the B (~ 50%), A (~ 39%), and D (~ 10%) genomes. The total genetic distance 
coverage was 4477.85 cM with 3.27 SNP/cM and 0.49 cM/SNP as average marker density and average inter-marker distance, 
respectively. The PIC ranged from 0.09 to 0.38 with an average of 0.29 across genomes. Population structure and Principal 
Coordinate Analysis resulted in two subpopulations (SP1 and SP2). The analysis of molecular variance revealed the genetic 
variation of 2% among and 98% within subpopulations indicating high gene flow between SP1 and SP2. The subpopulation 
SP2 showed high level of genetic diversity based on genetic diversity indices viz. Shannon’s information index (I) = 0.648, 
expected heterozygosity (He) = 0.456 and unbiased expected heterozygosity (uHe) = 0.456. To the best of our knowledge, 
this study is the first to include the largest set of Indian wheat genotypes studied exclusively for genetic diversity. These 
findings may serve as a potential source for the identification of uncharacterized QTL/gene using genome wide association 
studies and marker assisted selection in wheat breeding programs.

Keywords 35K · AMOVA · Genetic diversity · Indian Spring wheat · Population structure · Single nucleotide 
polymorphism

Introduction

The future of wheat production program demands a 2.4% 
increase in yield per year to reach a goal of 70% by 2050 
of the current wheat production. However, the current rate 
of increase in the global average yield is only 0.9% per year 
[1]. This can be achieved by improvement in crop man-
agement practices and genetic improvement of cultivars 
for better yield [2]. The foundation for such an improve-
ment can be found in genetic diversity [3, 4]. For instance, 
genetic diversity might be important for the adaptation and 
acquiring defensive characteristics in wheat varieties against 
biotic stress. Uniformity in a population will certainly show 
similar behavior against such a threat and will be unable 
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to withstand an epidemic situation. It has been a long road 
in wheat evolution from einkorn to bread wheat, where 
wheat has assimilated several genetic variations. But now, 
it is reducing due to narrow adaptation, farmer’s selection, 
repeated cultivation of selected landraces, uniform vari-
etal seed production by industries, etc. [5]. DNA markers 
such as restriction fragment length polymorphism (RFLP) 
[6], amplified fragment length polymorphism (AFLP) [7], 
inter simple sequence repeat (ISSR) [5], simple sequence 
repeat (SSR) [8], diversity arrays technology (DArT) [9], 
etc. are well used for genetic variation or diversity analysis 
in hexaploid wheat. Such study has been reported in Indian 
hexaploid wheat germplasm using SSRs [10, 11]. The num-
ber of markers and genotypes used in these studies seems 
insufficient to pursue studies like genome-wide association 
mapping [12]. Moreover, the Indian genotypes used in these 
reports can simply be classified as cultivars [10], released 
varieties, elite lines, and genetic stocks [11].

Single Nucleotide Polymorphisms (SNPs) are the best 
choice for genomic studies which demands a large number of 
markers with whole genome coverage. A comparative study 
between SNP and SSR for studying population structure and 
genetic diversity showed that SNP can be a more valuable 
tool for genomics approach and crop improvement [13]. The 
ubiquitous presence, uniform distribution, high heritability, 
and bi-allelic nature makes SNPs widely accepted molecular 
marker in terms of being high throughput [14]. It has been 
widely used for studying population structure and genetic 
diversity of germplasm collection panels by the means of 
SNP array or genotyping-by-sequencing (GBS) approach. 
At present, the application of SNP arrays in many polyploid 
crops [15] has been extensively reported. Amongst these 
SNP arrays, 35K has the highest SNP efficiency (94.8%) 
in terms of polymorphism suitable for genetic mapping 
and genetic diversity characterization in wheat [15–17]. 
As a brief history, Winfield et al. [16] used the Exom-seq 
(~ 57 Mb) information to identify 921K SNP variants fur-
ther narrowing down to 820K. In order to update the 820K 
SNP array, 35K SNPs were selected with the consideration 
of high polymorphic rate and more even distribution for 
constructing genetic maps and characterizing novel genetic 
diversity [17].

Several genetic diversity studies based on SNPs have been 
reported in wheat using Genotyping-By-Sequencing (GBS) 
method [18–20]. The major limitations to the GBS approach 
are large percentage of missing data and uneven genome 
coverage due to selection of restriction enzyme used for 
fragment selection [21]. SNP array platform is known to be 
of high quality, reliable and robust for a multitude of applica-
tions in diversity studies and breeding applications [22–24]. 
It has certain advantages over NGS based GBS (Genotyping-
By-Sequencing) method. Firstly, SNP array data is relatively 
easy to analyze and genotypes of SNP markers can be called 

as per the user guide. Since SNP calling requires read trim-
ming, read alignment, SNP calling and filtering, etc. [25], 
it requires knowledge and background of bioinformatics. 
Secondly, genomic region of interest can be probed on SNP 
array. The number of such probes is flexible in Illumina 
and Affymetrix platforms. Thirdly, SNP array costs low to 
moderate per sample, e.g. Affymetrix Axiom array costs 
around $28–90 (USD) per sample [15]. So far, 35K SNP 
array has been used to study genetic differentiation between 
landraces and improved varieties in a panel of 370 durum 
wheat [26] with 8173 SNPs. In our previous study, this array 
was used on 404 wheat accessions to perform genome-wide 
association studies (GWAS) using 14,160 SNPs, with little 
focus on genetic differentiation studies [27]. This study also 
used a complete set of filtered markers for the same which 
may have led to an overestimation of subpopulations due to 
tightly linked markers [28]. Here we report, genetic diver-
sity and population structure studies on an updated diverse 
study panel utilizing 14,650 informative SNP markers. The 
present study was undertaken in the current study panel to 
characterize the genetic diversity and population structure 
along with genetic differentiation within and among sub-
populations. This study uniquely describes SNP array-based 
population structure and genetic diversity with the highest 
number of wheat genotypes in a study panel. This will prove 
a groundwork for future genomic selection in wheat breed-
ing programs or GWAS.

Materials and methods

Plant material

A study panel of 483 Indian spring wheat (Triticum aes-
tivum) genotypes was used in this study (Supplementary 
Table S1). These were obtained from Germplasm Resource 
Unit (GRU), ICAR-IIWBR, Karnal, India. This collection 
majorly comprised of varieties, improved genotypes, genetic 
stocks, landraces, exotic lines, etc., procured from different 
years adapted to different agro-climatic zones of India. A 
diverse panel is a prerequisite for understanding the popula-
tion genetics and conducting association mapping studies.

DNA isolation and SNP genotyping

Genomic DNA was isolated from plants at growth stage (GS) 
12 [29]. Modified CTAB method was applied for the DNA 
isolation [30]. Samples were snap frozen and crushed using 
liquid nitrogen. Then aqueous phase separation using Phenol: 
Chloroform: Isoamyl alcohol (25:24:1) was done after RNase 
treatment, at 13,000 g for 10 min at 4 °C. After precipitation 
with chilled isopropanol washing was done with 70% ethanol 
and pellet obtained was left to air-dry in a clean environment. 
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The air-dried pellet was dissolved in nuclease free water. DNA 
isolated was quantified at 260 nm absorbance using Nano-
Quant  Infinite® 200 spectrophotometer (TECAN). DNA 
samples were genotyped with 35K  Axiom® Wheat Breeder’s 
Array (Affymetrix UK Ltd, UK) [17] as per manufacturer’s 
guidelines. The SNP array used comprised of 35,143 SNP 
markers. The SNP calls were visualized and optimized for user 
handling in Axiom analysis suite v2. Quality filtration was 
performed on these markers using PLINK v1.07 [31]. Minor 
allele frequency (MAF) less than 5% (--maf 0.05), individu-
als with more than 10% missing SNP calls (--mind 0.1) and 
markers with more than 10% missingness (--geno 0.1) were 
considered for filtration. Physical map positions of complete 
set of SNP markers were obtained and studied from Ensembl 
plants Triticum aestivum database (https ://plant s.ensem bl.org/
Triti cum_aesti vum). Further, on the basis of high-density con-
sensus map provided on CerealDb [17, 32], markers lacking 
information for genetic distance and consensus chromosome 
location were removed. Consequently, 14,650 SNP markers 
and 483 genotypes in the study panel were subjected to further 
analysis. The collinearity of these filtered SNPs was compared 
on the basis of their genetic distance and physical position. A 
pictorial representation using 13,557 SNPs was made using 
Circos v0.67 software [33] by removing markers (1093) lack-
ing information in terms of their physical position.

Genetic features of markers

Genetic diversity of a population is generally defined by 
parameters such as gene diversity (GD), Polymorphism Infor-
mation Content (PIC) and MAF. GD is based on Nei’s gene 
diversity, which is a probability estimate for two randomly 
selected markers to be different in a population. GD for a locus 
is known as expected heterozygosity (He), being the funda-
mental measure which describes the expected heterozygous 
genotypes in genetic studies under Hardy–Weinberg Equilib-
rium [34]. PIC reflects the probability that two arbitrary sam-
ples in the analysis are polymorphic in nature. Both parameters 
were calculated using POWERMARKER v 3.25 [35] with the 
filtered set of 14,650 SNP markers. The GD [35] and PIC [36] 
was estimated based on the equations as follows:

where n = number of distinct alleles at any given locus;  Pi 
(i = 1, 2,…, n) = frequency of allele n in the population.

GD = 1 −

n
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i
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n
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−
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where  Pi and  Pj are the frequencies of ith and jth alleles for 
any given marker i, respectively. MAF refers to the occur-
rence of the second most allele frequency in any given popu-
lation under study [37] and value below 0.05 is discarded 
in most genetic studies. MAF for the filtered set of SNPs 
was calculated in PLINK (–freq). Other parameters such as 
average pairwise divergence or observed nucleotide diver-
sity, expected nucleotide diversity or estimated mutation rate 
and Tajima’s D [38] were calculated across genomes using 
TASSEL v5.2 [39].

Population structure analysis

To determine the population structure, filtered marker set 
(14,650) was pruned using LD (Linkage Disequilibrium) 
based pruning method in PLINK (--indep-pairwise 100 5 
0.2). The resulted pruned markers (1544) were used for 
population structure analysis using Bayesian based model 
method in STRU CTU RE 2.3.4 [40]. The command line 
python program StrAuto [41] was employed for the paral-
lelization of STRU CTU RE run under Linux environment. 
Parallelized run provided an advantage over regular STRU 
CTU RE by saving computational duration and ease of han-
dling. The run parameters were 100,000 iterations of burn-in 
with 100,000 Monte Carlo Markov Chain (MCMC) itera-
tions. K values were tested from 1 to 10 with five independ-
ent runs for each K. Most likely possible numbers of sub-
populations (K) was determined by using web-based STRU 
CTU RE HARVESTER [42], a ΔK statistics which depends 
on the rate of change in log probability [LnP(D)] between 
consecutive K values. CLUMPP v1.1.2 software [43] was 
used to generate a consolidated population (Q) matrix from 
the STRU CTU RE runs for the best K value. Genotypes with 
membership coefficients greater than 0.5 were considered 
to belong in the same group. MS-Excel 2013 was used to 
draw a bar graph for the Q matrix. STRU CTU RE run out-
puts were used to determine the fixation index (Fst) of each 
sub-population. PCoA (Principal Coordinates Analysis) was 
studied using DARwin v6 [44] on 14,650 SNP markers. The 
dissimilarity matrix was generated by performing 1000 boot-
straps, which was further used in the cluster analysis of all 
genotypes using weighted neighbor-joining (NJ) method.

Genetic diversity indices and analysis of molecular 
variance (AMOVA)

In summary statistics, genetic diversity indices such as the 
number of different alleles (Na), number of effective alleles 
(Ne), observed heterozygosity (Ho), expected heterozygosity 
(He), and Shannon’s information index (I) were estimated 
using GenAlEx v6.5 [45]. For the estimation of genetic dif-
ferentiation, number of subpopulations determined were 
used for the analysis of molecular variance (AMOVA) [46] 

https://plants.ensembl.org/Triticum_aestivum
https://plants.ensembl.org/Triticum_aestivum
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and calculation of Nei’ genetic distance [47]. The analy-
sis was performed on selected markers (8022) having PIC 
values 0.31 to 0.38. Population pairwise PhiPT value, a Fst 
analog which calculates population differentiation based on 
genotypic variance suppressing the within-population vari-
ance [48], was calculated along with the estimates of gene 
flow (Nm, number of migrants per generation = 0.25[(1/
PhiPT) − 1]), in GenAlEx 6.5 [45]. A total of 9999 permu-
tations were performed to obtain significance.

Results

SNP marker statistics and distribution

A total of 35,143 SNP markers were used to genotype 483 
wheat individuals. Of 35,143 SNPs, monomorphic mark-
ers (6041), markers failing minor allele frequency test 
[MAF < 0.05] (8123) and missingness test [GENO > 0.1] 
(1412) were removed. Further, 5055 SNPs lacking infor-
mation in the consensus genetic map for genetic distance 
and chromosomal location were also removed. No indi-
viduals failed for having more than 10 percent missing 
SNP calls (MIND > 0.1). Therefore, after quality filtra-
tion, 483 genotypes with 14,650 markers were used for 
further analysis. These markers covered a total genetic 
distance of 4477.85  cM. The B genome was observed 
to have the maximum numbers of filtered SNP markers 
(7377, ~ 50%) followed by A genome (5771, ~ 39%) and D 
genome (1502, ~ 10%). Supporting this, marker density was 
1053.85, 824.42 and 214.57 per chromosome for the B, A, 
and D genome, respectively. Chromosome 2B comprised 
of a maximum number of genetically mapped SNP markers 
(1360). The lowest number of SNP markers were genetically 
mapped to chromosome 4D (61) (Supplementary Table S2, 
Fig. 1). Physical map positions of the SNP markers were 

obtained from the Ensembl database. Of 35,143 markers, 
32,413 SNPs were found with available information of phys-
ical positions, distributed across the genome (Fig. 2a). The 
distribution of markers was observed in an appropriate win-
dow size across chromosomes using the R package CMplot 
(https ://githu b.com/YinLi Lin/R-CMplo t). It was found that 
the markers that have been obtained after filtration are non-
randomly distributed except for the central chromosomal 
region as per their physical position (Fig. 2b). There was 
a correlation of 0.9 due to the difference in chromosomal 
location of SNPs based on genetic distance and physical 
position (Supplementary Table S3). Therefore, we relied 
on the consensus chromosomal location from the genetic 
map in this study. The Circos plot (Fig. 2c) indicates that 
SNPs used in variability and structure analysis of all 483 
genotypes of wheat were covered by more than 450 SNP 
per chromosome. It also depicts the correlation between the 
genetic and physical map based chromosomal locations of 
SNP markers graphically. Hence, 14,650 SNP markers were 
considered good enough to represent genome variability in 
totality of each genotype for population structure study.

Population structure analysis

To study population structure in the panel of 483 genotypes, 
delta K (ΔK) values were used to infer the number of sub-
populations present. The suitable value of K was obtained 
from the plot between number of clusters (K) against ΔK 
where K = 2 showed the maximum value (Fig. 3a). A gradual 
increase in the assessed log likelihood with an increase in 
the number of K supports the defined number of sub-pop-
ulations to be K = 2 (Fig. 3b). This also indicated that the 
two subpopulations could include all the 483 genotypes with 
high probability. The two sub-populations were designated 
as SP1 and SP2, which comprised of 106 and 377 genotypes, 
respectively. In SP1, the major contribution was observed 

Fig. 1  Distribution of 14,650 
SNPs across genomes. Different 
genome has been represented 
with different color. Gene diver-
sity and PIC has been shown 
for all chromosomes with line 
representations

https://github.com/YinLiLin/R-CMplot
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to be made by the landraces (~ 66%) whereas, in SP2 it was 
varietal lines (~ 44%) and improved genotypes (~ 30%) col-
lectively (Supplementary Table S1). In addition, contribu-
tions made by exotic lines and genetic stocks were 11.32% 
in SP1 and 17.50% in SP2. Despite the major contributor to 
SP1, landraces were also observed in SP2 (6.6%). Similarly, 
varietal lines and improved genotypes majorly represent-
ing SP2 were also component of SP1 with 17.9% and 3.8% 

contributions, respectively. The fixation index defines the 
overall genetic variation among subpopulations which is 
essentially determined to test the population substructure. 
The fixation index values from STRU CTU RE runs for SP1 
and SP2 were 0.196 and 0.532, respectively. The principal 
coordinate analysis (PCoA) performed using DARwin v6 
tool was found in agreement with the results of STRU CTU 
RE. Two separate clusters were observed in PCoA as shown 

Fig. 2  Genome wide SNP marker density on the basis of their physi-
cal position for a all available markers of 35 K SNP array and b the 
filtered set of markers used in this study. Color gradient scale indi-
cates the region rich and poor in SNPs with respect to their numbers. 
c Schematic representation of relationship between chromosomal 

location of any one marker based on genetic and physical maps. Gen-
1A to Gen-7D represent the 21 wheat chromosomal genetic maps 
and Phy-1A to Phy-7D represent the 21 wheat chromosomal physical 
maps
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in Fig. 4a. The first coordinate explained 20.69% and sec-
ond coordinate explained 5.66% of the variation. The major 
cluster observed in the PCoA comprised of mainly varietal 
lines followed by improved genotypes (Fig. 4b). A NJ phylo-
genetic tree (Supplementary Fig. S1a) was constructed with 
14,650 SNPs to represent the genetic distances among the 
population.

Genetic diversity analysis and PIC

Gene diversity (GD) in this study ranged from 0.095 to 0.5 
with the highest mean in chromosome 5B (0.39) and lowest 
in chromosome 5D (0.27). Among the three genomes, the 
B genome showed the highest mean gene diversity (0.37). 
Polymorphism information content (PIC) was observed to 
range from 0.0905 to 0.3750. Highest mean PIC value was 
observed in chromosome 5B (0.31) and lowest in chromo-
some 5D (0.23) (Supplementary Table S2, Fig. 1). GD with 
a value of about 0.5 was observed in maximum number of 
markers (34.23%) followed by 0.4 (26.88%) and observed 
least for the value of 0.1 (8.14%). Minor allele frequency 
from 0.1 to 0.4 was observed in a similar number of mark-
ers (approx. 21%). Whereas, MAF of 0.5 was observed in 
only 10.77% of the total markers. PIC, with a value of 0.3 
was observed in most of the markers (38.06%) followed by 
the value of 0.4 (Fig. 5a). At the genome level, both A and 
B genomes had more value than the D genome for both GD 
and PIC (Supplementary Table S2). The following trend was 
observed for mean MAF in the genomes; D (0.2584) < A 
(0.2655) < B (0.2795). In a separate analysis, SP1 and SP2 
were studied individually for corresponding GD and PIC 
(Fig. 5b). For each subpopulation, common markers with 
MAF ≥ 5% were considered for this observation. The aver-
age PIC of 0.291 was observed in SP2, higher than that in 

SP1 (0.245). The same observation was seen with mean 
GD between SP2 (0.365) and SP1 (0.298). In SP2, chromo-
some 1D was observed to have the highest value for GD and 
PIC. All chromosomes except for 5D and 6D in SP1 were 
observed with lower values for the same when compared to 
SP2. In this study, landraces representing 20% genotypes 
in the study panel was observed to have a GD of 0.316. 
Whereas, the remaining 80% of the study panel showed 
slightly higher GD of 0.379.

Values of similar magnitude were obtained in diversity 
summary statistics, even for separate genome (Table 1). 
Observed nucleotide diversity (π/bp) (Table 1) and gene 
diversity (GD) (Supplementary Table S2) were found to 
have similar values and ranged from 0.34 (D genome) to 
0.36 (B genome). Expected number of polymorphic sites or 
expected nucleotide diversity (θ/bp) were also found to have 
a similar value of 0.14 for all the genomes individually and 
as a whole. Tajima’s D, a population genetic test which com-
putes a standardized measure of the presence of total number 
of polymorphic sites or segregating sites in the genotyped 
samples. This test distinguishes between DNA sites that may 
have evolved neutrally and those evolved directionally or 
non-randomly. In our case, Tajima’s D values ranged from 
4.1 (D genome) to 4.6 (B genome). This value showed sig-
nificant deviation from the neutral evolution (D = 0) and the 
population may have gone through balancing selection. A 
positive value of D also indicates that rare alleles might be 
present at low frequency in the population.

Subpopulation genetic differentiation and Allelic 
pattern

The two subpopulations observed in the study were 
considered for the calculation of AMOVA and genetic 

Fig. 3  Population structure 
analysis: a Delta K for different 
number of subpopulations (K). 
Sharp peak was observed at 
K = 2 with maximum of delta K. 
b Log likelihood LnP(D) versus 
the number of K. c Structure 
plot for 483 genotypes at K = 2, 
where each color represent one 
subpopulation namely SP1 and 
SP2
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diversity indices. In AMOVA, genetic differentiation was 
determined using PhiPT (analog of  FST) which represents 
the total genetic variation among populations. AMOVA 
estimates the molecular variance at two levels (i) between 
or among subpopulations, and (ii) within subpopulations. 
In this study, 2% variation was observed among subpopu-
lations, while the rest of the variation of 98% was observed 
within subpopulations (Table 2). Therefore, the genetic 
differentiation observed after 9999 permutations among 
subpopulations was low and within subpopulations, it 

was observed to be high. PhiPT value and estimates of 
gene flow (Nm) were calculated between the two sub-
populations SP1 and SP2 in GenAlEx (Table 2). The val-
ues observed for PhiPT and Nm were 0.016 and 15.563, 
respectively. Nei’ genetic distance between SP1 and 
SP2 was observed to be 0.019. The weighted NJ cluster 
analysis was performed again with 8022 SNPs with 1000 
bootstraps (Supplementary Fig. S1b). The resulted tree 
was found in agreement with the PCoA and Population 
structure analysis done on 14,650 SNPs and also suitably 
represents the genetic differentiation of the study panel in 
SP1 and SP2 as compared to the NJ tree generated with 
complete filtered set of markers (Supplementary Fig. S1a). 
Genetic diversity indices were estimated on the two sub-
populations observed in this study are shown in Table 3. 
The mean value of number of different alleles and number 
of effective alleles for the two subpopulations were 2.0 
and 1.834, respectively. Mean values for I, Ho, He, and 
uHe were found 0.643, 0.003, 0.451, and 0.452, respec-
tively (Table 3). SP2 showed more diversity as compared 
to SP1 (with I = 0.648, He = 0.456 and uHe = 0.456). The 

Fig. 5  a Distribution of genetic diversity shown as polymorphic information content (PIC), minor allele frequency (MAF), and gene diversity 
(GD) for 14,650 SNP marker in the 483 Indian spring wheat genotypes. b Gene diversity and PIC estimated in SP1 and SP2

Table 1  Genetic diversity summary statistics of 483 Indian spring 
wheat genotypes. The parameters includes nucleotide diversity (π/bp), 
expected nucleotide diversity (θ/bp) and Tajima’s D

Genome No. of SNP(s) π/bp θ/bp Tajima’s D

A 5771 0.35854 0.14843 4.33473
B 7377 0.36939 0.14843 4.55941
D 1502 0.34654 0.14847 4.07461
ABD 14650 0.36277 0.14843 4.42441

Table 2  Analysis of molecular 
variance based on 8022 SNPs 
in the study panel of 483 
genotypes

Genetic differentiation among and within two subpopulations has been estimated, along with PhiPT and 
Nm (gene flow) with 9999 permutations
AP est. var. among pops, WP est. var. within pops
***P value < 0.001 (based on 9999 permutations)
a PhiPT = AP/(WP + AP) = AP/TOT
b Nm = [(1/PhiPT) − 1]/4

Source df SS MS Est. var. % P value

Among pops 1 27307.336 27307.336 119.913 2 ***
Within pops 481 3590601.004 7464.867 7464.867 98 ***
Total 482 3617908.340 7584.780 100 ***
PhiPTa 0.016***
Nmb 15.563***
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percentage of polymorphic loci (PPL) per population was 
observed to be approximately 100%.

Discussion

The genotypes used in this study as genotypic panel are pri-
marily grown in India. Different categories involved in this 
study panel harbors the characteristics of their own. The 
objective behind using such material is to infer genetic diver-
sity on the basis of high throughput SNPs in Indian spring 
wheat germplasm. This may further help in easy identifica-
tion of diverse source for novel alleles applicable to wheat 
breeding. It is well known that subsequent domestication 
and frequent inbreeding poses a major issue for breeders 
in developing new varieties [49]. Introgressing alien DNA 
segment from wild relatives has its own limitation referred 
to as linkage drag of undesirable traits [50]. Novel sources 
for diversity are expected to be available in less explored 
genotypes such as exotic lines, wild relatives, and landraces.

We demonstrated the utilization of 35K Axiom Breeder’s 
Array in this study. This array can be used for genotyping 
diverse hexaploid wheat derived from various sources [17]. 
The genetic map for the 35K SNP markers estimated on 
five bi-parental populations that provided consensus chro-
mosomal location of more than 20K SNPs [17] was used for 
this study. The information of 35K SNP array markers for 
their physical position was sorted out of 16,448,754 single 
nucleotide variations (SNV) available in the Ensembl wheat 
database. This information was supported by the fully anno-
tated reference wheat genome [51]. In Supplementary Figure 
S2, the central region of chromosomes in the plot shows less 
SNV density as compared to the end regions. Out of 35,143 
SNPs, information on physical position of 2730 SNPs is 
not available (Fig. 2a). In the filtered set of SNPs, the SNP 
density was observed to be very less at centromeric regions 
as compared to the end regions. The linkage map and physi-
cal map are supposed to be collinear and the order of link-
age map to be highly correlated with the physical map [52]. 
Sometimes the linkage group shows concentrated regions 
of non-collinearity which usually corresponds to the centro-
meric regions [53]. It is known that crossing over does not 
occur at centromeres with estimates of suppression ranging 

from one to many folds depending upon the organism [54]. 
This non-collinearity might be due to the insufficient number 
of crossing over events at the centromere to accurately order 
the distribution of SNP markers. With the availability of 
fully annotated genome, physical positions of SNP markers 
were available, yet we followed the genetic distance informa-
tion. The genetic distance has been reported suitable and as 
an alternative to physical position for conducting association 
studies [55].

The average marker density was 3.27 SNP/cM and 
0.4924 cM/SNP as the average inter-marker distance. Thus, 
35K wheat SNP array provided adequate polymorphic mark-
ers to conduct population structure and genetic diversity 
analysis. This can further be utilized for Linkage Disequilib-
rium and association analysis. The number of markers was 
highest in the B genome followed by A genome and least in 
the D genome. This was in concordance with previous stud-
ies where D genome had two [20, 56] to five [23, 57] times 
less number of markers as compared to A or B genome. An 
another study reported that a low number of polymorphic 
markers on the D genome have been put forth as a charac-
teristic of wheat instead of its progenitor Aegilops tauschii 
[58]. In our findings, polymorphic markers in D genome 
was 3 times less than A genome and five times less than the 
B genome. Following the trend reported by Rimbert et al. 
[59], the homoeologous chromosome group 4 in this study 
also possessed the least number of filtered markers in all 
the three genomes (Fig. 1). Chromosome 4D possessed the 
least number of markers after filtration supported by other 
studies [20, 59]. As an observation, the average transition/
transversion (Ts/Tv) ratio in the filtered set of markers was 
2.13 for the three genomes. Ts/Tv ratio was determined as 
2.290, 2.219 and 1.883 for genome A, B, and D, respec-
tively (Supplementary Table S4). The average Ts/Tv ratio 
was found higher than a previous report [20]. It was also 
found in agreement where genome A had more Ts/Tv ratio 
followed by genome B and D, suggesting A/G and C/T 
mutations with high frequencies followed by methylation in 
the SNP markers used [20]. Transition mutation frequency 
ranging from 1.59 to 2.80 has been reported in several other 
studies including hexaploid wheat [60–62], Barley [63], and 
Camelina [64]. Several studies support the fact that tran-
sition SNP types are preferred over transversion SNPs, in 

Table 3  Mean of different genetic parameters such as number of dif-
ferent alleles (Na), number of effective alleles (Ne), Shannon’s infor-
mation index (I), observed heterozygosity (Ho), expected heterozygo-

sity (He), unbiased expected heterozygosity (uHe), and percentage of 
polymorphic loci (PPL) in each subpopulation

Subpopulations Na Ne I Ho He UHe PPL (%)

SP1 2.000 1.821 0.637 0.003 0.446 0.448 99.79
SP2 2.000 1.847 0.648 0.004 0.456 0.456 99.82
Mean 2.000 1.834 0.643 0.003 0.451 0.452 99.80
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addition to INDELs or multiple allelic SNPs, for SNP array 
development [65, 66].

As STRU CTU RE assumes loci are at linkage equilibrium 
within subpopulations, using pruned markers instead of the 
whole set was found to be more reasonable [67]. This would 
also reduce the overestimation of sub-populations due to 
markers in strong LD [28]. Population structure helps in 
understanding genetic diversity and subsequent association 
mapping studies in a population, where it might pose as a 
limiting factor in the interpretation of results [18]. Pres-
ence of subgroups in the large populations can be justified 
by selection and genetic drift [68, 69]. Therefore, testing 
for population structure should be the first priority while 
conducting GWAS while identifying association between 
markers and the trait of interest. It is important because the 
presence of a structure in a mapping population may cause 
spurious association results [70]. A population designed for 
GWAS generally comprises of both population structure and 
familial relatedness. This is due to local adaptation and trait 
specific selection breeding [71]. For better inference, PCoA 
summarizes and represents the relation between a number of 
objects (in our case, the genotypes), in a simple Euclidean 
space. In our study, PCoA results concurred with those of 
STRU CTU RE (K = 2), indicating that 483 genotypes could 
be clustered into two subgroups. As an input PCoA consid-
ers a dissimilarity matrix instead of raw data and explains 
the variability present in the dataset summarized by uncor-
related axes. The extent of variation gets represented by the 
magnitude of the eigenvalue of an axis. In simple terms, 
PCoA interprets that the closely ordinated objects will be 
more similar. The NJ tree, in addition, gave a similar pat-
tern. The results were expected for the reason that the Indian 
landrace collection that has been less explored for traits like 
multiple rust resistance, were intentionally introduced in 
the study panel. Another possible explanation could be the 
selection of lines for breeding programs for certain specific 
traits. For instance, genotypes in SP2 had moderate to short 
plant height, whereas genotypes in SP1 were mostly tall in 
nature (data not shown). Genotypes that have been involved 
often in the breeding programs resulted in becoming varie-
ties, improved genotypes, genetic stocks, etc. can be seen 
mostly in SP2 (Supplementary Table S1, Fig. 3c). The reso-
lution of genetic relatedness is dependent on the number of 
markers and genotypes used in a study. The lower they are 
the higher the resolution will be in terms of similarity coef-
ficient, but this will limit the exploitation purposes in finding 
novel alleles for desirable traits and will be exhausted in 
short term. The dissimilarity coefficient increases with the 
increasing number of genotypes and markers, which can give 
a possible overview of the collection in use. For long term 
breeding objective it is better to explore the genetic related-
ness between the genotypes using larger set of genotypes 
and subjecting them to high density marker profiling. Our 

study includes more number of genotypes with high density 
of polymorphic markers.

Gene diversity (known otherwise as expected het-
erozygosity, He) and PIC are measures of genetic diver-
sity shedding light on the evolutionary pressure on the 
alleles, in any given breeding population, and mutation 
rate at a locus over a time period [36, 72]. The overall 
Genetic diversity in a population is mainly reflected by 
the distribution of informative markers [3]. GD provides 
gene diversity of haploid markers and provides a range of 
average heterozygosity and genetic distance in a popula-
tion among individuals [72, 73]. In our study, the overall 
GD value was found greater than the overall PIC value as 
expected. In the absence of more number of alleles and 
increasing evenness of allele frequencies PIC will always 
be lower than GD [72]. The PIC value of a marker dic-
tates the property of that marker to be informative. Such 
informative markers with good PIC values can be used for 
genotyping plant population and genetic diversity studies 
[74]. There are three categories of PIC values; PIC val-
ues > 0.5 are considered highly informative, PIC values 
ranging 0.25–0.5 are considered moderately informative, 
and PIC values < 0.25 are considered slightly informative 
[36]. Since SNP markers are bi-allelic in nature, their PIC 
values are considered to be moderate or low informative 
and also restricted to extreme PIC values of 0.5 [18]. In 
this study, the maximum value of PIC was observed at 
0.38 with an overall average of 0.29 between the genomes 
(Supplementary Table S2). Although it fell under the 
category of being moderately informative, yet it was 
observed higher than the average PIC value in previously 
reported studies in wheat [18, 75–78]. Studies reported 
on winter wheat [18], jujube [79] and ryegrass [80], sup-
ports that markers used in such studies are acceptable 
for being moderate to low informative. The results on 
GD showed that SP2 is more diverse than SP1. Since 
SP1 comprised mainly of landraces, it was expected to 
have more diversity as compared to modern germplasm 
in SP2. There is no denial in the fact that landraces are 
rich source of novel alleles and genetic diversity [81]. 
The proportion of landraces to other genotypes in this 
study was 1:4, even though a competitive GD value of 
0.316 was observed in landraces. In Fig. 5b, it is worth 
noting that despite having less number of markers in the 
D genome when compared to other genomes, the markers 
were highly informative. For instance, GD and PIC val-
ues in 1D (>), 7D (>), and 4D in SP2; and chromosome 
6D (>) and 5D in SP1 showed distinction from the other 
chromosomes. The genotypes in each subpopulation can 
be expected for playing a key role in this observation. 
Another study showed a similar behavior with the GD and 
PIC values [82]. They found high values for the same in 
1D (cultivars) and 6D (landraces). In our study, Tajima’s 
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D values were observed higher than that reported previ-
ously on synthetic hexaploid wheat panel [19]. As men-
tioned earlier, the positive value of Tajima’s D depicts the 
presence of low frequency of rare alleles in a given popu-
lation. This might be a possible reason that we could not 
find any private allele in our study panel. Private alleles 
are important in identifying unique genetic variability at 
loci and diverse genotypes that can be used in a breeding 
program to improve the allele richness in a study panel or 
population [74]. The method applied in the present study 
could not capture rare alleles. To enable characterization 
of private/rare alleles some mechanism has to be devised 
which should be effective in capturing and harnessing the 
key adaptive genes.

The result of AMOVA implemented in this study 
inferred high level of genetic diversity within subpopu-
lations and a low variation among subpopulations (2%). 
These variations were significant according to the par-
titioning value (p < 0.001). It also suppresses the intra-
individual variation, thus becoming ideal for co-dominant 
data with a maximum of 10,000 permutations [83]. The 
possible explanation for high variation within groups is 
the selection for several agronomically important traits 
in various breeding programs. A low PhiPT value (0.016) 
was found between SP1 and SP2, indicating low genetic 
differentiation between these subpopulations. This coin-
cided with the AMOVA results where only 2% of the total 
variation was accounted for by among-subpopulation vari-
ations. High variation within subpopulations symbolizes 
more frequent selection for economically important traits. 
When the value for gene flow is high one could expect a 
low level of diversity among subpopulation [11]. The value 
of Nm (15.563) in this study was higher than previous 
reports [18, 64]. This might be the reason where genetic 
exchange among subpopulations resulted in a low genetic 
differentiation among subpopulations. Rigorous efforts 
by the breeders get manifested in high Nm value indi-
cating frequent gene flow among the subpopulations. The 
high value of Nm, therefore suggests that newer sources 
and hitherto less exploited genetic resources such as gene 
introgressed lines having genomic segments of interest 
shall be referred. Pre-breeding material utilizing synthetics 
and wild relatives will find their enhanced role under such 
circumstances. An indirect estimate of Nm from PhiPT 
in natural population violates several assumptions includ-
ing constant population size, random migration, and no 
selection along with mutation and spatial structure [84]. 
Caution must be taken while interpreting Nm from indi-
rect estimates, although it can still be useful to know the 
magnitude of gene flow [85]. The understanding of genetic 
diversity in Indian spring wheat germplasm will help in 
future studies as well as in monitoring and maintenance of 
genetic diversity in a wheat breeding program.

Conclusion

In this study, we performed an array based SNP genotyping to 
expand the utility of SNP markers for genomic analysis. This 
study comprised a diverse panel of 483 genotypes. We identi-
fied two subpopulations, SP1 and SP2, based on unlinked SNP 
markers, natural adaptation and selection history for traits of 
interest. SP2 comprised genotypes that were mostly the result 
of selection. However, based on GD and PIC analysis, it was 
identified as genetically more diverse. As compared to SP1, 
it was identified exhibiting higher values for Shannon’s infor-
mation index (I), expected heterozygosity (He), and unbiased 
expected heterozygosity (uHe). This kind of genetic diversity 
can be utilized for developing biotic and abiotic stress tolerant 
varieties adaptive to diverse agro-climatic regions. Modern 
day wheat improvement program involves multi-parent crosses 
with diverse pedigree, wild germplasm or alien gene intro-
gressed lines, developing a broad genetic based population 
from which selections are made. This study will be beneficial 
to the wheat breeders in taking decision about the parental 
lines to be selected for further genetic improvement. The 
diversity information made available can be channelized using 
such approach. These results of genetic diversity and popula-
tion structure will be crucial for future studies with genomic 
approaches such as genomic selection, marker-assisted selec-
tion, and GWAS.
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